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ABSTRACT

Nowadays, the plug-in electric vehicle industry vastly grows into transportation sector
worldwide. Hence, the public fast charging stations (FCSs) must be prepared to serve this
emerging plug-in electric vehicle charging demand. Moreover, planning for FCSs within the
urban area is quite important. A hybrid swarm optimization technique blending beneficial
characteristics of Ant Colony Optimization ( ACO) with Bees Algorithm ( BA), named
HACOBA, is developed in this paper to find the optimal locations of FCSs that are placed on
the residential power distribution grid such that it maximizes the fast charging serviceability
subject to power distribution system limit and public road traffic constraints. In order to verify
the effectiveness of the proposed method, it has been investigated on the IEEE-69-bus test
system for two sizes of the fast charger of FCSs. From the obtained simulation results, it is
found that the proposed algorithm shows its competitiveness with traditional techniques.

Keywords: Covering location principle; Fast charging stations; Heuristic algorithms; Optimal
planning; Plug-in electric vehicles; Power distribution system; Residential zone; Urban area

1. Introduction friendly mobile machine replacing an
Plug-in electric vehicle (PEVs) are internal ~ combustion  engine  vehicle,
intended to be the most environmentally especially in the urban area, in the near future
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[1-3]. However, the driving range of PEVs
per full charge of a battery is still lower than
an internal combustion engine vehicle which
is powered by a full tank of the gasoline [4].
Moreover, another substantial lagging factor
for PEVs owner is the wastage of time (in
hours) for charging PEVs batteries [ 5] .
Therefore, the large deployment of public
fast charging stations ( FCSs) with dump
charging functions that can charge PEVs (in
minutes in-stead of hours) should be widely
planned and installed to meet PEVs customer
satisfaction in the service area as discussed in
[6,7]. Unfortunately, it is not practically
feasible to install the FCS at the individual
residence as they require high electric current
for their operation as well as having high
investment cost and operating costs [ 8] .
Some important key points that should be
considered by the FCS planner while setting
the planning scheme for FCSs [9]: (i) the
potential impact of the growing PEVs
charging demand on the electric power
distribution system [ 10,11]. Hence, smart
grid functions for the power distribution
system are efficiently implemented to
manage the rising PEVs charging demand
[ 12], (ii) estimation of PEVs charging
demand through surveys from potential
PEVs customers [ 13,14], ( iii) queuing
system at FCSs, the main service point in the
traffic system network, used for the FCSs
planning [ 14- 18], (iv) the total cost
associated with FCSs [8], and lastly (v) FCSs
planning comprising several other important
factors mostly depends both on traffic
characteristics and PEVs behavior of FCSs.

This paper proposes a mathematical
optimization model which is formulated as
the NP- hard combinatorial optimization
problem [ 19]. It is solved using a novel
hybrid  artificial swarm  optimization
technique that improves the performance of
Ant Colony Optimization (ACO) Algorithm
[20,21] by employing the strength of the
Bees Algorithm ( BA) [ 22] , named
HACOBA. The proposed algorithm is
applied to find the optimal locations of FCSs
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such that it maximizes the fast charging
serviceability subject to various constraints,
i.e. the traffic service distance of FCSs, limit
of waiting time in M/M/s queuing system at
FCSs, and the residential power distribution
system, respectively. In order to ensure the
effectiveness of the proposed system and
method being employed, the IEEE-69-bus
test system as a standard test system has been
considered, which is placed in the Tianjin
Development Zone, with two size of the fast
charger head. In this paper, the obtained
simulation results related to the proposed
system have also been compared with other
traditional swarm intelligence  based
optimization techniques.

2. Optimization Model and Solution
Methods

The proposed optimal FCSs
planning model is based on the Covering
Location Principle (CLP) [23-25]. This
optimal FCSs planning model in the traffic
network of the residential zone is planned
under concept, system, and method in [25] as
follow:

2.1 Mathematical Formulation of

the Optimal Planning Model
According to the CLP [23], it can be
presumed that most of the demand is initiated
from the fixed locations within a traffic
network, where traffic network is a path
between supply node, i.e. location of the
main service point, and demand node, i.e.
centroid of the small area, within a service
area; it can possess either linear or non-linear
pattern while the service area is divided into
various small areas which follow a
tessellation pattern and represented as a
discrete point. To justify the CLP, the PEV
demand node is assumed to be at the fixed
location in a traffic network such that PEVs
owner reside on the PEV demand node can
travel to FCSs site for the recharging on a
daily basis. The purpose of this objective is
to serve the PEVs charging demand
maximally within the full and partial
coverage distance. As per the description of
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the full and partial concept defined in [24],
demand nodes located within full coverage
distance will have coverage factor equal to
one, and demand nodes located within full
and partial coverage distance will have
coverage factor less than one and it will be
calculated by performing a penalizing
operation as an amount proportional to their
distance. For demand nodes located out of
the partial distance will be rejected, and their
coverage factor will be set to zero. For
conclusion, it can be formulated in form of
mathematical optimization model using
following equations.

Maximize:  FCSA= npey, xz, (2.1)
1=1

1 dn,I = dfullc
—d
Vo = = o dn <d artc
! dpartc — e ! Pre (2.2)
0 d >d

n,l partc

n=12,.n.)1=12,..n)
= max{cvlv,,cvz,,,..,cvnm'l},I =(12,..n)

(2.3)
where,
n, The number of PEVs demand node
in the residential zone (node)
npev,  The number of PEVs in I'"" demand

node (cars)
Maximum value of coverage factor

at I'"demand node
e Aoare FUll/ partial coverage distance (km)

d

Z

The on- road traffic distance

between n™ FCS and I demand
node (km)

n,l

Nec The number of FCSs in the
residential zone (station)

Vi, Coverage factor of FCS at bus n on
I'"" demand node

Subject to:

1) Traffic service distance constraints
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0<z, <L, 1=@12,..n) (2.4)
Drr:ncms <Dpgs < Drr:ngg; Dres =K *lecs (25)

where,

lees Line length of the feeders between
two adjacent FCSs

k Buckling coefficient

Dees Actual on-road traffic distance of
two adjacent FCSs

DI, Dt Maximum, Minimum  distance

limit of two adjacent FCSs
2) Queuing constraints

W <W™ n=(L12,..n.) (2.6)

where,

w M Maximum allowed waiting time

W Average waiting time in line of n®"
FCS (minute)

w can be calculated from [25].

3) Power flow balance constraints

Fes _ Pey xh Fes _ P xh
" effccosg " eff
(2.7)
2 .
Poss =| 1| Ry Vi €1 N ]
Ng Ng Nrc
Pug = Z PLossj + Z Poi + ZPnFCS
j=1 i=1 n=1
(2.8)
Ng
—Py =PI =V, > V,(G; cos, + B;sing,)
’;15 Vie[,N,]
_QDi _QnFCS :Vi Zvj (Gij Sineij - Bij cos 9.1)
j=1
(2.9)
Ng
Vd =>"[1.0-V| (2.10)
i=1
where,
Py The rated output power of DC fast
charger (kW)
h The number of fast chargers at the
FCS
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effes Efficiency of fast charger

cos¢  Power factor of fast charger

SF®  Apparent power input or maximum
charging demand of n" FCS (kVA)

pFes Input active power of ™ FCS (kW)

Q™ Input reactive power of n"" FCS

n

(kvar)

N Number of branches in the power
distribution system

Ng The number of buses in the power

distribution system (bus)

P  Active power loss at j" line with

FCS (kW)
1

I Current of j™ line (Amp)

R; Resistance of j" line (Ohm)

Pous Active power from substation (kW)

P,:,Qp Active/Reactive power demand at
i" bus

G,.B, Conductance/Susceptance between
bus ith, jth

0, Voltage angle difference between
bus ith, jth

V, Voltage magnitude at i bus

vd Total voltage deviation of all buses

4) Constraints of apparent power and
voltage limit on lines and buses

V™SV V™ Vie[LNg] (211)
S, <s!"™ ,vje[LNs] (2.12)

where,

v,m v, mn Maximum, Minimum voltage limit
at i bus

S,,S|™ Apparent Power and Upper limit in
i line

Eq. (2.1), Eq. (2.2) show the method of
finding the value of the charging serviceabi-
lity and coverage factor. Eq. (2.3) states that
the maximum value of coverage factor of n™
FCS will be selected to recharge PEVs in the
I'" demand node. Eq. (2.4) shows the traffic

service distance constraints, it also states that
the FCS must be placed within the partial
coverage distance. Eq. (2.5) shows
constraints of the actual distance between
two adjacent FCSs [5]. Eq. (2.6) shows the
waiting time in the queuing system as the
constraint. Eq. (2.7) — Eq. (2.9) show the
power flow balance constraint with the FCSs.
Eqg. (2.10) shows the total voltage deviation
of all buses. Eq. (2.11) , Eq. (2.12) represent
the apparent power and its upper limit, and
voltage limit on lines and buses, respectively.
The EV’s arrival pattern to FCSs for
recharging of EVs batteries with M/M/s
gueuing system is shown in Fig.1. In this
paper, the queuing in the rush hour period
will be considered in the residential area due
to the possible occurrence of serious business
activity or urgent charging demand
during this period in this area [25].

2.2 Mathematical Formulation of
the Solution Method

In this paper, a new metaheuristic
optimization algorithm is developed to solve
the aforementioned problems. Metaheuristic
algorithms are based on the global
diversification and the local intensification of
optimization [/19/. Diversification means to
generate the diverse solutions in the global
search space region. Intensification means to
focus on the local search space region for the
generation of the current good solutions. To
ensure the achievability of the global optimal
solution and to know about the speed of
convergence related to the proposed
algorithm, an optimal balance and feasible
combination  of  diversification  and
intensification are needed.  Here, we
proposed a hybrid artificial swarm
optimization algorithm blending seminal
characteristics of ACO with BA, namely,
HACOBA, to improve the computation
effectiveness and performance in finding the
optimal locations of FCSs on the proposed
model. The details and procedure of the
proposed technique are provided as follows.



M. K. Sharma et al. | Science & Technology Asia | VVol.22 No.3 July - September 2017

2.2.1 Ant Colony Optimization

ACO, a well- known metaheuristic
optimization algorithm, is inspired by the
natural foraging behavior of real ant colony.
A number of artificial ants are evaluated in
all iterations due to the iterative nature of
ACO. A stochastic mechanism, which is
based on the pheromone quantity, is
principally adopted by the ants for selecting
the routes to be visited in each single step of
the solution construction. From the
perspective of the solution quality
constructed by the ants, the pheromone trail
value will be updated to encourage the ants
in walking towards the routes having a higher
concentration of pheromone than the
previous iteration. ACO uses this mechanism
to build an algorithm.

2.2.2 Bees Algorithm

BA, also a well-known optimization
technique, is inspired by the natural foraging
behavior of honeybees. Bees have no
knowledge about food source in the search
space field and bee initializes its search as a
scout bee. When the scout bee locates the
food source, it will return back to the hive
and be raised as an employed forager bee.
After this, many recruited employed foragers
will follow the employed foragers who
memorizes the location of the food source to
exploit the nectar spread around the
neighborhood area of the food source. After

finishing the task of employed foraging, bee
loads a small amount of nectar from the food
source and then returns back to the hive
During this step, some food source having a
low energy concentration will be abandoned
by the employed foragers. After then, these
bees become new scout bees to search new
food sources. The last process is called as the
reinitializing process, i.e. searching of the
food source will start again.

2.2.3  Applying the
HACOBA to the FCS Planning

The computational procedure of the
HACOBA algorithm to solve FCS planning
problem can be elaborated as follows:

Step 0: Initialization

- Read system data and set initial

parameters.
- Start iteration; t=0

- Set X =[X;, X,, X5, X, ]as a control

vector of an ant.
- Initial trail intensity on route is set at

proposed

7,(0)=1 and initial probability
distribution on route is set at
pni (0) = 1

- Calculating the heuristic function,
the heuristic function is defined as
visibilities of the objective function
of the station at the bus which can be
expressed as in Eq. (2.13).

Slow charging |

| at house or work place

e, e e —— —— ——
e, — e

Service at the FCS

Normal day times
charging

EVs at Demand node

Morning rush hour
charging

EVs arrival

M/M/s Queuing S M; Arrival of EVs on
Sysiem Poisson distribution process
e Fo——oooooo oo 1
D i L
(=) o o
s fast chargers : =3 = =32 = a2 = : M: Service time
s S g S 2 2 cs8g
Lo e

Charged EV gaias

Fig. 1. EVs arrival pattern to FCSs with M/M/s queuing system during each period.
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1
i Obj. (2.13)
where,
Obj,, Objective function of n" station at
i" bus
T, Trail intensity of n" station at i"
bus
¥ Pheromone evaporation

coefficient of n" station ati" bus
Step 1: Constructing ant solutions

- Update iteration; t=t+1

- Constructing ant population:
Xnk !

The state transition rule guiding the
ant movement, an ant of k of n" station
choses i" bus by applying the pseudo-random
proportion rule using following equation.

(2.14)

_ Jargmaxi_y, (7,0)" (7)) ifa < q0
] otherwise

The parameter g0 can be set from 0 to
1 and ¢ is a random number in a range of
[ 01] For (n=12,..,n,) and

,Ng), T is a bus to be selected

according to the probability distribution
function that can be expressed as follows:

(7. ®) (7, ®)

P (1) == (2.15)
2 (7 ) (7, ®)
i=1
where,
a  Relative influence of the pheromone
trail information
p  Relative influence of heuristic
information

The selection process on the bus I on

n" station of ant k is based on spinning the
roulette wheel by using the probability
calculated in Eq. (2.15).
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Step 2: Evaluating objective function
to find the best solution

The objective function of all new ants
is evaluated under all constraints; if it is
feasible, then it is a candidate solution. The
new best solution is searched from all
candidate solutions using sorting method.
Then, the new best solution is compared with
the old best solution of the previous iteration.
If the new best solution is better than the old
best solution, then it will be the best solution

of the problem (x™*).

Step 3: Recruiting bees around the
best solution

The bees are recruited to search
around the best solution as

xn,,.(n=12,3,

(w=12,...,nba). The number of bees

around the best solution are nba. These bees
are recruited to generate the neighborhood
solution around the best solution within patch
sizes expressed as follows:

XN — Xbest

nw

+rand (0,2) x ngh x (X7 — x™"

(2.16)
This process facilities to search carefully the
new solution in determined area controlled
by patch size (ngh). Moreover, this process
can also help ant to release from the trap of
local optima and premature convergence
problem.

Step 4: Evaluating objective function
of the new solutions

The objective function of the new
solutions is evaluated as well as compared
with the recent best solution; if new solution
is found better than the recent best solution
then it will become the best-updated solution
of the problem.

Step 5: Global updating rule

The global updating rule is carried out
in the best tour from all ants. The update
pheromone is implemented as follows:

., t+D)=A—p)z,, () + A2 (t) (2.17)

ni
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1 . .
—— _if (n,i) belongsto the
. (Objbest/Objmax) ( ) 9

Azt (t) = : L

best solution at iteration t
0 otherwise
(2.18)
where,

Obj™ Maximize the objective function
Obj™* Objective function of the best
solution

Step 6: Reinitializing the trail intensity

To mitigate the over-accumulation of
pheromones on some routes of ant, it may
encounter stagnation behavior in the step of
searching. The reinitializing process for the
pheromone trail intensity means the
initialization of BA again which is as
follows:

If t=t then reset tail intensity as

() =1
where,
t, Reinitialize iteration value

Step 7. Stopping criteria
If cpu,,, >cpu;,, thenend;
else go to Step 1
where,
cpu, . Total CPU time (in seconds)
taken by the program in its
execution
CPU time limit in runtime

computation

time

CPUjing

The flowchart of the proposed
HACOBA to solve the FCSs planning
problem is shown in Fig. 2.

3. Case Studies and Discussion

This section presents the numerical
examples with two cases of fast chargers
which are 50 kW (i.e. CHAdeMO DC Quick
Charge-Case 1) and 120 kW (i.e. Tesla’s
Supercharger-Case 1) with 24 kWh battery
capacity of PEV (i.e. Nissan Leaf).
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Read system data, set t = O and initial parameters

Y

Construct ant solutions
with state transition rule

v

Evaluate objective function
and find best solution

1

Generate neighborhood solution
around the best solution

+1] 4

Evaluate objective function
and find new best solution

!

Global updating rule

:

Reinitialize the trail intensity

CPUtime > CPUiimit

Yes

Fig. 2. Flowchart of the HACOBA Algorithm.

3.1 Test System Description

A residential area of a Tianjin
Development Zone of about 10.5 square
kilometers [26] is used as the test area [25].
In this area, IEEE- 69- bus test system is
placed to supply the electrical power to FCS.
The system data of IEEE-69-bus test system
can be found in [27], and the location of
buses is the candidate site of FCSs. For this
residential area, it is planned that there will
be at least 3,140 PEVs by the year 2020 [26].
The number of PEVs at each demand node
and their locations in the service area can be
found in [26]. The on-road traffic distance
between the PEV demand node and each bus
can be found in Appendix presented in [25].
The site location of each bus in IEEE-69-bus
test system and PEVs demand node can also
be found in [ 25]. The IEEE-69-bus test
system has 68 line sections with a daily peak
load of 3.802 MW and 2.693 MVar. The
rated apparent power flow in each section of
the feeder is 10 MVA with base voltage of
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12.8 kV. This system has the value of total
real and the total reactive power losses as
195.95 kW and 89.93 kVar, respectively. The
maximum and minimum limits of the voltage
bus are 1.05 pu. And 0.95 pu., respectively.
For the calculation of system operating
conditions of the IEEE-69-bus test system,
the backward- forward sweep distribution
power flow has been employed in this paper.
This method incorporates the potential
benefits of the radial system nature [ 29].
From Table 1, it can be seen that the cost of
the land use will be higher if it is in the
vicinity of the center of the service area [25].

3.2 Parameter settings for PEV and
FCS

Table 2 shows the initial parameters of
BA, GA, ACO and HACOBA algorithm,
respectively, required to setup in finding the
optimal solutions related to the objective
taken into account. The following test data is
set to perform the numerical calculation. In
this paper, these data are taken from diverse
sources, mostly from [8], [11], [25] and [30-
32].

1) For PEV, SOCF=80%, SOC™ =20%,
KWh,e, =24, Ve, =30, eff ., =90% . From [25],

toe, = 19.2.
2) For FCSs Service, n.. =6, p=0.03, h=5,
Ay =2, d, =05, DI =0.5, cos¢=0.95,

FCs
RH =2, W™ =5,

fullc

3.3 Computational Setting

The results were computed by using an
Intel® Core™ 2 Duo Processor (2.2 GHz,
2GB RAM) while Matlab® programming
language was used in writing a program
code. The search space of all cases is the
number of bUSGS( number of stations) ( 696 ~
1.07918163081 x 10'%). In each case, 100
trial runs were carried out for all algorithms.
It is fair to use the total CPU time to be the
“stopping criteria” in each run times. Then,
all algorithms taken into account can use this
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criterion. For the considered cases,
Ccpu,;,; =30 seconds.

3.4 Solution Quality in maximizing
the fast charging serviceability as an
objective

Case I: The power output of the fast
charger is 50 kW.

The solution of fast charging service
ability can be calculated as 82.37%. The
positions of FCSs with maximizing fast
charging service ability on power
distribution system are shown in Fig. 3. The
optimal locations of FCSs obtained by the
proposed HACOBA are shown in Table 3.
The solution quality of fast charging service
ability by all algorithms is shown in Table 4.

Case Il: The power output of the fast
charger is 120 kW.

The solution of fast charging service
ability can be calculated as 81.08%. The
positions of FCSs with maximizing fast
charging service ability on power
distribution system are shown in Fig. 3. The
optimal locations of FCSs obtained by the
proposed HACOBA are shown in Table 3.
The solution quality of fast charging service
ability by all algorithms is shown in Table 4.

3.5 Parameter  Settings for
HACOBA and other algorithms

The setting of HACOBA parameters
would yield a better solution as well as
having less computation time. It has the
number of parameters, but the question arises
how to adjust these in an optimal manner.
From the previous literature, it has been
found that the most important parameter is
the population. The desired population of the
proposed HACOBA is determined by
varying them and setting the other
parameters as a constant. The boxplot of
FCSA solution from the varying population
of HACOBA is exemplified in Fig. 4. The
population of HACOBA varied from 60 to
240. It can be seen that population of 80
yields a higher fast charging serviceability.
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Using this technique, the optimal parameters
of HACOBA algorithm and other algorithm
will be found. These parameters can be found
in Table 2,

3.6 Computational Efficiency

The convergence characteristics of
average fast charging serviceability solution
obtained by all algorithms in Case | and Case
Il are shown in Fig. 5. It can be seen from
the convergence graph that HACOBA can
meet the lowest value of average solution on
the time span of 30 seconds.

4, Conclusion

This paper proposes the planning
model of FCSs based on the covering
location principle on the distribution system
in the residential zone. The prime objective

of the proposed planning model is to
maximize the fast charging serviceability
subject to various constraints, i.e. the traffic
service distance, the limit of waiting during
the rush hour period, and the power
distribution system, respectively, for two
sizes of the fast charger for FCSs. A novel
hybrid artificial swarm  optimization
technique incorporating the beneficial
characteristics of ant colony optimization
(ACO) and Bees Algorithm (BA), namely
HACOBA, is developed to find the optimal
locations of the FCSs. The proposed
planning model was tested on IEEE-69-bus
test system in the residential area of Tianjin
Development Zone. Numerical results show
that the solution quality of the proposed
algorithm has better performance and cost
effective  than  other  metaheuristics
optimization techniques.

4500
69
68
4000 67
s a 66
xo 65
3500 s
./'2‘7"'5?'\36 7 “ 2
23 20 g A m
3000 6 A A
12 e N s a1 f13 %9
8 A
—~ A pr——ie—y r it VR4 F4Aerie) 7
5 2500t et
\“E: 7
< 2000 N
A 2
1500 .
1000 4
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Fig. 3. The positions of FCSs on the power distribution system.
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Table 1. Land price per square meter at bus number.

Cost ($)* Bus Number Cost ($) Bus Number
160 4759 61 63 66 67 68 69 250 123610141822263135
180 45789111213151619202327 32
36 40 45 975 172124252829 303334373839
200 46 49 50 51 52 53 54 55 56 57 58 60 62 41 42 43 44 48**
64
*L and price per square meter in Tianjin is referred from [28].
**These node bus are closer to the center of the service area.
Table 2. Parameters of BA, GA, ACO and HACOBA Algorithm.
Method BA GA ACO HACOBA
Parameter pop nep nsp o e ngh | pop pc  Ggp | pop a do | pop a B do nba ngh tr
Case | 100 40 2 31003 80 07 09|10 13 10 01| 8 2 10 01 30 0.03 35
Case Il 100 40 2 31003 80 07 09100 13 10 01| 8 2 10 01 30 0.03 30
Table 3. Optimal Locations of FCSs and Solution Quality of FCSA Obtained by HACOBA Algorithm.
Optimal Locations of FCSs on Power Distribution System Solution Quality of FCSA
Case Bus Position Sum of Voltage  Average Waiting time of all FCSs .
(Bus No.) Deviation (in minute) Min. Avg. Max. Std. Dev. Mean
[ 31731475059 2.09 1.27 78.40 81.64 82.37 1.00 46
1 4931384757 2.42 0.01 77.70 80.01 81.08 1.02 40
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FCSA(%)

Average FCSA (%)

Average FCSA (%)

Fig. 5. Convergence graph of the average fast charging serviceability solution on time span of 30 seconds.
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Table 4. Comparison of Solution Quality of Fast Charging Serviceability for all algorithms.

Method Min. Avg. Max. Std.Dev. Mean lteration

Case |

BA 73.10 79.78 81.24 1.7 42

GA 73.06 77.86 82.02 1.8 45

ACO 77.76 81.59 82.37 1.2 69

HACOBA 78.40 81.64 82.37 1.0 46
Case Il

BA 74.51 76.83 79.32 1.03 42

GA 74.84 78.66 81.08 1.37 57

ACO 76.90 79.68 81.08 1.05 50

HACOBA 77.70 80.01 81.08 1.02 40
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