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ABSTRACT

The objective of the present study is to investigate the influence of external magnetic
field on unsteady incompressible flow of water based nanofluid through a successively
expanding or contracting channel with porous walls. The basic governing equations with
boundary conditions are non-dimensionalized using appropriate transformation to ordinary
differential equations, which are then solved using power series with the help of Hermite-Pade
approximation method. The instability of the flow is shown using bifurcation graph and the
dominating singularity behavior numerically. The regular effects of the different governing
physical parameters specifically Hartmann number, volume friction of nanoparticles, non-
dimensional shear stress and permeation Reynolds number on velocity profiles are depicted
graphically.

Keywords: Expanding walls; Contracting walls; Magnetohydrodynamics; Nanofluid;
Bifurcation diagram; Hermite- Pade approximation

1. Introduction nanoparticles into base water with typical

Nanofluid is a new dynamic subclass dimensions of shape and size 1-100nm Choi
of nanotechnology-based heat transfer fluids [1]. MHD Nanofluid flow through porous
obtained by dispersing and stably suspended medium has received attention of many
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researchers due to its applications in
technological and engineering problems such
as MHD generator; plasma studies, nuclear
reactors, geothermal energy extraction.
Muhammad Zubair Akbar et al. [2] studied
heat and mass transfer analysis in a viscous
unsteady MHD nanofluid flow through a
channel with porous walls and medium in the
presence of metallic nanoparticle. Elahi et al.
[3] studied theoretical study of blood flow of
nanofluid through composite stenosed
arteries with permeable walls. The problem
of laminar nanofluid flow in a semi-porous
channel in the presence of transverse
magnetic field was investigated analytically
by Sheikholeslami et al. [4]. Their results
showed that velocity boundary layer
thickness decreases with increases of
Reynolds number and it increases as
Hartmann number increases. Several studies
have been published recently on the
modeling of natural convection heat transfer
in nanofluids such as [5-7].

Majdalani et al. [ 8] studied two
dimensional viscous flows between slowly
expanding, contracting walls with weak
permeability. Seepage across permeable
walls is clearly important to the mass transfer
between blood, air and tissue [9]. Therefore,
a substantial amount of research work has
been invested in the study of the flow in
rectangular domain bounded by two moving
porous walls, which enable the fluid to enter
or exit during successive expansions or
contractions.  Dauenhauer and Majdalani
[ 10] studied the unsteady flow in semi-
infinite expanding channels with wall
injection. They characterized the two non-
dimensional parameters, the expansion ratio
of the wall and the cross- flow Reynolds
number. Hatami et al. [11] studied humerical
analysis of nanofluid flow conveying
nanoparticles  through expanding and
contracting gaps between permeable walls.

The objectives of the present paper are
to investigate the influence of magnetic field
on nanofluid flow through expanding or
contracting channel with permeable walls.

The reduced ordinary differential equations
are solved using Hermite-Pade™ approxima-
tion method. The bifurcation point of wall
shear stress and velocity field are obtained
due to wall dilation rate and the effects of
physical governing parameters on velocity
profile are also analysed graphically.

2. Mathematical formulation

Consider the laminar unsteady and
incompressible between two porous plates
that enable the fluid to enter or exit during
successive expansions or contractions shown
in Fig. 1. A water based different nanofluids
are considered and assumed that the base
fluid and the nanoparticles are in thermal
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equilibrium and no slip occurs between them.
The thermo physical properties of different
nanoparticles and base water are given in
Table 1.

Fig. 1. Physical configuration of the problem.

Table 1. Thermo physical properties of water
and nanoparticles.

Physical Al,O; Ag Cu
properties Water (Alumina)  (Silver)  (Copper)
p(g/m)  997.1 3970 10500 8933
u(Pals) 0.001 - - -

5.5 % 59.6 x
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The walls expand and contract
uniformly at a time dependent rate a. The
fluid inflow velocity is independent of
position assumed to bev,,. The continuity

and momentum equations for the unsteady
flow are as follows.
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where, i and ¥ are the velocity components
in X and y directions, p represents the
dimensional pressure, t is the time, By is the
magnetic field intensity acting vertically
downward on the top plate and a(t) is time
dependent variable radius.

The boundary conditions are

u=0v=-V,=-2 at y=al(t)
c
N _ov=0 at y=0
OX
v=0 a x=0
(2.9)
andc = Vi js the injection/suction coefficient.
a

The dynamic viscosity i, , effective

density o, and effective electrical

conductivity o©,; of the nanofluid are
defined by

U
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Here, ¢ is the solid volume fraction. The

stream functions and mean flow vorticity can
be written as
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Similarity variables are considered due to
mass conservation as follows,

an)_(?(y,t) - Vi )_(f_y = —U?(y,t)
= , U= , V= y
a a? a

y — o
y:%, fy:a
2.7)

Substitution Eq. (2.7) into Eq. (2.6) reduces
to

Uyt +UUx +VU3y =

an

B,uy

= Vi Uyiy —
nf
(2.8)
The chain rule is used to solve Eq. (2.8)
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With the following boundary conditions
f=0f w = y=0
and f =Re'A(L-4)>°, f, =0a y=1 (210)
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Where aft) is the non- dimensional

wall dilation rate which is define positive for
expansion and negative for contraction,

av, . .
Re'=2fT s the permeation Reynolds
Hg
O¢ .
number and Ha'=B, [— is Hartmann
Hg

number.



M. K. Rahman et al. | Science & Technology Asia | Vol.22 No.3 July - September 2017

Eq. (2.7) ,Eq. (2.9) and Eq. (2.10) can
be normalized by taking

W:L,u:i,V:l,f: f
aa a a Re AB
(2.11)
and then
xf xf  —f a
(//:—,UZ—,VZ—,C:
c c c Re AB
(2.12)
¥ +ayf"+3f")+Re' AB(ff "~ ff")—Ha'’C "=
(2.13)

Boundary conditions Eqg. (2.10) reduce to
y=0: f=0,f"=0
and y=1: f=1f"=0 (2.14)

A=(-g)+Lg B=(-9f",
Pt

C=1+ HGS - jW{(“S + 2} - {GS - }¢H
O'f Jf O'f
are the constants.

For normalization, substituting Re = Re and
a

Ha:H_a into Eq. (2.15) becomes
a
Y+ a(yf"+3f")+aRe AB(ff" - ff")—aHa?C f"=0
(2.15)
2.1 Series Analysis
A power series considered in terms of

a in the following form as Eq. (2.15) is non-
linear

f(y):i f.a' (2.16)
0

Substituting the Eq. (2.16) into Eq. (2.15)
and equating the coefficient of power series
a , with the help of MAPLE, we have
computed the first 13 coefficients for the
series of the stream function f(y). The first
few coefficients of the series of f(y)are as

follows.

0
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3. Numerical procedure: Hermite-
Padé Approximants.

To compute the criticality conditions
of the flow, we shall employ a very efficient
solution method, known as Hermite- Padé
approximants, which was first introduced by
Padé [ 12] and Hermite [13]. We say that a
function is an approximant for the series

S=> spa" (3.1)
n=0

if it shares with S the same first few series
coefficients at |a| < 1. Thus, the simplest
approximants are the partial sums of the
series S . When the series converges rapidly,
such polynomial approximants can provide
good approximations of the sum.

Because of the continuation of
analytical  solution and  dominating
singularity behavior, the bifurcation study is
performed using the partial sum of Eq. (3.2).
The dominating behavior of the function
S(er) represented by a series Eq. (3.1) may

be written as
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B+A(1—i] when 60,1, 2,....

o
(3.2)

As a — a;, where Aand B are some
constants and «. is the critical point with the

critical exponent o .
Assume that the (d+1) tuple of

polynomials, where d is a positive integer:

when 6§=0,1, 2,.,

ac

0 1 d
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degP,Lo] +deg P,L}] +...+degP,£ld] +d =N,

3.3)
is a Hermite-Padé form of these series if

d

zp,g](a)si(a):o(aN) as |o| <1 (3.4)
i=0

Here Sg(«),S1(a),

may be independent series or different form
of a unique series. We need to find the

polynomials P,Li] that satisfy the Eq. (3.3)
and Eg. (3.4). These polynomials are
completely determined by their coefficients.
So, the total number of unknowns in Eq. (3.4)
is
d .
deg P,L'] +d+1=N+1

=0

(3.5)

Expanding the left hand side of Eq.
(3.4) in powers of ¢ and equating the first N
equations of the system equal to zero, we get
a system of linear homogeneous equations.
To calculate the coefficients of the Hermite-
Padé polynomials it requires some sort of
normalization, such as

P,Li](o)zl for some integer 0<i<d (3.6)

It is important to emphasize that the only
input required for the calculation of the
Hermite- Padé polynomials are the first N
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coefficients of the series
So(@),S1(a), Sq(a) .The Eg. (3.5)
simply ensures that the coefficient matrix
associated with the system is square. One
way to construct the Hermite- Padé
polynomials is to solve the system of linear
equations by any standard method such as
Gaussian elimination or Gauss- Jordan
elimination. In practice, one usually finds
that the dominant singularities as well as the
possibility of multiple solution branches for
the nonlinear problem are located at zeroes
of the leading polynomial coefficients

P&d](a) of the Eq. (3.4). If the singularity
is of algebraic type, then the exponent &
may be approximated by

PlLd 4 (“c, N )

ol e )

Ac N

Sy =d-2- (3.7)

Drazin —Tourigney Approximants [14]
is a particular kind of algebraic approximants
and Khan [ 15] introduced High- order
differential approximant ( HODA) as a
special type of differential approximants.

4. Results and Discussion
By differentiating series Eq. (2.17),
we have computed the velocity function f'

as a series in power « , Re and Ha
respectively. The objective of the present
study is to apply Hermite- Pade’
approximation method to obtain an explicit
solution of laminar unsteady incompressible
different nanofluid in a parallel channel
bounded by two moving porous walls, which
enable the nanofluid to enter or exit due to
successive expansion or contractions.

Fig. 2 shows the effect of nano-
particles volume fraction on stream function
and velocity profiles. As nanoparticles volume
fraction increases, fluid wvelocity f'(y) also

increases while the stream function f(y)
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decreases. It can be seen from Fig. 3 that fluid
centerline velocity reduces while increases
near the two walls by the decreasing values of
permeation Reynolds number Re. It is also
shown that in absence of Hartmann number
stream function f(y) increases slightly while

velocity f'(y) increases sharply. Fig. 4 shows

the effect of non-dimensional wall dilation rate
a on stream function and fluid velocity. The
fluid velocity increases along the centerline
with the positively increasing values of
dimensionless wall dilation rate due to
successive expansion of channel width. On the
other hand, velocity decreases at the centre of
the channel whereas increases near the two
plates when « decreases negatively. The
magnetic field has a significant effect on the
velocity profile with the variation of «. The

[~ —
™ a=2 ’
09 \  ——— Ha=24=0 7
Y Ha=2,p=.02 J
Y === Ha=2 ¢=.04 7
1 Ha=0 ¢p=.04
Y 7
\ '
a6 Y 4
—_ \ /
..“? A /
\ /
\ /
a3 \ ,."
1
\ /
\ /
\ I
A\ 7
N/

Fig. 2. Effect of Cu-nanoparticles volume fraction on ) and ') when
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effect of different nanoparticles volume
fraction on f(y)and f’(y) are noticed in Fig.

5. It shows that the Ag-nanoparticles produce
larger horizontal wvelocity near the walls.
Moreover, Cu-nanoparticles enhance center-
line velocity in absence of magnetic field.

Fig. 6 demonstrates the effect of
Hartmann number on stream function and
velocity profiles. It is seen that velocity at the
centre of the channel reduces while enhances
around the two plates when Ha increases. The
transverse magnetic field opposes the alteration
phenomena clearly. Because the variation of
Ha leads to the variation of the Lorentz force
due to magnetic field and the Lorentz force
produces more resistance to the alternation
phenomena.
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Fig. 3. Effect of Reynolds number on f(y) and f'(y) for Cu-water nanofluid with ¢ =0.04 when «=1.
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Fig. 4. Effect of non-dimensional wall dilation rate on f(y) and f’(y)for Cu-water nanofluid with
¢ =0.04 whenRe=4.
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Fig. 5. Effect of different nanoparticles on f (y) and f’(y)for water as base fluid with$=0.04 when
Re=4,a=1
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Fig. 6. Effect of Hartmann number on f (y) and f’(y) for Cu-water based nanofluid with ¢ =0.04 when
Re=4,a=1

The wall shear stress for different decreases when Reynolds number is positive
values of permeation Reynolds number over as well as the non-dimensional wall dilation
a range of non-dimensional wall dilation rate rate increases. Moreover, it is also noticed
and Hartmann number are depicted in Fig. 7 that the wall shear stress decreases rapidly by
(a). The absolute value of shear stress the positive variation of Ha.
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Fig. 7. (a) Dual solution of non-dimensional Shear stress and (b) bifurcation diagram of velocity at the

porous wall for Cu-water nanofluid.

Employing the algebraic approximation
method to the series Eq. (2.17) we have
obtained the dominating singularity behavior

of the function f(y)~(a—a.)? with
a, ~—2.752214. Fig. 7( b) shows the

bifurcation diagram of velocity versus o
with the effect of Cu-water nanofluid. We
say that there is a simple turning point, fold
or a saddle-node bifurcation at a = . It is

interesting to notice that there are two
solution branches of velocity when « > «,

one marginal solution when o=, and no
solution when «a <., where ¢ is the critical

value of & for which the solution exists. The
stability analysis indicates that the lower
solution branch (1) is stable and physically
realizable. For different values of 4 , the

upper solution branch (1I) is unstable and
physically unacceptable shown in Fig. 7(b).

5.Conclusion
The stability of MHD unsteady

nanofluids flow through expanding or
contracting channel with porous wall in
presence of an external magnetic field has
been studied numerically. The effects of
Hartman number, permeation Reynolds
number, non-dimensional wall dilation rate

141

and nanoparticles volume fraction on
velocity profile, stream function and shear
stress are investigated numerically. The
major results of the current study are given as
follows.

mAs nanoparticles volume fraction
increases velocity profile increases
while stream function decreases with
presence of Hartmann number.

The velocity function and stream
function also increases by the
increasing values of permeation
Reynolds number.

Ag- nanoparticles accelerate horiz-
ontal velocity near the walls whereas
Cu-nanoparticles enhance centerline
velocity.

The wall shear stress decreases
swiftly by the positive variation of
Hartmann number.

The fluid velocity at the wall has two
branches bifurcating at the critical wall
dilation rate at o =, namely an upper

branch and a lower branch. It is found that at
the lower solution branch which is physically
acceptable, the value of velocity enhances
with the increase in the nanoparticles volume
fraction.
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