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ABSTRACT 

 The objective of the present study is to investigate the influence of external magnetic 

field on unsteady incompressible flow of water based nanofluid through a successively 

expanding or contracting channel with porous walls.  The basic governing equations with 

boundary conditions are non- dimensionalized using appropriate transformation to ordinary 

differential equations, which are then solved using power series with the help of Hermite-Padè 

approximation method.  The instability of the flow is shown using bifurcation graph and the 

dominating singularity behavior numerically.  The regular effects of the different governing 

physical parameters specifically Hartmann number, volume friction of nanoparticles, non-

dimensional shear stress and permeation Reynolds number on velocity profiles are depicted 

graphically.  
 

Keywords:  Expanding walls; Contracting walls; Magnetohydrodynamics; Nanofluid; 

Bifurcation diagram; Hermite- Padè approximation 

 

 

1. Introduction 
 Nanofluid is a new dynamic subclass 

of nanotechnology-based heat transfer fluids 

obtained by dispersing and stably suspended 

nanoparticles into base water with typical 

dimensions of shape and size 1-100nm Choi 

[ 1] .  MHD Nanofluid flow through porous 

medium has received attention of many 
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researchers due to its applications in 

technological and engineering problems such 

as MHD generator; plasma studies, nuclear 

reactors, geothermal energy extraction. 

Muhammad Zubair Akbar et al.  [ 2]  studied 

heat and mass transfer analysis in a viscous 

unsteady MHD nanofluid flow through a 

channel with porous walls and medium in the 

presence of metallic nanoparticle. Elahi et al. 

[3] studied theoretical study of blood flow of 

nanofluid through composite stenosed 

arteries with permeable walls.  The problem 

of laminar nanofluid flow in a semi-porous 

channel in the presence of transverse 

magnetic field was investigated analytically 

by Sheikholeslami et al.  [ 4] .  Their results 

showed that velocity boundary layer 

thickness decreases with increases of 

Reynolds number and it increases as 

Hartmann number increases.  Several studies 

have been published recently on the 

modeling of natural convection heat transfer 

in nanofluids such as [5-7]. 

 Majdalani et al.  [ 8]  studied two 

dimensional viscous flows between slowly 

expanding, contracting walls with weak 

permeability.  Seepage across permeable 

walls is clearly important to the mass transfer 

between blood, air and tissue [9]. Therefore, 

a substantial amount of research work has 

been invested in the study of the flow in 

rectangular domain bounded by two moving 

porous walls, which enable the fluid to enter 

or exit during successive expansions or 

contractions.   Dauenhauer and Majdalani 

[ 10]  studied the unsteady flow in semi-

infinite expanding channels with wall 

injection.  They characterized the two non-

dimensional parameters, the expansion ratio 

of the wall and the cross- flow Reynolds 

number. Hatami et al. [11] studied numerical 

analysis of nanofluid flow conveying 

nanoparticles through expanding and 

contracting gaps between permeable walls. 

 The objectives of the present paper are 

to investigate the influence of magnetic field 

on nanofluid flow through expanding or 

contracting channel with permeable walls. 

The reduced ordinary differential equations 

are solved using Hermite-Pade` approxima- 

tion method.  The bifurcation point of wall 

shear stress and velocity field are obtained 

due to wall dilation rate and the effects of 

physical governing parameters on velocity 

profile are also analysed graphically. 

 

2. Mathematical formulation 
 Consider the laminar unsteady and 

incompressible between two porous plates 

that enable the fluid to enter or exit during 

successive expansions or contractions shown 

in Fig. 1. A water based different nanofluids 

are considered and assumed that the base 

fluid and the nanoparticles are in thermal 

equilibrium and no slip occurs between them. 

The thermo physical properties of different 

nanoparticles and base water are given in 

Table 1. 
Fig. 1. Physical configuration of the problem. 

 

Table 1. Thermo physical properties of water 

and nanoparticles. 

 
Physical 

properties 
Water 

Al2O3 

(Alumina) 

Ag 

(Silver) 

Cu 

(Copper) 

)( mg  997.1 3970 10500 8933 

)/( sPa  0.001 - - - 

)( mS  
5.5 × 

106 35 × 106 - 
59.6 × 

106 
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 The walls expand and contract 

uniformly at a time dependent rate 𝑎̅.  The 

fluid inflow velocity is independent of 

position assumed to be wv .  The continuity 

and momentum equations for the unsteady 

flow are as follows. 
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where, 𝑢̅ and 𝑣̅ are the velocity components 

in 𝑥̅  and 𝑦̅ directions, 𝑝̅ represents the 

dimensional pressure, t is the time, B0 is the 

magnetic field intensity acting vertically 

downward on the top plate and 𝑎̅(𝑡) is time 

dependent variable radius. 

 The boundary conditions are 

 tay
c

a
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     (2.4) 

and
a

V
c w is the injection/suction coefficient.   

 The dynamic viscosity nf , effective 

density nf and effective electrical 

conductivity nf of the nanofluid are 
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Here,   is the solid volume fraction.  The 

stream functions and mean flow vorticity can 

be written as 
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Similarity variables are considered due to 

mass conservation as follows, 
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Substitution Eq. (2.7) into Eq. (2.6) reduces 

to 

0
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The chain rule is used to solve Eq. (2.8) 
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With the following boundary conditions 

          0at0,0  yff yy

 

    

and 1at0,)1(eR 5.2  yfAf y    (2.10) 

Where  
f

aa
t


   is the non- dimensional 

wall dilation rate which is define positive for 

expansion and negative for contraction, 

f

wf aV




eR    is the permeation Reynolds 

number and 
f

f
BaH




0  is Hartmann 

number. 
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Eq. (2.7) ,Eq. (2.9) and Eq. (2.10) can 

be normalized by taking 
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 2.1 Series Analysis 
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 in the following form as Eq. (2.15) is non-

linear 
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and equating the coefficient of power series

 , with the help of MAPLE, we have 

computed the first 13 coefficients for the 

series of the stream function )(yf .  The first 
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3.  Numerical procedure:  Hermite-

Padé Approximants. 
 To compute the criticality conditions 

of the flow, we shall employ a very efficient 

solution method, known as Hermite- Padé 

approximants, which was first introduced by 

Padé [12]  and Hermite [13] .  We say that a 

function is an approximant for the series

n

n

nsS 
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0
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if it shares with S the same first few series 

coefficients at |𝛼|  < 1.  Thus, the simplest 

approximants are the partial sums of the 

series S . When the series converges rapidly, 

such polynomial approximants can provide 

good approximations of the sum.  

Because of the continuation of 

analytical solution and dominating 

singularity behavior, the bifurcation study is 

performed using the partial sum of Eq. (3.2). 

The dominating behavior of the function 

 S  represented by a series Eq.  (3.1)  may 

be written as  
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is a Hermite-Padé form of these series if  
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Here )(.......,),........(),( 10  dSSS

may be independent series or different form 

of a unique series.  We need to find the 

polynomials 
 i
NP  that satisfy the Eq.  ( 3. 3) 

and Eq.  ( 3. 4) .  These polynomials are 

completely determined by their coefficients. 

So, the total number of unknowns in Eq. (3.4) 

is    
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Expanding the left hand side of Eq. 

(3.4) in powers of   and equating the first N 

equations of the system equal to zero, we get 

a system of linear homogeneous equations. 

To calculate the coefficients of the Hermite-

Padé polynomials it requires some sort of 

normalization, such as 
   10 
i

NP  for some integer di 0    (3.6) 

 

It is important to emphasize that the only 

input required for the calculation of the 

Hermite- Padé polynomials are the first N 

coefficients of the series

)(.......,),........(),( 10  dSSS .The Eq. (3.5) 

simply ensures that the coefficient matrix 

associated with the system is square.  One 

way to construct the Hermite- Padé 

polynomials is to solve the system of linear 

equations by any standard method such as 

Gaussian elimination or Gauss- Jordan 

elimination.   In practice, one usually finds 

that the dominant singularities as well as the 

possibility of multiple solution branches for 

the nonlinear problem are located at zeroes 

of the leading polynomial coefficients

)(
][


d
N

P  of the Eq.  (3.4) .  If the singularity 

is of algebraic type, then the exponent   

may be approximated by  
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 Drazin –Tourigney Approximants [14] 

is a particular kind of algebraic approximants 

and Khan [ 15]  introduced High- order 

differential approximant ( HODA)  as a 

special type of differential approximants. 

 

4. Results and Discussion 
By differentiating series Eq. (2.17), 

we have computed the velocity function f   

as a series in power  , Re and Ha 

respectively.  The objective of the present 

study is to apply Hermite- Pade` 

approximation method to obtain an explicit 

solution of laminar unsteady incompressible 

different nanofluid in a parallel channel 

bounded by two moving porous walls, which 

enable the nanofluid to enter or exit due to 

successive expansion or contractions.  

Fig.  2 shows the effect of nano- 

particles volume fraction on stream function 

and velocity profiles. As nanoparticles volume 

fraction increases, fluid velocity )( yf  also 

increases while the stream function )(yf
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decreases. It can be seen from Fig. 3 that fluid 

centerline velocity reduces while increases 

near the two walls by the decreasing values of 

permeation Reynolds number Re.  It is also 

shown that in absence of Hartmann number 

stream function )(yf  increases slightly while 

velocity )( yf   increases sharply. Fig. 4 shows 

the effect of non-dimensional wall dilation rate 

  on stream function and fluid velocity.  The 

fluid velocity increases along the centerline 

with the positively increasing values of 

dimensionless wall dilation rate due to 

successive expansion of channel width. On the 

other hand, velocity decreases at the centre of 

the channel whereas increases near the two 

plates when   decreases negatively.  The 

magnetic field has a significant effect on the 

velocity profile with the variation of  .  The 

effect of different nanoparticles volume 

fraction on )(yf and )( yf   are noticed in Fig. 

5.  It shows that the Ag-nanoparticles produce 

larger horizontal velocity near the walls. 

Moreover, Cu- nanoparticles enhance center-

line velocity in absence of magnetic field. 

Fig.  6 demonstrates the effect of 

Hartmann number on stream function and 

velocity profiles.  It is seen that velocity at the 

centre of the channel reduces while enhances 

around the two plates when Ha increases. The 

transverse magnetic field opposes the alteration 

phenomena clearly.  Because the variation of 

Ha leads to the variation of the Lorentz force 

due to magnetic field and the Lorentz force 

produces more resistance to the alternation 

phenomena. 

 

Fig. 2. Effect of Cu-nanoparticles volume fraction on )(yf  and )( yf   when 1,4Re   . 

 

Fig. 3. Effect of Reynolds number on )(yf  and )( yf   for Cu-water nanofluid with 04.0  when 1 . 
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Fig.  4.  Effect of non- dimensional wall dilation rate on )(yf  and )( yf  for Cu- water nanofluid with

04.0  when 4Re  . 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5.  Effect of different nanoparticles on )(yf  and )( yf  for water as base fluid with 04.0  when 

1,4Re    

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Effect of Hartmann number on )(yf  and )( yf  for Cu-water based nanofluid with 04.0  when

1,4Re  

The wall shear stress for different 

values of permeation Reynolds number over 

a range of non-dimensional wall dilation rate 

and Hartmann number are depicted in Fig. 7 

( a) .  The absolute value of shear stress 

decreases when Reynolds number is positive 

as well as the non-dimensional wall dilation 

rate increases.  Moreover, it is also noticed 

that the wall shear stress decreases rapidly by 

the positive variation of Ha.  
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Fig. 7. (a) Dual solution of non-dimensional Shear stress and (b) bifurcation diagram of velocity at the 

porous wall for Cu-water nanofluid.

Employing the algebraic approximation 

method to the series Eq.  ( 2. 17)  we have 

obtained the dominating singularity behavior 

of the function   2
1

)( cyf  

 

with 

2.752214c   .  Fig.  7( b)  shows the 

bifurcation diagram of velocity versus   

with the effect of Cu-water nanofluid.  We 

say that there is a simple turning point, fold 

or a saddle-node bifurcation at .c   It is 

interesting to notice that there are two 

solution branches of velocity when ,c 

one marginal solution when c  and no 

solution when ,c  where c is the critical 

value of  for which the solution exists. The 

stability analysis indicates that the lower 

solution branch ( I)  is stable and physically 

realizable.  For different values of  , the 

upper solution branch ( II)  is unstable and 

physically unacceptable shown in Fig. 7(b). 

 

5.Conclusion 
The stability of MHD unsteady 

nanofluids flow through expanding or 

contracting channel with porous wall in 

presence of an external magnetic field has 

been studied numerically.  The effects of 

Hartman number, permeation Reynolds 

number, non-dimensional wall dilation rate 

and nanoparticles volume fraction on 

velocity profile, stream function and shear 

stress are investigated numerically.  The 

major results of the current study are given as 

follows. 

 As nanoparticles volume fraction 

increases velocity profile increases 

while stream function decreases with 

presence of Hartmann number. 

 The velocity function and stream 

function also increases by the 

increasing values of permeation 

Reynolds number.  

 Ag- nanoparticles accelerate horiz-

ontal velocity near the walls whereas 

Cu-nanoparticles enhance centerline 

velocity. 

 The wall shear stress decreases 

swiftly by the positive variation of 

Hartmann number. 

The fluid velocity at the wall has two 

branches bifurcating at the critical wall 

dilation rate at 
c  namely an upper 

branch and a lower branch. It is found that at 

the lower solution branch which is physically 

acceptable, the value of velocity enhances 

with the increase in the nanoparticles volume 

fraction. 
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