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บทคัดยอ่ 
 งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบประสิทธิภาพของตัวแบบทำนายข้อมูลอนุกรมเวลาของผู้ป่วย
โรคมะเร็งเต้านม จำนวน 4 ตัวแบบ ได้แก่ ตัวแบบระบบเกรย์ GM(1,1) ตัวแบบเกรย์แยกส่วน DGM(1,1) ตัวแบบ 
FGM(1,1) และตัวแบบ FDGM(1,1) โดยตัวแบบ FGM(1,1) และ FDGM(1,1) ได้รับการปรับปรุงความแม่นยำในการ
พยากรณ์ด้วยอนุกรมฟูริเยร์ ใช้ข้อมูลรายปีจากสถาบันมะเร็งแห่งชาติในการวิเคราะห์ ประสิทธิภาพของตัวแบบ
ประเมินด้วยค่าเฉลี่ยร้อยละของความคลาดเคลื่อนสัมบูรณ์ (MAPE) ผลการศึกษาพบว่า ตัวแบบ FDGM(1,1) ให้
ประสิทธิภาพสูงที่สุด โดยมีค่า MAPE เท่ากับ 15.25% ขณะที่ตัวแบบ GM(1,1), DGM(1,1) และ FGM(1,1) ให้ค่า 
MAPE เท่ากับ 17.78%, 17.41% และ 15.49% ตามลำดับ ทั้งนี้ เกณฑ์ของสำนักงานสถิติแห่งชาติระบุว่า หากค่า 
MAPE อยู่ระหว่าง 10%–20% ถือว่าตัวแบบมีความแม่นยำในระดับค่อนข้างดี ดังนั้น สำหรับการศึกษาครั้งนี้จึงสรุปได้
ว่า ตัวแบบ FDGM(1,1) มีความเหมาะสมที่สุดในการใช้ทำนายจำนวนผู้ป่วยโรคมะเร็งเต้านม  
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Abstract  
 The objective of this study is to compare the forecasting performance of four time series 
models for predicting the number of breast cancer patients. The models considered include the 
Grey Model GM(1,1), the Discrete Grey Model DGM(1,1), the Fourier Grey Model FGM(1,1), and the 
Fourier Discrete Grey Model FDGM(1,1). The FGM(1,1) and FDGM(1,1) models were enhanced using 
Fourier series to improve forecasting accuracy. Annual data from the National Cancer Institute were 
used for the analysis. Model performance was evaluated using the Mean Absolute Percentage Error 
(MAPE). The results show that the FDGM(1,1) model achieved the highest accuracy, with a MAPE 
value of 15.25%, whereas the GM(1,1), DGM(1,1), and FGM(1,1) models yielded MAPE values of 
17.78%, 17.41%, and 15.49%, respectively. According to the National Statistical Office’s criteria, a 
MAPE between 10% and 20% indicates a reasonably accurate forecasting model. Therefore, it can 
be concluded that, for this study, the FDGM(1,1) model is the most appropriate choice for 
forecasting the number of breast cancer patients. 
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1. บทนำ  
ข้อมูลจากสถาบันมะเร็งแห่งชาติ พ.ศ. 2564 

ระบุว่า มะเร็งที่พบมากที่สุดในเพศหญิงเป็น 3 อันดับ
แรก ได้แก่ มะเร็งเต้านม มะเร็งปากมดลูกและมะเร็ง
ลำไส้ โดยมะเร็งเต้านมเป็นชนิดทีม่ีอุบัติการณ์มากสุดใน
ผู้หญิงไทย [1] ทั้งนี้ มะเร็งเต้านมสามารถเกิดขึ้นในเพศ
ชายได้ในอัตราส่วนประมาณ 1 ใน 100 ของผู้ป่วย
มะเร็งเต้านมทั้งหมด [2] ในระดับสากล องค์การอนามัย
โลก (WHO) รายงานว่ามีผู้ป่วยมะเร็งเต้านมรายใหม่ทั่ว
โลกราว 2.3 ล้านคน และมีอัตราการเสียชีวิตราว 
ประมาณ 685,000 คนต่อปี [3] ปัจจัยเสี่ยงที่สัมพันธ์กับ
การเกิดโรคมะเรง็เต้านม ได้แก่ อายุที่มากขึ้น พันธุกรรม 
ภาวะอ้วน มีประจำเดือนครั้ งแรกก่อนอายุ  12 ปี   
มีประวัติเคยเป็นมะเร็งเต้านม มีบุตรคนแรกมากกว่า
อายุ 30 ปี การได้รับฮอร์โมนเอสโตเจนเป็นเวลานาน 
[4] อย่างไรก็ตาม โรคมะเร็งเต้านมหากได้รับการวินิจฉัย
และรักษาในระยะแรกเริ่ม จะสามารถรักษาให้มีโอกาส
รอดชีวิตสูงขึ้นและช่วยลดอัตราการเสียชีวิตลงได้ [2]  
 การคาดการณ์จำนวนผู้ป่วยโรคมะเร็งเต้านม
ในอนาคตเป็นเครื่องมือสำคัญที่ ช่วยให้หน่วยงาน
สาธารณสุขสามารถกำหนดแนวทางป้องกัน  วาง
แผนการรักษา และบริหารจัดการทรัพยากรทางการ
แพทย์ได้อย่างมีประสิทธิภาพ เพื่อรองรับการรักษา
ผู้ป่วยท่ีเกิดขึ้นในอนาคต  

 
รูปที่ 1 แสดงจำนวนผู้ป่วยโรคมะเร็งเต้านมจากสถาบัน

มะเร็งแห่งชาติช่วงปี พ.ศ. 2550-2565  

  
 ข้อมูลแสดงให้เห็นว่า จำนวนผู้ป่วยมีแนวโน้ม
เพิ่ มขึ้นอย่ างต่อ เนื่ องใน ช่วงปี  2550–2557 โดยมี
จุดสูงสุดที่ 1,005 รายในปี 2557 หลังจากนั้นจำนวน
ผู้ป่วยมีความผันผวนและลดลงอย่างค่อยเป็นค่อยไป 
โดยเฉพาะในช่วงปี 2563–2564 ที่มีจำนวนผู้ป่วยลดลง
อย่างเห็นได้ชัด ซึ่งสอดคล้องกับช่วงการระบาดของโรค
โควิด-19 ที่ส่งผลให้ประชาชนจำนวนมากไม่สะดวกใน
การเข้ารับการตรวจคัดกรองและการวินิจฉัย ส่งผลให้
ตัวเลขผู้ป่วยรายใหม่ที่ถูกรายงานลดลงช่ัวคราว ลักษณะ
ของข้อมูลที่มีความผันผวนในบางช่วงและไม่ได้เป็น
เส้นแนวโน้มที่ราบเรียบ แสดงให้เห็นว่า ข้อมูลนี้มีความ
ไม่แน่นอนและไม่เป็นเส้นตรงชัดเจน จึงเหมาะสมกับ
ก าร ใ ช้ แ บ บ จ ำล อ งร ะ บ บ เก รย์  (Grey Models)  
ซึ่งสามารถประมวลผลข้อมูลจำนวนน้อยและข้อมูลที่มี
ความไม่แน่นอนได้อย่ างยืดหยุ่ น  ตรงกันข้ ามกับ
แบบจำลองเชิงสถิติแบบพื้นฐาน เช่น Moving Average 
หรือ ARIMA ที่มี ข้อสมมติว่าข้อมูลควรมีความนิ่ ง 
(stationary) และมีจำนวนตัวอย่างมากพอ ซึ่งอาจไม่
เหมาะกับชุดข้อมูลที่มีความผันผวนและขนาดเล็กเช่นนี้ 

ทฤษฎีระบบเกรย์ถูกสร้างขึ้นโดยนกัคณิตศาสตร์
ชาวจีน  J. Deng ในปี  ค .ศ . 1982 มี จุด เด่ น ในการ
นำไป ใช้กั บ ข้ อมู ลที่ มี ขน าด เล็ กห รือ ไม่ สมบู รณ์   
จึงเหมาะสมอย่างยิ่งกับปัญหาที่มีข้อมูลจำกัด ทฤษฎี
ระบบเกรย์ถูกประยุกต์ใช้ในหลายสาขา เช่น การแพทย์ 
วิศวกรรม และการเกษตร เป็นต้น [5] ตัวอย่างงานวิจัย
ที่ประยุกต์ใช้ทฤษฎีระบบเกรย์  เช่น การนำตัวแบบ
ทฤษฎีระบบเกรย์ไปทำนายจำนวนผู้เสียชีวิตจากโรค
ปวดบอมและโรคเลือดออกในสมอง ผลการศึกษาพบว่า
ตัวแบบทำนายจำนวนผู้เสียชีวิตจากโรคปอดบวมและ
โรคเลือดออกในสมองให้ค่า MAPE เท่ากับ 2.83% และ 
1.20% ตามลำดับ [6] การนำตัวแบบ GM(1,1) ไป
พยากรณ์ค่าฝุ่น PM10 ในบริเวณภาคเหนือตอนบน ผล
การพยากรณ์พบว่าในช่วงปี 2557 – 2560 ฝุ่น PM10 
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มีแน้วโน้มที่จะมีปริมาณเพิ่มขึ้น [7] อีกทั้งยังมีการ
เปรียบเทียบประสิทธิภาพระหว่างแบบจำลอง GM(1,1) 
และแบบจำลองเกรย์แยกส่ วน DGM(1,1) ในการ
พยากรณ์วิกฤตการณ์ทางเศรษฐกิจของประเทศไทย ซึ่ง
พบว่า DGM(1,1) ให้ผลแม่นยำมากกว่า [8] นอกจากนี้
ยังมีการปรับปรุงความแม่นยำของตัวแบบด้วยการใช้
อนุกรมฟูริเยร์ โดยพบว่า ตัวแบบ FDGM(1,1) ซึ่งเป็น
การประยุกต์อนุกรมฟูริเยร์กับ DGM(1,1)  ให้ค่า MAPE 
ต่ำกว่าตัวแบบ GM(1,1) [9] เป็นต้น ตัวแบบทฤษฎี
ระบบเกรย์นั้น เป็นตัวแบบที่ได้รับความนิยมเนื่องจากมี
วิธีการคำนวณพารามิเตอร์ที่ไม่ซับซ้อน และสามารถ
ใช้ได้กับจำนวนข้อมูลที่มีขนาดเล็กหรือข้อมูลตั้งแต่ 4 

ข้อมูลขึ้นไป [10]  
ดังนั้น งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาตัว

แบบการพยากรณ์จำนวนผู้ป่วยโรคมะเร็งเต้านมโดย
ประยุกต์ใช้ทฤษฎีระบบเกรย์ ผ่านการสร้างแบบจำลอง 
GM(1,1) และ DGM(1,1) พร้อมทั้ งป รับปรุ งความ
แม่นยำของการพยากรณ์ด้วยอนุกรมฟูริเยร์ เพื่อสร้าง
แบบจำลอง FGM(1,1) และ FDGM(1,1) จากนั้นทำการ
ประเมินและเปรียบเทียบประสิทธิภาพของแบบจำลอง
ทั้ งสี่ ป ระ เภ ท  โดย ใช้ค่ า เฉลี่ ย ร้ อ ยละของความ
คลาดเคลื่อนสัมบูรณ์ (Mean Absolute Percentage 
Error: MAPE) เป็นเกณฑ์ในการประเมินผล 
 

2. ระเบียบวิธีวจิัย  
  

2.1 ขั้นตอนการวิจัย  

 ขั้นตอนที่ 1 ทำการเก็บข้อมูลจำนวนผู้ป่วย
โรคมะเร็งเต้านม จากสถาบันมะเร็งแห่งชาติ [11] ซึ่ง
เป็นข้อมูลรายปีตั้งแต่ปี พ.ศ. 2550 ถึง พ.ศ. 2565 รวม
ทั้งสิ้น 16 ปี โดยเป็นข้อมูลผู้ป่วยรายใหม่ของแต่ละปีที่
เข้ารับการตรวจวินิจฉัยและรักษาที่สถาบันมะเร็ง
แห่งชาติ  

 ขั้นตอนที่ 2 แบ่งข้อมูลออกเป็น 2 ส่วนเพื่อใช้
ในการตรวจสอบความแม่นยำของตัวแบบ (Validation)  
คือ ข้อมูลชุดฝึกหัดและข้อมูลชุดทดสอบในอัตราส่วน  
8 : 2 นั่นคือ ข้อมูลชุดฝึกหัดจำนวน 13 ปี และ ข้อมูล
ชุดทดสอบจำนวน 3 ปี  
 ขั้ น ตอนที่  3 สร้ า งตั วแบ บ  GM(1,1) และ 
DGM(1,1) ภายใต้การใช้ภาษา Python ผ่านไลบรารี 
numpy   
 ขั้นตอนที่ 4 ปรับปรุงค่าพยากรณ์ของตัวแบบ
ด้วยการประยุกต์ใช้อนุกรมฟูริเยร์ (Fourier Series)  
ซึ่งจะได้ตัวแบบ FGM(1,1) และ FDGM(1,1)  
 ขั้นตอนที่ 5 เปรียบเทียบประสิทธิภาพตัวแบบ
ทั้งหมดโดยใช้ค่าเฉลี่ยร้อยละของความคลาดเคลื่อน
สัมบูรณ์ (MAPE) กับข้อมูลชุดทดสอบ  
 

2.2 ตัวแบบระบบเกรย์ GM(1,1)  
 ตัวแบบ GM(1,1) เป็นแบบจำลองที่ได้รับการ
พัฒนาจาก J.Deng ในปี 1982 คำว่า “เกรย์” หมายถึง
ระบบข้อมูลที่ไม่สมบูรณ์หรือไม่แน่นอน ซึ่งขั้นตอนการ
สร้างตัวแบบ GM(1,1) มีดังนี้ [12] 
 1) สร้างลำดับของข้อมูลตั้งต้น (Original Data) 
หรือ ข้อมูลจริงจำนวน n  ข้อมูล  
 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
1 , 2 , ,X x x x n =

 
 

 
 2) สร้างลำดับข้อมูลสะสมของข้อมูลตั้งต้น  
 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
1 , 2 , ,X x x x n =

 
 

โดยที่ ( ) ( ) ( ) ( )1 0

1

k

i

x k x k
=

=  

  

 3) ประมาณค่าพารามิเตอร์ ,a b  จากสมการ
เชิงอนุพันธ์ของตัวแบบ GM(1,1)  
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( ) ( ) ( ) ( )
1

1dx t
ax t b

dt
+ =                             (1)  

 

เมื่อ   
( ) ( )1

x t  = ข้อมูลที่ผ่านการสะสมครั้งที่  1 (1-AGO)  
ณ เวลา t  
a   = ค่าสัมประสิทธิ์การหน่วง (Development 
Coefficient)  
b   = ค่าอินพุตเกรย์ (Grey input)  
ผลเฉลยของสมการที่ (1) คือ  
 

( ) ( ) ( ) ( )0 1
x k az k b+ =                              (2)  

 

เมื่อ ( ) ( )
( ) ( ) ( ) ( )1 1

1 1
1

2

x k x k
z k

+ +
+ =  

 
โดยที่  

1,2, , 1k n= −  
การประมาณค่าพารามิเตอร์จะใช้วิธีกำลังสองน้อยสุด 
ซึ่งคำนวณได้จาก 
 

( )
1

2 1

T T
a

B B B Y
b

−



 
= 

 
                            (3)  

 

เมื่อ 

( ) ( )
( ) ( )

( ) ( )
( )

1

1

1

1 2

2 1

13

1
n

z

z
B

z n
− 

 −
 
− 

=  
 
 − 

  

และ 

( ) ( )
( ) ( )

( ) ( )
( )

0

0

0

1 1

2

3

n

x

x
Y

x n
− 

 
 
 

=  
 
 
 

 

  

 4) คำนวณค่าทำนายสะสมของตัวแบบ GM(1,1) 
จากสมการ 
 

( ) ( ) ( ) ( )1 0ˆ 1 1 akb b
x k x e

a a

− 
+ = − + 

 
         (4)  

โดยที่  
( ) ( ) ( ) ( )1 0ˆ 1 1x x=  และ 1,2, , 1k n= −  

 

เมื่อต้องการค่าทำนาย ณ เวลา 1k + จะคำนวณโดย  

( ) ( ) ( ) ( ) ( ) ( )0 1 1ˆ ˆ ˆ1 1x k x k x k+ = + −             (5) 
 

 ลักษณะสำคัญประการหนึ่ งของแบบจำลอง 
GM(1,1) คือความเหมาะสมในการพยากรณ์ด้วยข้อมูลที่มี
จำนวนจำกัด โดยสามารถใช้ข้อมูลเพียง 4–5 จุดได้ [13] 
แบบจำลองนี้ช่วยลดความไม่แน่นอนโดยการแปลงข้อมูล
ดั้งเดิมให้เป็นลำดับสะสม ซึ่งช่วยเผยให้เห็นรูปแบบที่ซ่อน
อยู่ในข้อมูล และตั้งอยู่บนสมมติฐานของการเติบโตแบบ
เอ็กซ์โปเนนเชียล จึงเหมาะสำหรับข้อมูลที่มีแนวโน้ม
ชัดเจน อย่างไรก็ตาม ความแม่นยำของแบบจำลองจะ
ลดลงอย่างมากหากข้อมูลไม่เป็นไปตามสมมติฐานการ
เติบโตแบบเอ็กซ์โปเนนเชียลดังกล่าว [14] 
    กล กล่าว กล่าว 

2.2 ตัวแบบเกรย์แยกส่วน DGM(1,1)  
DGM(1,1) หรือแบบจำลองเกรย์ ไม่ ต่ อเนื่ อง

(Discrete Grey Model (1,1)) เป็นแบบจำลองที่ ได้รับ
การพัฒนาต่อยอดจาก GM(1,1) แบบดั้ งเดิม โดยมี
วัตถุประสงค์เพื่อเพิ่มความแม่นยำในการพยากรณ์ ด้วย
การแทนท่ีสมการเชิงอนุพันธ์ใน GM(1,1) ด้วยสมการเชิง
ผลต่าง ซึ่งเหมาะสมกับข้อมูลที่เป็นลำดับเวลาแบบไม่
ต่อเนื่องมากกว่าซึ่งมีงานวิจัยที่ระบุว่า DGM(1,1) สามารถ
ให้ผลการพยากรณ์ที่แม่นยำกว่า GM(1,1) โดยเฉพาะใน
กรณีที่ข้อมูลมีการเปลี่ยนแปลงไม่สม่ำเสมอ [8] โดยที่ 
ตัวแบบ DGM(1,1) มีสมการดังต่อไปนี้  
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( ) ( ) ( ) ( )1 1

1 21x k x k + = +                      (6) 
 

เมื่อ 1 2,   คือ พารามิเตอร์ของตัวแบบการประมาณ
ค่าพารามิเตอร์จะกระทำโดยใช้วิธีกำลังสองน้อยสุด  
ซึ่งสามารถคำนวณได้จาก 
 

( )
11

2 2 1

T TM M M P




−



 
= 

 
                      (7) 

 

เมื่อ

( ) ( )
( ) ( )

( ) ( )
( )

1

1

1

1 2

1 1

12

11
n

x

x
M

x n
− 

 
 
 

=  
 
 − 

 

และ 

( ) ( )
( ) ( )

( ) ( )
( )

1

1

1

2 1

2

3

n

x

x
P

x n
 −

 
 
 

=  
 
 
 

 

การหาค่าทำนายสะสมของ DGM(1,1)  ณ เวลา 1k +  
สามรถคำนวณจากสมการ  
 

( ) ( ) ( ) ( )1 0 1
1 2

1

1
ˆ 1 1

1

k
kx k x


 



−
+ = + 

−
       (8) 

 

โดยที่ ( ) ( ) ( ) ( )1 0ˆ 1 1x x=  และ 1,2, , 1k n= −  
เมื่อต้องการหาค่าทำนาย ณ เวลา 1k + สามารถหาได้
จากสมการ 
 

( ) ( ) ( ) ( ) ( ) ( )0 1 1ˆ ˆ ˆ1 1x k x k x k+ = + −             (9) 
 

 แบบจำลอง DGM(1,1) มีข้อดีหลายประการ โดย
ช่วยลดข้ อผิ ดพลาด ในการพยากรณ์ ที่ มั กพบ ใน
แบบจำลอง GM(1,1) โดยเฉพาะในกรณีที่ข้อมูลไม่เป็นไป
ตามสมมติ ฐานการเติบโตแบบเอ็กซ์ โป เนนเชียล 
แบบจำลองนี้ยังมีความเรียบง่ายในการคำนวณ เนื่องจาก
ใช้สมการเชิงผลต่างแทนการอินทิ เกรต นอกจากนี้  

DGM(1,1) ยังเหมาะสำหรับชุดข้อมูลขนาดเล็ก โดยปกติ
มีจำนวนข้อมูลตั้งแต่ 4 ถึง 10 จุดเท่านั้น [15]  
   

2.3 การปรับปรุงค่าคลาดเคลื่อนด้วยอนุกรม 
ฟูริเยร์    

การปรับปรุงค่าคลาดเคลื่อนด้วยอนุกรมฟูริเยร์
ของตั วแบบ GM(1,1) และ DGM(1,1) นั้น  [9] จะมี
ขั้นตอนดังต่อไปนี้  
 1) คำนวณค่าคลาดเคลื่อน ณ เวลาที่ k   
 

( ) ( ) ( ) ( ) ( )0 0ˆk x k x k = −           (10) 
 

เมื่อ 2,3, ,k n=  จากนั้นนำมาสร้างเป็นเมทริกซ์
ของค่าคลาดเคลื่อนดังนี้  

      ( ) ( ) ( )
( )1 1

2 3
T

n
n   

 −
=     

 

 2) การประมาณค่าคลาดเคลื่อนที่  k  ด้วย
อนุกรมฟูริเยร์ สามารถประมาณได้โดย  
 

( ) ( )

( )

0

1

1

1 2
ˆ cos

2 1

2
sin

1

Z

i

i

Z

i

i

i
k a a k

n

i
b k

n






=

=

  
= +   −  

  
+   −  





   (11) 

 

เมื่อ 1
1

2

n
Z

− 
= − 
 

  

ซึ่ง เมทริกซ์ค่าคลาดเคลื่อนสามารถเขียนอยู่ในรูปของ
สมการ 
 

Q C =                     (12) 
 

เมื่อ  
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1 2 2
cos 2 sin 2

2 1 1

1 2 2
cos sin

2 1 1
n Z

z z

n n

Q

z z
n n
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 

−  +
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− −    
 =
 

         − −    

 



196        วารสารวิชาการและวิจัย มทร.พระนคร สาขาวิทยาศาสตร์และเทคโนโลยี ปีที่ 19 ฉบับที่ 2 (2568) 

 

และ  
( )0 1 1 1 2 1

T

Z Z Z
C a a b a b

 +
=  

 

 3) ประมาณค่าพารามิเตอร์ของเมทริกซ์ C  ใช้
วิธีกำลังสองน้อยสุด ซึ่งคำนวณจาก  

( )
1

T TC Q Q Q 
−

=                                 (13) 

จากสมการที่ (13) เมื่อได้ค่าพารามิเตอร์ก็นำไปแทนใน
สมการที่ (11) เพื่อคำนวณค่าคลาดเคลื่อน ณ เวลาที่ k   
 

 4) ปรับค่าทำนายของตัวแบบ GM(1,1) และ 
DGM(1,1) ดังนี้  
 

( ) ( )
( ) ( ) ( )

0

1

0

ˆ 1
ˆ

ˆ ˆˆ ; 2,3, ,
k

k

f x
f

f x k k k n

 =
= 

= + =

   (14) 

 

 หลังจากปรับค่าคลาดเคลื่อนก็จะทำให้ได้ตัว
แ บ บ  FGM(1,1) แ ล ะ  FDGM(1,1) ก า ร แ ก้ ไ ข ค่ า
คลาดเคลื่อนในแบบจำลอง GM(1,1) และ DGM(1,1) 
ด้วยอนุกรมฟูริเยร์ช่วยเพิ่มความแม่นยำในการพยากรณ์ 
โดยเฉพาะอย่างยิ่งในกรณีที่ข้อมูลแสดงลักษณะตาม
ฤดูกาล หรือมีรูปแบบคลื่นซ้ำ ๆ ซึ่งแบบจำลองเกรย์
ทั่วไปไม่สามารถจับลักษณะเหล่านี้ได้ เทคนิคนี้ช่วยให้
สามารถตรวจจับรูปแบบฤดูกาลที่ซ่อนอยู่ ลดสัญญาณ
รบกวน เพิ่มความแม่นยำของการพยากรณ์ และยัง
สามารถประยุกต์ใช้ได้ทั้งกับ GM(1,1) และ DGM(1,1) 
อย่างไรก็ตาม การใช้งานอนุกรมฟูฟู ริ เยร์อย่างมี
ประสิทธิผลจำเป็นต้องมีข้อมูลที่เพียงพอเพื่อจับรูปแบบ
ความถี่ต่าง ๆ ของแบบจำลองได้อย่างแม่นยำ  
 

2.4 เกณฑ์ประเมินประสิทธิภาพของตัวแบบ  
          ในงานวิจัยนี้ ใช้ค่ า เฉลี่ ย ร้อยละของความ
คลาดเคลื่อนสมบูรณ์ (Mean Absolute Percentage 
Error, MAPE) เพื่อทดสอบความแม่นยำของแบบจำลอง 
โดยที่ตัวแบบที่ดีจะมีค่า MAPE ที่ต่ำ ซึ่งสามารถคำนวณ
จากสมการ [16] 

1

ˆ1
100

n
i i

i i

y y
MAPE

n y=

−
=                   (15) 

 

เมื่อ  
   

ty แทน อนุกรมเวลา ณ เวลา t  
   ˆ

ty แทน ค่าพยากรณ์ของอนุกรมเวลา ณ เวลา t  
   n  แทน จำนวนข้อมูลที่ศึกษา  
และได้มีเกณฑ์ที่ใช้ในการกำหนดความแม่นยำสำหรับ
การพยากรณ์ดังนี ้[17]  
 

ตารางที่ 1 เกณฑ์การประเมินความแม่นยำของตัวแบบ 

MAPE ผลการประเมินความแม่นยำ 

MAPE < 10% แม่นยำสูง 
10% < MAPE < 20% ค่อนข้างแม่นยำ 
20% < MAPE < 50% 
MAPE > 50% 

พอใช้ 
ไม่มีความแม่นยำ 

 

3. ผลการศึกษาและอภิปรายผล                 
จากการเก็บรวบรวมจำนวนผู้ป่วยโรคมะเร็งเต้า

นมเป็นข้อมูลรายปี ตั้งแต่ปี พ.ศ. 2550 ถึง พ.ศ. 2565 
จากสถาบันมะเร็งแห่งชาติ รวมทั้งสิ้น 16 ปี ข้อมูล
ดั งกล่ าวถู กแบ่ งออกเป็ น  2  ชุด  ได้ แก่ ชุดฝึ กหั ด 
(Training set) แ ล ะ ชุ ด ท ด ส อ บ  (Testing set) ใน
อัตราส่วน 80 : 20 ซึ่งเป็นแนวทางที่เหมาะสมและได้รับ
การยอมรับกันอย่างแพร่หลายในการสร้างแบบจำลอง
[18] โดยชุดฝึกหัดประกอบด้วยข้อมูล 13 ปี และชุด
ทดสอบจำนวน 3 ปี  

 

ตารางท่ี 2 แสดงจำนวนผู้ป่วยโรคมะเร็งเต้านมที่ใช้เป็น
ข้อมูลสำหรับการฝึกแบบจำลอง 

ปี 
จำนวน
ผู้ป่วย 

ปี จำนวนผู้ป่วย 

2550 787 2551 796 
2552 
2554 
2556 
2558 
2560 
2562 

765 
755 
924 
848 
780 
745 

2553 
2555 
2557 
2559 
2561 

816 
939 
1005 
842 
705 
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วิเคราะห์ความนิ่งของข้อมูลอนุกรมเวลาจำนวน
ผู้ป่วยมะเร็งเต้านม โดยใช้การทดสอบ Augmented 
Dickey–Fuller (ADF) เพื่อประเมินความเหมาะสมของ
การนำแบบจำลอง ARIMA มาใช้ในการเปรียบเทียบ
ประสิทธิภาพกับแบบจำลองเกรย์  ผลการทดสอบ
เบื้องต้นพบว่าข้อมูลจริงมีค่า p-value เท่ากับ 0.09 ซึ่ง
มากกว่า 0.05 บ่งช้ีว่าข้อมูลยังไม่เป็นแบบนิ่ง (non-
stationary) จึงได้ทำการหาความต่างอันดับที่ 1 เพื่อลด
แนวโน้มของข้อมูล ผลการทดสอบภายหลังพบว่า p-
value เท่ากับ 0.0003 ซึ่งน้อยกว่า 0.05 แสดงว่าข้อมูล
หลั งการแปลงมี ลักษณ ะเป็ นแบบนิ่ ง (stationary) 
จากนั้นจึงได้วิเคราะห์กราฟ ACF และ PACF เพื่อช่วยใน
การระบุโครงสร้างของโมเดล ARIMA ดังแสดงในรูปที ่2  

 

 
รูปที่ 2 การวิเคราะห์กราฟ ACF และ PACF 

 
 จากการวิเคราะห์ข้อมูลหลังการหาผลต่างอันดับ
ที่ 1 ด้วยกราฟฟังก์ชันสหสัมพันธ์ (ACF) และฟังก์ชัน
สหสัมพันธ์ย่อย (PACF) พบว่าข้อมูลมีลักษณะของ
ความสัมพันธ์เชิงเวลาที่ทั้งส่วนของกระบวนการ AR 
และ MA มีบทบาทร่วมกันอย่างชัดเจน โดยสังเกตได้
จากค่าสหสัมพันธ์ที่โดดเด่นอย่างมีนัยสำคัญในหลาย
ช่วงเวลา และไม่มีจุดที่กราฟตัดลงอย่างชัดเจนหลัง lag 
1 หรือ 2 ดังนั้นจึงเลือกใช้แบบจำลอง ARIMA(2,1,2) 

ซึ่ งส าม ารถสะท้ อน โค รงส ร้ า งของข้ อมู ลที่ มี ทั้ ง
ความสัมพันธ์เชิงเวลาและความผันผวนสะสมได้ดี เพื่อ
ใช้ เป็ นแบบจำลองเชิ งสถิติ ส ำหรับ เปรียบ เที ยบ
ประสิทธิภาพกับแบบจำลองเกรย์ ผลการทำนายแสดง
ดังตารางที่ 3 
 
ตารางที่  3 แสดงผลการพยากรณ์ จำนวนผู้ ป่ วย
โรคมะ เร็ ง เต้ านมของตั วแบบ ARIMA(2,1,2) และ 
จำนวนผู้ป่วยจริง 

ปี จำนวนผู้ป่วยจริง ตัวแบบ ARIMA(2,1,2) 

2563 654 699 
2564 616 771 
2565 791 703 

MAPE (%) 15.92 % 

 
ขั้นตอนต่อ ไปนำชุดข้อมู ลฝึ กหั ดมาสร้าง

แบบจำลอง GM(1,1) และ DGM(1,1) เพื่อใช้ในการ
พยากรณ์จำนวนผู้ป่วยโรคมะเร็งเต้านม โดยดำเนินการ
ด้ วยภาษา Python และไลบรารี  numpy ในการ
ประมวลผล แบบจำลองแต่ละแบบถูกนำไปใช้พยากรณ์
ข้อมู ล ใน ช่วงปี  พ .ศ . 2563 ถึ ง พ .ศ . 2565 และ
เปรียบเทียบผลการพยากรณ์กับข้อมูลจริงในช่วงเวลา
เดียวกัน เพื่ อ เป็นการประเมินความแม่นยำและ
ประสิทธิภาพของแบบจำลอง ผลการพยากรณ์แสดงใน
ตารางที่ 4   

 
ตารางที่  4 แสดงผลการพยากรณ์ จำนวนผู้ ป่ วย
โรคมะ เร็ ง เต้ าน มของตั วแบ บ  GM(1,1) ตั วแบ บ 
DGM(1,1) และ จำนวนผู้ป่วยจริง 

ปี 
จำนวนผู้ป่วย

จริง 

ตัวแบบ 
GM(1,1) 

ตัวแบบ 
DGM(1,1) 

2563 654 803 801 
2564 616 800 797 
2565 791 796 793 

MAPE (%) 17.78 % 17.41 % 
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จากการเปรียบเทียบผลการพยากรณ์ ของ
แบบจำลอง GM(1,1) และ DGM(1,1) กับข้อมูลจริงใน
ตารางที่ 4 พบว่าทั้งสองแบบจำลองมีค่าคลาดเคลื่อนที่
ค่อนข้างสูงในช่วงปี  พ.ศ. 2563 และปี  พ.ศ. 2564 
ดังนั้น จึงดำเนินการนำค่าคลาดเคลื่อนของแบบจำลอง
เดิมทั้งสองมาปรับด้วยอนุกรมฟูริเยร์ (Fourier Series) 
เพื่อเป็นการเพิ่มความแม่นยำในการพยากรณ์ ส่งผลให้
ได้แบบจำลองใหม่ คือ FGM(1,1) และ FDGM(1,1)  

ผลการพยากรณ์ของแบบจำลองหลังปรับค่า
คลาดเคลื่อน พร้อมเปรียบเทียบกับข้อมูลจริง แสดงไว้
ในตารางที่ 5 ซึ่งใช้เพื่อประเมินประสิทธิภาพของการ
ปรับปรุงแบบจำลองด้วยอนุกรมฟูริเยร์  

 
ตารางที่  5 แสดงผลการพยากรณ์ จำนวนผู้ ป่ วย
โรคมะ เร็ ง เต้ านมของตั วแบบ FGM(1,1) ตั วแบบ 
FDGM(1,1) และ จำนวนผู้ป่วยจริง 

ป ี
จำนวนผู้ป่วย

จริง 

ตัวแบบ 
FGM(1,1) 

ตัวแบบ 
FDGM(1,1) 

2563 654 725 721 
2564 616 776 773 
2565 791 716 712 

MAPE (%) 15.49 % 15.25 % 

 

จากตารางที่  5 พบว่าแบบจำลอง FGM(1,1) 
และ FDGM(1,1) สามารถพยากรณ์ จำนวนผู้ป่ วย
โรคมะเร็งเต้านมได้ใกล้เคียงกับข้อมูลจริงโดยรวม 
อย่างไรก็ตาม ในปี  พ.ศ. 2563 และ 2564 ผลการ
พยากรณ์มีค่าสูงกว่าจำนวนผู้ป่วยจริง ในขณะที่ปี พ.ศ. 
2565 ผลการพยากรณ์กลับมีค่าต่ำกว่าจำนวนผู้ป่วยจริง 
ซึ่งความคลาดเคลื่อนดังกล่าวอาจมีสาเหตุมาจาก
สถานการณ์การแพร่ระบาดของโรค COVID-19 ที่ส่งผล
ให้จำนวนผู้ป่วยไม่ได้เข้ารับการตรวจวินิจฉัยหรือรักษา
อย่างครบถ้วน เนื่องจากมาตรการควบคุมการแพร่
ระบาดของโรคในช่วงเวลาดังกล่าว แต่เมื่อเข้าสู่ปี พ.ศ. 
2565 สถานการณ์ เริ่มกลับเข้าสู่ภาวะปกติ  ทำให้
ประชาชนสามารถเข้าถึงบริการทางการแพทย์ได้มากข้ึน 

ส่งผลให้จำนวนผู้ป่วยที่ได้รับการตรวจวินิจฉัยเพิ่มขึ้น
ตามจริง ซึ่งลักษณะการเปลี่ยนแปลงดังกล่าวเป็นความ
ผันผวนท่ีแบบจำลองไม่สามารถสะท้อนได้อย่างแม่นยำ 

การเปรียบเทียบประสิทธิภาพของแบบจำลอง
ทั้งสี่กระทำโดยใช้ค่าเฉลี่ยร้อยละของความคลาดเคลื่อน
สัมบูรณ์ (MAPE) แสดงในรูปที่ 3      
  ผลการเปรียบเทียบในรูปที่ 3 แสดงให้เห็นว่า
แบบจำลองทั้งสี่แบบมีค่า MAPE อยู่ในช่วง 10% ถึง 
20% ซึ่งจัดอยู่ในระดับความแม่นยำค่อนข้างสูงตาม
เกณฑ์ที่ระบุในตารางที่ 1 โดยแบบจำลอง FDGM(1,1) 
มีค่า MAPE ต่ำที่สุด สะท้อนถึงประสิทธิภาพในการ
พยากรณ์ที่เหนือกว่าแบบจำลองอื่น  

 
รูปที่ 3 แสดงค่า MAPE ของตัวแบบพยากรณ ์

 

 
รูปที่ 4 กราฟแสดงการเปรยีบเทียบข้อมูลจริง 

และตัวแบบพยากรณ ์
 

ผลการศึกษานี้สอดคล้องกับงานวิจัยของ Wang 
et al. [19] ที่ใช้แบบจำลอง GM(1,1) ในการพยากรณ์
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จำนวนผู้ป่วยโรคตับอักเสบบีในประเทศจีน และพบว่า
แบบจำลอง GM(1,1) เหมาะกับข้อมูลขนาดเล็กและมี
ลักษณะข้อมูลที่ไม่ต่อเนื่องหรือไม่สมบูรณ์ อย่างไรก็ตาม 
แบบจำลองดังกล่าวมีข้อจำกัดในการตอบสนองต่อความ
ผันผวนของข้อมูล โดยเฉพาะในช่วงที่มีเหตุการณ์ที่ไม่
ปกติ เช่น การระบาดของโรค ขณะเดียวกัน งานของ 
Zhao et al. [20] ได้เปรียบเทียบประสิทธิภาพของ
แบ บจำลอง GM(1,1), ARIMA และ LSTM ในการ
พยากรณ์จำนวนผู้ป่วยวัณโรคในจีน พบว่าแบบจำลอง 
ARIMA และ LSTM ให้ผลลัพธ์ที่แม่นยำกว่าเมื่อข้อมูลมี
ลักษณะต่อเนื่องและมีปริมาณข้อมูลที่เพียงพอ ในขณะ
ที่ GM(1,1) มีข้อได้เปรียบในกรณีข้อมูลมีจำนวนน้อย
และไม่สมบูรณ์ ซึ่งสอดคล้องกับลักษณะของข้อมูลใน
งานวิจัยนี้ ดังนั้นงานวิจัยนี้จึงเลือกใช้ GM(1,1) และ 
DGM(1,1) พร้อมทั้งปรับค่าคลาดเคลื่อนด้วยอนุกรม 
ฟูริเยร์เพื่อเพิ่มความแม่นยำในการพยากรณ์กับลักษณะ
ของข้อมูลที่มีจำกัด 
 

4. สรุป  
สำหรับงานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบ

ประสิทธิภาพของตัวแบบที่ใช้ทำนายจำนวนผู้ป่วย
โรคมะเร็งเต้านม โดยใช้ข้อมูลจากสถาบันมะเร็ง
แห่งชาติจำนวนทั้งสิ้น 16 ปี ตั้งแต่ พ.ศ. 2550 ถึง พ.ศ. 
2565 ผลการศึกษาแสดงให้เห็นว่าตัวแบบทั้งสี่ตัวแบบ 
ไ ด้ แ ก่  GM(1,1), DGM(1,1), FGM(1,1) แ ล ะ 
FDGM(1,1) ให้ค่า MAPE อยู่ในเกณฑ์ที่ค่อนข้างแม่นยำ 
เมื่อเทียบกับเกณฑ์การประเมินในตารางที่ 1  จากการ
นำเทคนิคการปรับค่าคลาดเคลื่อนด้วยฟูริ เยร์มา
ประยุกต์ใช้ร่วมกับตัวแบบ ผลปรากฎว่าค่าคลาดเคลื่อน
มีค่ าต่ ำลง โดยที่ ตั วแบบ  FDGM(1,1) มี ค่ า  MAPE 
เท่ากับ 15.25% เป็นค่าที่ต่ำที่สุดเมื่อเปรียบเทียบกับตัว
แบบ GM(1,1) , DGM(1,1) และ FGM(1,1) จึงเป็นข้อ
สรุปว่าตัวแบบ FDGM(1,1) เป็นตัวแบบท่ีเหมาะสมที่สุด
ในการใช้พยากรณ์จำนวนผู้ป่วยโรคมะเร็งเต้านม  

ทั้งนี้ ตัวแบบ FDGM(1,1) ให้ผลการพยากรณ์ที่
แม่ นยำกว่าแบบจำลอง GM(1,1), DGM(1,1) และ 
FGM(1,1) เนื่องจากตัวแบบนี้ผสานข้อดีของแบบจำลอง
เกรย์เข้ากับแนวคิดการแยกส่วนข้อมูล ซึ่งเหมาะสมกับ
ข้อมูลอนุกรมเวลาที่มีลักษณะไม่ต่อเนื่อง อีกทั้งยังใช้
เทคนิคการปรับค่าคลาดเคลือ่นด้วยอนุกรมฟูริเยร์ ทำให้
สามารถรองรับทั้งลักษณะข้อมูลแบบไม่ต่อเนื่องและ
ความผันผวนที่ ไม่ เป็นเส้นตรงได้ดีกว่าแบบจำลอง
พื้นฐาน ส่งผลให้ค่าความคลาดเคลื่อนของการพยากรณ์
ลดลงมากที่สุด 

ข้อจำกัดของตัวแบบที่ควรพิจารณา ได้แก่ ตัว
แบบ GM(1,1) ซึ่งอาศัยสมการเชิงอนุพันธ์ต่อเนื่อง มัก
ให้ความแม่นยำน้อยลงเมื่อข้อมูลมีความผันผวนสูงหรือ
มีลักษณะไม่ต่อเนื่อง ขณะที่ตัวแบบ DGM(1,1) แม้จะ
เหมาะกับข้อมูลแบบ discrete มากกว่า แต่ก็ยังมีความ
ไวต่อความไม่สม่ำเสมอของข้อมูลเช่นกัน นอกจากนี้  
ทั้งสองแบบจำลองเป็นแบบจำลองตัวแปรเดียว จึงไม่
สามารถสะท้อนปัจจัยอื่นท่ีอาจส่งผลต่อจำนวนผู้ป่วยได้
อย่างครบถ้วน ทางผู้วิจัยเสนอแนะว่า หากสามารถ
รวบรวมข้อมูลปัจจัยที่เกี่ยวข้องกับโรคมะเร็งเต้านม
เพิ่มเติมได้ ควรนำมาประยุกต์ใช้ร่วมกับแบบจำลอง
ทำนาย เช่น แบบจำลอง GM(1,N) ซึ่งสามารถพิจารณา
ตั วแป รต้ นห ลายตั วแป รร่ วมกั บ ตั วแป รตาม ได้  
นอกจากนี้ ควรพิจารณาทดลองใช้เทคนิคการปรับค่า
คลาดเคลื่อนรูปแบบอื่น ๆ เพื่อเพิ่มความแม่นยำของ
แบบจำลองให้ดียิ่งข้ึน 
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