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ABSTRACT 

Nowadays, the plug- in electric vehicle industry vastly grows into transportation sector 

worldwide.  Hence, the public fast charging stations ( FCSs)  must be prepared to serve this 

emerging plug- in electric vehicle charging demand.  Moreover, planning for FCSs within the 

urban area is quite important.  A hybrid swarm optimization technique blending beneficial 

characteristics of Ant Colony Optimization ( ACO)  with Bees Algorithm ( BA) , named 

HACOBA, is developed in this paper to find the optimal locations of FCSs that are placed on 

the residential power distribution grid such that it maximizes the fast charging serviceability 

subject to power distribution system limit and public road traffic constraints. In order to verify 

the effectiveness of the proposed method, it has been investigated on the IEEE-69-bus test 

system for two sizes of the fast charger of FCSs.  From the obtained simulation results, it is 

found that the proposed algorithm shows its competitiveness with traditional techniques.  
 

Keywords:  Covering location principle; Fast charging stations; Heuristic algorithms; Optimal 

planning; Plug-in electric vehicles; Power distribution system; Residential zone; Urban area 

 

 

1. Introduction 
Plug-in electric vehicle (PEVs)  are 

intended to be the most environmentally 

friendly mobile machine replacing an 

internal combustion engine vehicle, 

especially in the urban area, in the near future 
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[1-3] .  However, the driving range of PEVs 

per full charge of a battery is still lower than 

an internal combustion engine vehicle which 

is powered by a full tank of the gasoline [4]. 

Moreover, another substantial lagging factor 

for PEVs owner is the wastage of time ( in 

hours)  for charging PEVs batteries [ 5] . 

Therefore, the large deployment of public 

fast charging stations ( FCSs)  with dump 

charging functions that can charge PEVs ( in 

minutes in-stead of hours)  should be widely 

planned and installed to meet PEVs customer 

satisfaction in the service area as discussed in 

[ 6,7] .  Unfortunately, it is not practically 

feasible to install the FCS at the individual 

residence as they require high electric current 

for their operation as well as having high 

investment cost and operating costs [ 8] . 

Some important key points that should be 

considered by the FCS planner while setting 

the planning scheme for FCSs [9] :  ( i)  the 

potential impact of the growing PEVs 

charging demand on the electric power 

distribution system [ 10,11] .  Hence, smart 

grid functions for the power distribution 

system are efficiently implemented to 

manage the rising PEVs charging demand 

[ 12] , ( ii)  estimation of PEVs charging 

demand through surveys from potential 

PEVs customers [ 13,14] , ( iii)  queuing 

system at FCSs, the main service point in the 

traffic system network, used for the FCSs 

planning [ 14- 18] , ( iv)  the total cost 

associated with FCSs [8], and lastly (v) FCSs 

planning comprising several other important 

factors mostly depends both on traffic 

characteristics and PEVs behavior of FCSs.  

This paper proposes a mathematical 

optimization model which is formulated as 

the NP-  hard combinatorial optimization 

problem [ 19] .  It is solved using a novel 

hybrid artificial swarm optimization 

technique that improves the performance of 

Ant Colony Optimization (ACO) Algorithm 

[ 20,21]  by employing the strength of the 

Bees Algorithm ( BA)  [ 22] , named 

HACOBA.  The proposed algorithm is 

applied to find the optimal locations of FCSs 

such that it maximizes the fast charging 

serviceability subject to various constraints, 

i.e. the traffic service distance of FCSs, limit 

of waiting time in M/M/s queuing system at 

FCSs, and the residential power distribution 

system, respectively.  In order to ensure the 

effectiveness of the proposed system and 

method being employed, the IEEE- 69- bus 

test system as a standard test system has been 

considered, which is placed in the Tianjin 

Development Zone, with two size of the fast 

charger head.  In this paper, the obtained 

simulation results related to the proposed 

system have also been compared with other 

traditional swarm intelligence based 

optimization techniques. 

 

2.  Optimization Model and Solution 

Methods 
 The proposed optimal FCSs 

planning model is based on the Covering 

Location Principle ( CLP)  [ 23- 25] .  This 

optimal FCSs planning model in the traffic 

network of the residential zone is planned 

under concept, system, and method in [25] as 

follow: 

2.1 Mathematical Formulation of 
the Optimal Planning Model 

According to the CLP [23], it can be 

presumed that most of the demand is initiated 

from the fixed locations within a traffic 

network, where traffic network is a path 

between supply node, i. e.  location of the 

main service point, and demand node, i. e. 

centroid of the small area, within a service 

area; it can possess either linear or non-linear 

pattern while the service area is divided into 

various small areas which follow a 

tessellation pattern and represented as a 

discrete point.  To justify the CLP, the PEV 

demand node is assumed to be at the fixed 

location in a traffic network such that PEVs 

owner reside on the PEV demand node can 

travel to FCSs site for the recharging on a 

daily basis.  The purpose of this objective is 

to serve the PEVs charging demand 

maximally within the full and partial 

coverage distance.  As per the description of 
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the full and partial concept defined in [24] , 

demand nodes located within full coverage 

distance will have coverage factor equal to 

one, and demand nodes located within full 

and partial coverage distance will have 

coverage factor less than one and it will be 

calculated by performing a penalizing 

operation as an amount proportional to their 

distance.  For demand nodes located out of 

the partial distance will be rejected, and their 

coverage factor will be set to zero.  For 

conclusion, it can be formulated in form of 

mathematical optimization model using 

following equations. 

Maximize:
L

1

n

l l

l

FCSA npev z


  (2.1) 

, fullc

partc ,

, , partc
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(1,2,... ), (1,2,... )
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n l n l
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d d

d d
d d

d d
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 

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

 

(2.2) 

 
FC1, 2, , Lmax , ,.., , (1,2,... )l l l n lz cv cv cv l n 

    (2.3) 

where, 

Ln   The number of PEVs demand node 

in the residential zone (node) 

lnpev  The number of PEVs in lth demand 

node (cars) 

lz   Maximum value of coverage factor 

at lth demand node 

fullc partc,d d Full/ partial coverage distance (km) 

,n ld   The on- road traffic distance 

between nth FCS and lth demand 

node (km) 

FCn   The number of FCSs in the 

residential zone (station) 

,n lcv  Coverage factor of FCS at bus n on 

lth demand node       

 

Subject to: 

1) Traffic service distance constraints 

L0 1, (1,2,... )lz l n            (2.4) 

             min max ;  *FCS FCS FCS FCS FCSD D D D k l          (2.5) 

where, 

FCSl  Line length of the feeders between 

two adjacent FCSs 

k  Buckling coefficient 

FCSD  Actual on- road traffic distance of 

two adjacent FCSs 
max min,FCS FCSD D  Maximum, Minimum distance 

limit of two adjacent FCSs 

2) Queuing constraints 

RH max

FC, (1,2,... )nW W n n   (2.6) 

where, 
Max

W   Maximum allowed waiting time 
RH

nW  Average waiting time in line of nth 

FCS (minute)  
RH

nW  can be calculated from [25]. 

  

3) Power flow balance constraints 

FCS FCSCH CH

FCS FCS
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1

1.0
BN

i

i

VVd


                      (2.10) 

where, 

CHP  The rated output power of DC fast 

charger (kW) 

h  The number of fast chargers at the 

FCS 
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FCSeff  Efficiency of fast charger 

cos   Power factor of fast charger 
FCS

nS  Apparent power input or maximum 

charging demand of nth FCS (kVA) 
FCS

nP  Input active power of nth FCS (kW) 
FCS

nQ  Input reactive power of nth FCS 

(kvar) 

SN  Number of branches in the power 

distribution system 

BN  The number of buses in the power 

distribution system (bus) 

 

LossjP  Active power loss at jth line with 

FCS (kW) 

jI  Current of jth line (Amp) 

jR  Resistance of jth line (Ohm) 

SUBP  Active power from substation (kW) 

D D,i iP Q   Active/Reactive power demand at    

ith bus 

,ij ijG B  Conductance/Susceptance between 

bus ith, jth 

ij   Voltage angle difference between 

bus ith, jth 

iV  Voltage magnitude at ith bus 

Vd  Total voltage deviation of all buses 

 

4) Constraints of apparent power and 

voltage limit on lines and buses 

min max , [1, ]i i i BV V V i N       (2.11) 
limit , [1, ]j j SS S j N       (2.12) 

where, 
max min,i iV V Maximum, Minimum voltage limit 

at ith bus 
limit,j jS S Apparent Power and Upper limit in 

jth line 

 

Eq. (2.1), Eq. (2.2) show the method of 

finding the value of the charging serviceabi-

lity and coverage factor. Eq. (2.3) states that 

the maximum value of coverage factor of nth 

FCS will be selected to recharge PEVs in the 

lth demand node. Eq. (2.4)  shows the traffic 

service distance constraints, it also states that 

the FCS must be placed within the partial 

coverage distance. Eq. (2.5) shows 

constraints of the actual distance between 

two adjacent FCSs [5]. Eq. (2.6) shows the 

waiting time in the queuing system as the 

constraint. Eq. (2.7) – Eq. (2.9) show the 

power flow balance constraint with the FCSs. 

Eq. (2.10) shows the total voltage deviation 

of all buses. Eq. (2.11) , Eq. (2.12) represent 

the apparent power and its upper limit, and 

voltage limit on lines and buses, respectively. 

The EV’s arrival pattern to FCSs for 

recharging of EVs batteries with M/M/s 

queuing system is shown in Fig.1. In this 

paper, the queuing in the rush hour period 

will be considered in the residential area due 

to the possible occurrence of serious business 

activity or urgent charging demand  

during this period in this area [25]. 

 
 2.2 Mathematical Formulation of 
the Solution Method  

In this paper, a new metaheuristic 

optimization algorithm is developed to solve 

the aforementioned problems.  Metaheuristic 

algorithms are based on the global 

diversification and the local intensification of 

optimization [19] .  Diversification means to 

generate the diverse solutions in the global 

search space region. Intensification means to 

focus on the local search space region for the 

generation of the current good solutions.  To 

ensure the achievability of the global optimal 

solution and to know about the speed of 

convergence related to the proposed 

algorithm, an optimal balance and feasible 

combination of diversification and 

intensification are needed.  Here, we 

proposed a hybrid artificial swarm 

optimization algorithm blending seminal 

characteristics of ACO with BA, namely, 

HACOBA, to improve the computation 

effectiveness and performance in finding the 

optimal locations of FCSs on the proposed 

model.  The details and procedure of the 

proposed technique are provided as follows. 
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2.2.1 Ant Colony Optimization 

ACO, a well- known metaheuristic 

optimization algorithm, is inspired by the 

natural foraging behavior of real ant colony. 

A number of artificial ants are evaluated in 

all iterations due to the iterative nature of 

ACO.  A stochastic mechanism, which is 

based on the pheromone quantity, is 

principally adopted by the ants for selecting 

the routes to be visited in each single step of 

the solution construction.  From the 

perspective of the solution quality 

constructed by the ants, the pheromone trail 

value will be updated to encourage the ants 

in walking towards the routes having a higher 

concentration of pheromone than the 

previous iteration. ACO uses this mechanism 

to build an algorithm. 

2.2.2 Bees Algorithm 

BA, also a well- known optimization 

technique, is inspired by the natural foraging 

behavior of honeybees.  Bees have no 

knowledge about food source in the search 

space field and bee initializes its search as a 

scout bee.  When the scout bee locates the 

food source, it will return back to the hive 

and be raised as an employed forager bee. 

After this, many recruited employed foragers 

will follow the employed foragers who 

memorizes the location of the food source to 

exploit the nectar spread around the 

neighborhood area of the food source.  After 

finishing the task of employed foraging, bee 

loads a small amount of nectar from the food 

source and then returns back to the hive 
During this step, some food source having a 

low energy concentration will be abandoned 

by the employed foragers.  After then, these 

bees become new scout bees to search new 

food sources. The last process is called as the 

reinitializing process, i. e.  searching of the 

food source will start again. 

2.2.3 Applying the proposed 

HACOBA to the FCS Planning 

The computational procedure of the 

HACOBA algorithm to solve FCS planning 

problem can be elaborated as follows: 

 Step 0: Initialization 

-  Read system data and set initial 

parameters. 

- Start iteration; 0t   

- Set 1 2 3X [ , , ,..., ]
FCnx x x x as a control 

vector of an ant.  

- Initial trail intensity on route is set at

(0) 1ni   and initial probability 

distribution on route is set at

(0) 1ni  . 

-   Calculating the heuristic function, 

the heuristic function is defined as 

visibilities of the objective function 

of the station at the bus which can be 

expressed as in Eq. (2.13).

Service at the FCS

Morning rush hour 

charging

Normal day times

charging

Slow charging

 at house or work place

EVs arrival

Fast 

Charger

No.N

Fast 

Charger

No.1

Fast 

Charger

No.2

M/M/s Queuing 

System

EVs at Demand node 

s fast chargers

Charged EV

M; Arrival of EVs on 

Poisson distribution process

M; Service time

Fig. 1. EVs arrival pattern to FCSs with M/M/s queuing system during each period. 
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1
ni

niObj
                             (2.13)  

where, 

niObj  Objective function of thn station at 
thi bus 

ni  Trail intensity of thn station at thi

bus 

ni  Pheromone evaporation 

coefficient of thn station at thi bus 

Step 1: Constructing ant solutions 

- Update iteration; 1t t   

- Constructing ant population: 

 , 1,2,3,......, ,nk FCUx n n

( 1,2,3,...., )k m . 

The state transition rule guiding the 

ant movement, an ant of k of nth station 

choses ith bus by applying the pseudo-random 

proportion rule using following equation. 

   
B

arg max ( ) ( ) if 0

ˆ otherwise

i N ni nit t q q
i

i

 
 

 
 


      (2.14)   

 The parameter 0q can be set from 0 to 

1 and q is a random number in a range of 

[ 0,1] .  For FCU( 1,2,...., )n n  and 

B
ˆ( 1,2,....., ),i N  î  is a bus to be selected 

according to the probability distribution 

function that can be expressed as follows: 

   

   

ˆ ˆ

ˆ

1

( ) ( )
( )

( ) ( )
B

ni ni

Nni

ni ni

i

t t
t

t t

 

 

 


 






          (2.15) 

where, 

  Relative influence of the pheromone 

trail information 

  Relative influence of heuristic 

information 

 The selection process on the bus î on 
thn station of ant k is based on spinning the 

roulette wheel by using the probability 

calculated in Eq. (2.15). 

 Step 2:  Evaluating objective function 

to find the best solution 

 The objective function of all new ants 

is evaluated under all constraints; if it is 

feasible, then it is a candidate solution. The 

new best solution is searched from all 

candidate solutions using sorting method. 

Then, the new best solution is compared with 

the old best solution of the previous iteration. 

If the new best solution is better than the old 

best solution, then it will be the best solution 

of the problem (
bestx ). 

 Step 3:  Recruiting bees around the 

best solution 

 The bees are recruited to search 

around the best solution as 

 FCU, 1,2,3,....., ,nwxn n n

 1,2,...., .w nba The number of bees 

around the best solution are .nba  These bees 

are recruited to generate the neighborhood 

solution around the best solution within patch 

sizes expressed as follows: 

best max min(0,1) ( )nw n nxn x rand ngh x x         

(2.16) 

This process facilities to search carefully the 

new solution in determined area controlled 

by patch size (ngh). Moreover, this process  

can also help ant to release from the trap of 

local optima and premature convergence 

problem. 

 Step 4: Evaluating objective function 

of the new solutions 

 The objective function of the new 

solutions is evaluated as well as compared 

with the recent best solution; if new solution 

is found better than the recent best solution 

then it will become the best-updated solution 

of the problem. 

 Step 5: Global updating rule 

 The global updating rule is carried out 

in the best tour from all ants. The update 

pheromone is implemented as follows: 

best( 1) (1 ) ( ) ( )ni ni nit t t         (2.17) 
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 best max

best

1
if ( , ) belongs to the

( )
 best solution at  iteration 

 0          otherwise

ni

n i
Obj Obj

t
t







  




 

             (2.18) 
where, 

maxObj  Maximize the objective function 
bestObj  Objective function of the best 

solution 

 Step 6: Reinitializing the trail intensity

 To mitigate the over-accumulation of 

pheromones on some routes of ant, it may 

encounter stagnation behavior in the step of 

searching. The reinitializing process for the 

pheromone trail intensity means the 

initialization of BA again which is as 

follows:  

 If rt t  then reset tail intensity as 

 ( ) 1ni t   

 where, 

 rt  Reinitialize iteration value 

 Step 7: Stopping criteria 

 If timecpu > limitcpu  then end; 

 else go to Step 1 

 where, 

 timecpu  Total CPU time (in seconds) 

 taken by the program in its 

 execution 

 limitcpu  CPU time limit in runtime 

 computation 

 The flowchart of the proposed 

HACOBA to solve the FCSs planning 

problem is shown in Fig. 2. 

 

3. Case Studies and Discussion 

 This section presents the numerical 

examples with two cases of fast chargers 

which are 50 kW (i.e. CHAdeMO DC Quick 

Charge- Case I)  and 120 kW ( i. e.  Tesla’ s 

Supercharger-Case II) with 24 kWh battery 

capacity of PEV (i.e. Nissan Leaf). 

Read system data, set t = 0 and initial parameters

Start

Construct ant solutions 
with state transition rule

cputime > cpulimit

End

Global updating rule

Yes

No

Evaluate objective function
and find best solution 

Generate neighborhood solution 
around the best solution

t = t + 1

Evaluate objective function
and find new best solution 

Reinitialize the trail intensity

Fig. 2. Flowchart of the HACOBA Algorithm. 

3.1 Test System Description  

A residential area of a Tianjin 

Development Zone of about 10. 5 square 

kilometers [26] is used as the test area [25]. 

In this area, IEEE- 69- bus test system is 

placed to supply the electrical power to FCS. 

The system data of IEEE-69-bus test system 

can be found in [ 27] , and the location of 

buses is the candidate site of FCSs.  For this 

residential area, it is planned that there will 

be at least 3,140 PEVs by the year 2020 [26]. 

The number of PEVs at each demand node 

and their locations in the service area can be 

found in [26] .  The on-road traffic distance  

between the PEV demand node and each bus 

can be found in Appendix presented in [25]. 

The site location of each bus in IEEE-69-bus 

test system and PEVs demand node can also 

be found in [ 25] .  The IEEE- 69- bus test 

system has 68 line sections with a daily peak 

load of 3. 802 MW and 2. 693 MVar.  The 

rated apparent power flow in each section of 

the feeder is 10 MVA with base voltage of 
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12.8 kV.  This system has the value of total 

real and the total reactive power losses as 

195.95 kW and 89.93 kVar, respectively. The 

maximum and minimum limits of the voltage 

bus are 1.05 pu. And 0.95 pu., respectively.  

For the calculation of system operating 

conditions of the IEEE-69-bus test system, 

the backward- forward sweep distribution 

power flow has been employed in this paper. 

This method incorporates the potential 

benefits of the radial system nature [ 29] . 

From Table 1, it can be seen that the cost of 

the land use will be higher if it is in the 

vicinity of the center of the service area [25]. 

 

3.2 Parameter settings for PEV and 

FCS 

Table 2 shows the initial parameters of 

BA, GA, ACO and HACOBA algorithm, 

respectively, required to setup in finding the 

optimal solutions related to the objective 

taken into account. The following test data is 

set to perform the numerical calculation.  In 

this paper, these data are taken from diverse 

sources, mostly from [8], [11], [25] and [30-

32]. 

1) For PEV, = 80%FSOC , 20%ThSOC  ,

PEV =24,kWh PEV =30,V CH 90%eff  . From [25], 

PEV  19.2t  . 

2) For FCSs Service, FC 6,n  0.03,p  5,h   

fullc 2,d   
partc 0.5,d  max 0.5,FCSD  cos 0.95,   

2,RH   
max 5.W   

 
3.3 Computational Setting 

The results were computed by using an 

Intel® Core™  2 Duo Processor ( 2. 2 GHz, 

2GB RAM)  while Matlab® programming 

language was used in writing a program 

code.  The search space of all cases is the 

number of buses( number of stations)  ( 696 ≈ 

1. 07918163081 × 1011) .  In each case, 100 

trial runs were carried out for all algorithms. 

It is fair to use the total CPU time to be the 

“ stopping criteria”  in each run times.  Then, 

all algorithms taken into account can use this 

criterion.  For the considered cases, 

30limitcpu   seconds. 

 

3.4 Solution Quality in maximizing 

the fast charging serviceability as an 

objective 

Case I:  The power output of the fast 

charger is 50 kW. 

The solution of fast charging service 

ability can be calculated as 82. 37% .  The 

positions of FCSs with maximizing fast 

charging service ability on power 

distribution system are shown in Fig. 3. The 

optimal locations of FCSs obtained by the 

proposed HACOBA are shown in Table 3. 

The solution quality of fast charging service 

ability by all algorithms is shown in Table 4. 

Case II: The power output of the fast 

charger is 120 kW. 
The solution of fast charging service 

ability can be calculated as 81. 08% .  The  

positions of FCSs with maximizing fast 

charging service ability on power 

distribution system are shown in Fig. 3. The 

optimal locations of FCSs obtained by the 

proposed HACOBA are shown in Table 3. 

The solution quality of fast charging service 

ability by all algorithms is shown in Table 4. 

 

3.5 Parameter Settings for 

HACOBA and other algorithms 

The setting of HACOBA parameters 

would yield a better solution as well as 

having less computation time.  It has the 

number of parameters, but the question arises 

how to adjust these in an optimal manner. 

From the previous literature, it has been 

found that the most important parameter is 

the population. The desired population of the 

proposed HACOBA is determined by 

varying them and setting the other 

parameters as a constant.  The boxplot of 

FCSA solution from the varying population 

of HACOBA is exemplified in Fig.  4.  The 

population of HACOBA varied from 60 to 

240.  It can be seen that population of 80 

yields a higher fast charging serviceability. 
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Using this technique, the optimal parameters 

of HACOBA algorithm and other algorithm 

will be found. These parameters can be found 

in Table 2. 

 

3.6 Computational Efficiency 

The convergence characteristics of 

average fast charging serviceability solution 

obtained by all algorithms in Case I and Case 

II are shown in Fig.  5.  It can be seen from  

the convergence graph that HACOBA can 

meet the lowest value of average solution on 

the time span of 30 seconds. 

 
4. Conclusion 

This paper proposes the planning 

model of FCSs based on the covering 

location principle on the distribution system 

in the residential zone. The prime objective 

of the proposed planning model is to 

maximize the fast charging serviceability 

subject to various constraints, i. e.  the traffic 

service distance, the limit of waiting during 

the rush hour period, and the power 

distribution system, respectively, for two 

sizes of the fast charger for FCSs.  A novel 

hybrid artificial swarm optimization 

technique incorporating the beneficial 

characteristics of ant colony optimization 

(ACO)  and Bees Algorithm (BA) , namely 

HACOBA, is developed to find the optimal 

locations of the FCSs.  The proposed 

planning model was tested on IEEE-69-bus 

test system in the residential area of Tianjin 

Development Zone.  Numerical results show 

that the solution quality of the proposed 

algorithm has better performance and cost 

effective than other metaheuristics 

optimization techniques.
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Fig. 3. The positions of FCSs on the power distribution system. 
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Table 1. Land price per square meter at bus number. 

 

 

 

 

 

 
*Land price per square meter in Tianjin is referred from [28]. 

**These node bus are closer to the center of the service area.

 

 

 

Table 2. Parameters of BA, GA, ACO and HACOBA Algorithm. 
 

Method BA GA ACO HACOBA 

Parameter pop nep nsp o e ngh pop pc Ggap pop α β d0 pop α β d0 nba ngh tr 

Case I 100 40 2 3 1 0.03 80 0.7 0.99 100 1.3 1.0 0.1 80 2 1.0 0.1 30 0.03 35 

Case II 100 40 2 3 1 0.03 80 0.7 0.99 100 1.3 1.0 0.1 80 2 1.0 0.1 30 0.03 30 

 

 

 

Table 3. Optimal Locations of FCSs and Solution Quality of FCSA Obtained by HACOBA Algorithm. 
 

Case 

Optimal Locations of FCSs on Power Distribution System Solution Quality of FCSA 

Bus Position 

(Bus No.) 

Sum of Voltage 

Deviation 

Average Waiting time of all FCSs 

(in minute) 
Min. Avg. Max. Std. Dev. Mean 

I 3 17 31 47 50 59 2.09 1.27 78.40 81.64 82.37 1.00 46 

II 4 9 31 38 47 57 2.42 0.01 77.70 80.01 81.08 1.02 40 

 

Cost ($)* Bus Number Cost ($) Bus Number 

160 47 59 61 63 66 67 68 69 250 1 2 3 6 10 14 18 22 26 31 35 

180 
4 5 7 8 9 11 12 13 15 16 19 20 23 27 32 

36 40 45 
275 

17 21 24 25 28 29 30 33 34 37 38 39 

41 42 43 44 48** 
200 

46 49 50 51 52 53 54 55 56 57 58 60 62 

64 
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Fig. 4. The boxplot of fast charging serviceability from varying population. 

 

     
 

Fig. 5. Convergence graph of the average fast charging serviceability solution on time span of 30 seconds. 
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Table 4. Comparison of Solution Quality of Fast Charging Serviceability for all algorithms. 
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