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ABSTRACT 

This paper presents the small-signal modeling of a Single-Ended Primary Inductor 

Converter power stage operating in discontinuous conduction mode using the sampled-data 

modeling technique. In addition,  two algebraic manipulating features are revealed; the simpler 

periodic solution determination by the concept of Volt-Second and Capacitor-Charge balance, 

and the replacement of the expression involving the singular matrix by the equivalent function 

with the s  domain matrix. Four pulse transfer functions are derived from the model: the small-

signal input-to-output voltage pulse transfer function, the small-signal duty duration-to-output 

voltage pulse transfer function, the input-to-output voltage pulse transfer function, and the duty 

duration-to-output voltage pulse transfer function. The model verification is analyzed by the 

simulation results. The response sequences from the pulse transfer functions oscillate by the same 

phase and frequency to the one from the simulation with slightly peak amplitude differences, 

confirming the validity of the acquired pulse transfer functions.  

 

Keywords:  Sampled-data control system; SEPIC converter modeling; Discontinuous conduction 

mode converter; Discretization. 

 

 

 1. Introduction 
The Single-Ended Primary Inductor 

Converter(SEPIC) operated in the 

discontinuous conduction mode(DCM) has 

been extensively adopted as a power factor 

preregulator(PFP) [1] in  off-line power 

supplies that stay in a distributed power 

system.  Most power supply usages range 

from battery charging, appliance power 

sources and so on. Traditional off-line power 

supplies use a diode full bridge rectifier and 

large value of input filter capacitor at the 

input part. With this configuration, when an 

off-line power supply is turned on, a line 
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current with huge amount of excessive peaks 

is drawn from the power system line. As a 

result, this produces a high level of total 

harmonic distortion(THD) on the line, leading 

to a deteriorated power factor. In order to 

improve the power factor close to unity and 

reduce the percentage of THD, several types 

of passive and active power factor 

correction(PFC) schemes have been 

proposed. Passive PFC schemes do not lend 

themselves to this application due to the 

expense for each bulky component in the 

circuit and all the components being suitable 

for only a particular frequency. Accordingly, 

an adaptive PFC technique known as Active 

Power Factor Correction(APFC) comes into 

play. In APFC, the duty ratio as the switching 

parameter of dc-dc converters is controlled so 

that the dc-dc converter behaves as if it were 

a resistive load of the distributed power 

system. By operating at a high switching 

frequency, the size of the reactive elements 

gets reduced. This advantage makes it 

suitable for PFC applications.  

Controlling the duty ratio of the 

switching element of a SEPIC so that the 

input current is in-phase with the input line 

voltage requires the more consistent model of 

a SEPIC. Two major approaches in 

implementing control circuits in PFP are 

described in [1] as the multiplier approach 

and voltage-follower approach. Several 

modeling techniques were proposed to model 

a SEPIC. These are the state-space averaging 

technique, the circuit averaging technique, the 

discrete modeling technique and the sampled-

data modeling technique. According to [2], 

the state-space averaging technique is based 

on analytical averaging of state-space 

equations describing linear equivalent circuits 

for different states of a converter determined 

by the on-off status of the switching elements, 

whereas, the circuit averaging method leads 

to linear circuit models but emphasizes the 

average values of voltages and currents rather 

than their instantaneous values. For the state-

space averaging technique proposed by [3], a 

linearized model based on this method is 

suitable when switching converters operate in 

continuous conduction mode(CCM) with low 

frequency of interest, but exhibit large 

discrepancies between the model and the 

measured behavior in the decade immediately 

below the Nyquist frequency and is unable to 

predict the well-known sub-harmonic 

oscillation [4,5]. In order to be accurate at the 

high frequency, [6] proposed the discrete 

modeling technique. The linearized model 

obtained from this technique produces the 

accurate response sequence at both low and 

high frequency ranges but lacks the 

continuous nature of the converter waveform. 

To compensate between merits and demerits 

of the former techniques, the sampled-data 

modeling technique [4] was introduced. This 

method gives rise to the model that 

incorporates both the continuous form of the 

state-space averaged model and the high-

frequency accuracy of the discrete model. 

PFP by the voltage-follower approach 

is mentioned in [7] with the analysis in the 

steady-state condition. Several studies [8-11] 

do the analysis by modeling a SEPIC in DCM 

using the state-space averaging technique. 

Even though there are various dc-dc 

converters being modeled with the sampled-

data modeling technique in continuous 

conduction mode(CCM), such as a switched-

capacitor voltage regulator [12], a boost or 

buck converter [13,14], it is rare to discover 

the modeling and analysis of a SEPIC in 

DCM using the sampled-data modeling 

technique. As a result, this study 

demonstrates the modeling of a non-isolated 

SEPIC in DCM with adjustable output 

voltage using the sampled-data modeling 

technique. The model verification of the pulse 

transfer function is analyzed by comparing 

with the simulation results. The response 

sequences from the pulse transfer functions 

oscillate by the same phase and frequency to 

the one from the simulation with slightly peak 

amplitude differences, confirming the validity 

of the acquired pulse transfer functions.  
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2. Sampled-data Modeling of an Open 

Loop SEPIC in DCM  

A typical non-isolated SEPIC circuit 

can be illustrated as in Fig. 1.  

 

2.1 Switching State Description :  
For a SEPIC, the switching 

component is controlled by a pulse-width 

modulator (PWM). The state of the switching 

component is completely determined by a 

switching function ( )d t  which is defined as 

[4]  

 

  

    

,1
( )

0 , 1

s n s

n s s

nT n d Tif t
d t

if t n d T n T

  
 

    

 

 

 

 

 

(2.1) 

Where the duty ratio nd  is the fractional 

quantity,  0 1nd  . The 
thn  switching cycle 

is denoted as  ,n n st t T  where sT  is the 

duration of the 
thn switching cycle. Within 

one switching cycle, ( )d t  of Equation (2.1) 

has two 
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Fig. 1. A typical non-isolated SEPIC circuit. 
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Fig. 2. An equivalent SEPIC circuit in 1S -state. 
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Fig. 3. An equivalent SEPIC circuit in 2S -state. 
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Fig. 4. An equivalent SEPIC circuit in 3S -state. 
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different values, whereas a SEPIC in DCM 

traverses consecutively into 3 different states, 

1S -state, 2S - state and 3S -state as shown in 

Fig. 2, Fig. 3 and Fig. 4 respectively. In the 

iS -state, the duty duration , ,( )i n i nd  in that 

state is defined as : 

 

, , ,( ) 1,2,3i n i n i n sd d T for i  
  

 

(2.2) 

 

Where :  

 

, 1i n nd d if i 
 

3

,

1

1i n

i

d



 

     (2.3) 

 

 

(2.4) 

 

2.2 The Methodology of the 

Sampled-data Modeling Technique :  

The general method of the sampled-

data modeling technique has four main steps 

[12]     

2.2.1 Expression of large-signal 

dynamics :  
The SEPIC in DCM consists of three 

states; 1S , 2S  and 3S , each of which can be 

represented by the state space representation 

as follows.   

2.2.1.1 1S -state:  

when   1,,s n st nT n d T  ,       

a SEPIC comes into 1S  state where 













)()()(

)()()(:

11

11
1

tuDtxCtv

tuBtxAtxS

out  

 

(2.5) 

 

2.2.1.2 2S -state: 

when     1, 2,,n s n st n d T n d T   , a 

SEPIC comes into 2S  state where 

2 2
2

2 2

( ) ( ) ( ):
( ) ( ) ( )out

x t A x t B u tS
v t C x t D u t

  


   

 

(2.6) 

 

 

 

2.2.1.3 3S -state: 

when     2, , 1n s st n d T n T   , a 

SEPIC comes into 3S  state where 

3 3
3

3 3

( ) ( ) ( ):
( ) ( ) ( )out

x t A x t B u tS
v t C x t D u t

  


   

 

(2.7) 

 

( )u t  is the input vector which is often the 

supply voltage sv  and 

 1 2 1 2( ) ( ) ( ) ( ) ( )
T

L L C Cx t i t i t v t v t  is 

the state variable vector of the system for the 

case of a SEPIC. The sampling period sT  is 

chosen as such a small period that 

( ) ( )su t u nT  for   , 1s st nT n T  . Let 

nx  and 1nx   be state vectors at time nt  and 

n st T  in consequence and nu  be the input 

vector at nt . 

1 2 3 1 2 3, , , , ,A A A B B B 1 2 3 1 2, , , , ,C C C D D  

and 3D  are defined as follows. 
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With the ensuing section, it can be seen that 

2, 2, 1,( )n n n    and 3, 3, 1,( )n n n    are 

functions of 1,n . In addition, at any t , the 

solution ( )x t  of Equation (5), (6) and (7) as 

the state transition equations combining 

( )n sx x nT  to 1 (( 1) )n sx x n T    can be 

expressed as  
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Where : 
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(2.16) 
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2.2.2 Evaluation of steady-state 

conditions and expression of the periodic 

converter behavior including condition for 

discontinuous conduction mode(DCM) of 

operation : 

A steady-state operating condition is 

the condition when 1n nx x  . The system in 

this operating condition possesses the state 

vector nx  as a periodic solution [2]. For a 

system subject to the sampling period of sT , a 

periodic solution is sometimes called a 

sT  periodic solution corresponding to a 

fixed-point steady-state solution 

  1 1, , , ,ss ss ss

ss s sx u T T   where 

 1, ,ss ss

ss sx u T  is the fixed-point steady-

state vector being a function of 1,ss ssu  and 

sT .  

ssu  is the fixed-point steady-state 

input vector, 1

ss is the fixed-point steady-

state duty duration in the 1S state. 

By setting 
ss

su v , determining 

 1, ,ss ss

ss sx u T  where 

 Tssss

C

ssss

C

ssss

L

ssss

L

ss vviix )()()()( 12111211 

, 1

ss  , 2

ss and 3

ss can be achieved by the 

concept of Volt-Second and Capacitor-Charge 

balance from power electronics courses and 

the DCM condition [15] as follows 

 

 

 

 

1 2 3

1 2 3

1 1 1
1 1 1 1 2 3 0ss ss ssL L L
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di di di
i i i

dt dt dt
  

  
  

    
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     
     
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2 2
1min 2min 0L LS state S state

i i
 
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(  (2.22) 

1 2 3 0ss ss ss

sT        
(2.23) 

2 0ss ref

C outv v   

 
(2.24) 
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Solving Eq. (2.18), (2.19), (2.20), (2.21), 

(2.22), (2.23) and (2.24) simultaneously, we 

obtain  

 
1 2

1

1 2

2 ref
ss s out

s

L L T v

R L L v


 
  
  

 
 

(2.25) 

 

2 1

ss sss

ref

out

v

v
 

 
  
 

 (2.26) 

3 1 2

ss ss ss
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(2.27) 

 
2

1

ref

outss

L

s

v
i

Rv
  (2.28) 

 
2

1
2

1

refss
outss s

L ss

s

vT
i

Rv





 
  
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 (2.29) 

1

ss

C sv v  (2.30) 

2

ss ref

C outv v  (2.31) 

 

From Eq. (2.25) and (2.26), by the given 

values of 1 2,L L  and R with the DCM 

constraint of Eq. (2.22), 2

ss can be 

expressed as  

 
1 2

2

1 2

2ss sL L T

R L L
 


 

 

(2.32) 

 

 

A SEPIC traverses from the CCM to the 

DCM when 3 1 20,ss ss ss

sT       or 

from Eq. (2.23) and (2.32), the minimum 

value of 1

ss that lastly preserve the SEPIC 

in CCM(imminently being into DCM) can 

be expressed as 

 
1 2

1 _

1 2

2ss s
CCM MIN s

L L T
T

R L L
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
 

 

(2.33) 

 

 

And the maximum achievable output 

voltage for a SEPIC in DCM  

max_

ss

out DCMv or 2max_

ss

C DCMv  can be determined 

as follows : 

1 _

2max_

2
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CCM MINss

C DCM sss
v v





 
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(2.34) 

 

Therefore, for a given dc voltage source sv , 

the desired reference output voltage 

2 2max_

ref ss ss

out C C DCMv v v   must satisfy  Eq. 

(2.33) in order to preserve a SEPIC in DCM. 

 

2.2.3 The steady-state model 

linearization : 

In order to linearize 1nx   around a 

fixed-point steady-state  

  1 1, , , ,ss ss ss

ss s sx u T T   and input dc 

voltage source sv (considering n su v ), nx  

must be determined first by applying a 

steady-state operating condition of 

1n nx x   to Eq. (2.13), 
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1 1

p ss ss
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and then 1nx   can be determined from nx  

by  the state transition equations. The small-

signal dynamics can be obtained by 

linearizing the large-signal dynamics around 

the fixed-point steady-state  

  1 1, , , ,ss ss ss

ss s sx u T T   and input dc 

voltage source sv . Let 1,, ,n n nx u   and outv  

be the perturbed state vector, input vector, 

duty duration in the  1S -state and output 

voltage, respectively             and 

are the perturbations of state vector, input 

vector, duty duration and output voltage 

sequentially. They are expressed as  
 

 

 

 

(2.36) 
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The small-signal model of this system can be represented as  

 

 

 

 

 

 

 

 

 

 

(2.37) 

 
(2.38) 

 

Where  

  

       
1

3 3 2 2 1 1 1

( , , )ss ss
s

ss ss ss ss

n x T

df

dx


         

 

 

(2.39) 

 

 ss

Txn
s

ssssdu

df
1

),,( 1






 
 

(2.40) 

       1 1

1 1 1 1(0) (0)p p ss ss ss ss

n sx x I u I v             
   

 
(2.41) 

      3 30 0 0
p

px A x B u



   (2.42) 

      1 10 0 0
p

px A x B u



   (2.43) 

          1 1 1 1 1 1 1 1 0
p

ss p ss ss p ssx A x B u A x B u   
 

     
 

(2.44) 

 

          1 2 1 2 1 2 1 2 0
p

ss p ss ss p ssx A x B u A x B u   
 

      
 

(2.45) 

 

      

   

1 2 2 1 2 2 1 2

2 1 2 2 0

p

ss ss p ss ss ss ss

p ss ss

x A x B u

A x B u

     

 

 

    

  

 

 

 

 

(2.46) 
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      

   

1 2 3 1 2 3 1 2

3 1 2 3 0

p

ss ss p ss ss ss ss

p ss ss

x A x B u

A x B u

     

 

 

    

  

 

 

 

 

(2.47) 

  

  

  

1

3 3 1 2

1, ( , , )

3 3 2 2 1

3 3 2 2 1 1

1 ( )

( ) ( )

( ) ( ) ( ) 0

ss ss
s

p

ss ss sss

ref

n outx T

p

ss ss sss

ref

out

p

ss ss ss

vdf
x

d v

v
x

v

x



  


  

  

 

 




 
     
 

 
   
 

  

 

 

 

 

 

 

 

 

(2.48) 

Small-signal dynamics : 

The small-signal input-to-output pulse 

transfer function ( )vuT z and the small-signal 

duty duration-to-output pulse transfer 

function 
1
( )vT z can be derived by applying 

the z-transform to Eq. (2.37) and Eq. (2.38). 

 

 

 

 

 

(2.49) 

 

 

 

 

 

 

(2.50) 

 

Steady-state dynamics :  
 

When n  , with the constraints of 

 and v ̃out = 0, the dynamic model 

of a SEPIC in DCM with the imposed 

constraints is called the steady-state 

dynamics and it can be proved that 

1 1( ) ( ) ( ) ( ) ( )out vu vV z T z U z T z z  

 

(2.51) 

 

With the constraint of v ̃out = 0  when 

nand by the final value theorem, 

defining a scaling factor finalK such that  

 
1

1

1

)(1lim












 zVzvK out

z

ref

outfinal

 

 

(2.52) 

 

 

 

The input-to-output pulse transfer function 

( )vuG z and the duty duration-to-output 

pulse transfer function 
1
( )vG z are defined 

as follows : 

)(

)(
)(

zU

zV
KzG out

finalvu 

  

 

(2.53) 

 

)(

)(
)(

1
1 z

zV
KzG out

finalv


 

 

(2.54) 

   

Where ( )outV z  is from Eq. (2.51). 

 

2.3 SEPIC dynamic model 

verification : 

The dynamic models of a SEPIC 

represented by Eq. (2.49) and Eq. (2.50) are 

verified by comparing the step response of 

Eq. (2.49) when the input sequence is a step 

sequence [ ]sv u n  and the step response of 

Eq. (2.50) when the input sequence is a step 

sequence 1 [ ]ss u n  , respectively, with the 

output response ( )out sv nT  of the 

simulation(from the simulation diagram, 

consisting of components from MATLAB 
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simulink toolbox) of the relevant SEPIC 

model represented by Eq. (2.5), (2.6) and 

(2.7). 

  

2.4 Eigenvalue stability analysis :  

According to [3], the stability 

considered in this study is the relative 

stability of the linearized model of a SEPIC 

represented by Eq. (2.37) and (2.38). In a 

discrete time control system, a linear shift-

invariant system is asymptotically stable 

when all of the poles or roots of the 

determinant  1

sszI  or equivalently 

the eigenvalues of   1

ss  are inside the 

unit circle in the complex z-plane. The 

locations of the eigenvalues in the z-plane 

convey the transient response of the system, 

i.e., damping and oscillation of the response. 

 

3. Simulation results  

A SEPIC with the following 

parameters is considered in this study.  

 

8.0sv volt , , 5.0ref

outv volt  

, 1 100L mH  , 2 100L mH  

, FC 0.3301   FC 0.22002   

 kR 1
 

1
31.25s

s

f kHz
T

   

53.2 10sT s  . From Eq. (2.32), 

5

2 1.7889 10ss s   , from Eq. (2.33), 

5

1 _ 1.4111 10ss

CCM MIN s    and the 

maximum achievable output voltage for a 

SEPIC in DCM  

max_

ss

out DCMv or 2max_

ss

C DCMv can be determined 

from Equation (2.34) and 

2max_ 6.3108 vss

C DCMv  . Therefore, it is 

possible for the desired reference output 

voltage 5.0ref

outv v to operate the SEPIC in 

DCM. For a SEPIC in DCM, the steady-sate 

values 1 2 3 1 1 1 2, , , , , ,ss ss ss ss ss ss ss

L L C Ci i v v   can be 

determined from Eq. (2.25) to Eq. (2.31). 
5

1 1.1180 10ss s   , 

5

2 1.7889 10ss s   , 

6

3  2.9311 10ss s   , 1  0.0031ss

Li A , 

2   0.0058ss

Li A , 1   8.0ss

Cv v , 

2   5.0ss

Cv v . ( )
1

sv z
U z

z



, 

1
1( )

1

ss z
z

z


 


.  

Small-signal dynamics : 

The small-signal input-to-output pulse 

transfer function ( )vuT z and the small-signal 

duty duration-to-output pulse transfer 

function 
1
( )vT z  can be calculated as  

 5 3 2

4 3 2

( )

1.636 10 1.5556 0.1112 0.4446

3.9998 5.9996 3.9998 1.0

vuT z

z z z

z z z z





   

   

 

 
1

3 2

4 3 2

( )

13.35 2.9985 2.9985 0.9993

3.9998 5.9996 3.9998 1.0

vT z

z z z

z z z z

 

  

   
 

Steady-state dynamics : 

From Eq. (2.52), 1.0838finalK  . The 

input-to-output pulse transfer function 

( )vuG z and the duty duration-to-output 

pulse transfer function 
1
( )vG z are obtained 

as follows : 

 5 3 2

4 3 2

( )

3.795 10 2.3246 1.6498  0.3249

3.9998 5.9996 3.9998 1.0

vuG z

z z z

z z z z





   

   
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 
1

3 2

4 3 2

( )

27.15 2.3252 1.6501 0.3250

3.9998 5.9996 3.9998 1.0

vG z

z z z

z z z z

 

  

   
 

SEPIC dynamic model verification  

( )vuG z  was verified by comparing 

the step response sequence [ ]outv n , when 

the input sequence [ ]sv u n  applied, with the 

response  out sv nT from the simulation, 

whereas 
1
( )vG z  was verified by comparing 

the step response sequence [ ]outv n , when 

the input sequence 
1 [ ]ss u n  applied, with 

the response  out sv nT  from the simulation 

as in Fig. 6, Fig. 7 and Fig. 8. It can be 

noticed that the step response sequences 

[ ]outv n (red line) from ( )vuG z  and 
1
( )vG z  

are the same for the input sequences 

[ ]sv u n and 
1 [ ]ss u n

,
 respectively. 

 outv t and  out sv nT  from the simulation 

are the gray line. The observation reveals 

that [ ]outv n  oscillates by the same phase and 

frequency as  outv t  from the simulation 

with slight peak amplitude differences that 

might be due to the decimal precision from 

the limited number of digits used in the 

calculations, confirming the validity of the 

small-signal dynamic models of a SEPIC 

converter represented by ( )vuT z  and 

1
( )vT z  respectively. 

1 2 1( ), ( ), ( )L L Ci t i t v t and 
2( )Cv t  can be 

visualized from Fig. 3 to Fig. 6 accordingly. 

 

Eigenvalue stability analysis : 

Poles of ( )vuT z , 
1
( )vT z , ( )vuG z and 

1
( )vG z  are at 0.9999151 0.012923i , 

0.99998 0.00519844i  which are all 

inside the unit circle in the z-plane as can be 

seen in Fig. 9. Zeros of )(zTvu
are at 

0.444449 , 0.999939 0.01049345i .  

By the way, those pairs of complex 

conjugate poles are located very close to the 

rim of the unit circle. As a result, the output 

response [ ]outv n  for the step input 

1, 1 [ ]ss

n u n   is sinusoidally decayed to a 

steady-state value with the rate of decay 

determined by the longest radial distances of 

complex conjugate poles from the origin. 

This system is still relatively stable and 

behaves as an underdamped system. 

 

4. Discussion and conclusion 

This paper presents the small-signal 

modeling of a SEPIC power stage operating 

in DCM using the sampled-data modeling 

technique, compensating for the pros and 

cons of the state-space averaging and the 

discrete modeling techniques. This study 

proposes to determine the periodic solution 

at the steady-state condition by the concept 

of Volt-Second and Capacitor-Charge 

balance from power electronics courses that 

are much easier. Four pulse transfer 

functions are derived from the model: the 

small-signal input-to-output voltage pulse 

transfer function, the small-signal duty 

duration-to-output voltage pulse transfer 

function, the input-to-output voltage pulse 

transfer function, and the duty duration-to-

output voltage pulse transfer function. The 

relative stability analysis is carried out by 

considering the pole locations or the 

locations of the eigenvalues relative to the 

unit circle in the z plane. Moreover, those 

poles characterize the response of the 

system, i.e., damping and oscillation of the 

response. The steady-state dynamic models 

are also derived in order that the output 

responses can be used to verify the model by 

comparing with the simulation response. 

The response sequences from the pulse 

transfer functions oscillate by the same 

phase and frequency as the one from the 

simulation with slight peak amplitude 
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differences that might be due to the decimal 

precision from the limited number of digits 

used in the calculations, confirming the 

validity of the acquired pulse transfer 

functions. The maximum achievable output 

voltage for a SEPIC in DCM is also 

mentioned in this study. The small-signal 

dynamic models from this study are 

versatile for the upcoming sampled-data 

control system or discrete-time control 

system design and implementation. 

 

 

Fig. 5. 
1( )Li t of a SEPIC in DCM when 5.0ref

outv v and 8.0sv v  

  

 

Fig. 6. 
2 ( )Li t of a SEPIC in DCM when 5.0ref

outv v and 8.0sv v  

1( )Li t

1 0.0031ss

Li A

 t s
 

2 ( )Li t

2 0.0058ss

Li A

 t s
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Fig. 7. 
1( )Cv t of a SEPIC in DCM when 5.0ref

outv v and 8.0sv v  

 

Fig. 8. 
2( ) ( )C outv t v t  from the simulation of a SEPIC in DCM and the step response  outv n  from 

( )vuG z  and 
1
( )vG z  for the input sequence [ ]sv u n and 1 [ ]ss u n  respectively when 

5.0ref

outv v and 8.0sv v  

 

 

1( )Cv t

1 8.0ss

Cv v

 t s
 

 2 ( )C outv t v t

2 5.0ss ref

C outv v v 

 t s

 outv n
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 t s

)(1 ti L

)(1 ti L
 ni L 1

 
 

Fig. 9. Enlarged version of )(1 tiL
 (Orange line) from the simulation of a SEPIC in DCM and the 

step response  niL1
 (violet line) from ( )vuG z  and 

1
( )vG z  for the input sequence [ ]sv u n and 

1 [ ]ss u n  respectively when 5.0ref

outv v and 8.0sv v  during the steady-state period. 

 

 t s

)(2 ti L

)(2 tiL

 niL 2

Fig. 10. Enlarged version of )(2 tiL  (Orange line) from the simulation of a SEPIC in DCM and 

the step response  niL2  (violet line) from ( )vuG z  and 
1
( )vG z  for the input sequence 

[ ]sv u n and 1 [ ]ss u n  respectively when 5.0ref

outv v and 8.0sv v  during the steady-state period. 
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 t s

)(1 tvC

)(1 tv C  nvC1

 

 

Fig. 11. Enlarged version of )(1 tvC  (Orange line) from the simulation of a SEPIC in DCM and 

the step response  nvC1  (violet line) from ( )vuG z  and 
1
( )vG z  for the input sequence 

[ ]sv u n and 
1 [ ]ss u n  respectively when 5.0ref

outv v and 8.0sv v  during the steady-state period 

  

Fig. 12. Enlarged version of 
2( ) ( )C outv t v t (Gray line) from the simulation of a SEPIC in DCM 

and the step response  outv n (red line) from ( )vuG z  and 
1
( )vG z  for the input sequence 

[ ]sv u n and 1 [ ]ss u n  respectively when 5.0ref

outv v and 8.0sv v  during the transient period 

 2 ( )C outv t v t

 t s

 outv n

 outv t
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Fig. 13. Enlarged version of 
2( ) ( )C outv t v t (Gray line) from the simulation of a SEPIC in DCM 

and the step response  outv n (red line) from ( )vuG z  and 
1
( )vG z  for the input sequence 

[ ]sv u n and 
1 [ ]ss u n  respectively when 5.0ref

outv v and 8.0sv v  during the steady-state period 

 

 
 
 

 2 ( )C outv t v t

 t s

 outv n

 outv t
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Fig. 14. Pole-zero locations of ( )vuT z . 

 
 

 Nomenclature 

( )d t  The switching function. 

nd  The duty ratio. 

sT  
The duration of the 

thn switching cycle. 

, ,( )i n i nd
 

Duty duration in the iS -state. 

1A  System matrix in the 1S -state 

. 

1B  Input matrix in the 1S -state. 

1C   Output matrix in the 1S -state. 

1D   Feedforward matrix in the 

1S -state. 

2A  System matrix in the 2S -

state. 

2B  Input matrix in the 2S -state.  

2C  Output matrix in the 2S -

state.  

2D  Feedforward matrix in the 

2S -state. 

3A  System matrix in the 3S -

state. 

3B  Input matrix in the 3S -state. 
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3C  Output matrix in the 3S -

state. 

3D  Feedforward matrix in the 

3S -state. 

1 2,L L  Inductors in a SEPIC circuit.  

1 2,C C  Capacitors in a SEPIC 

circuit. 

1 2( ), ( )L Li t i t  Currents flowing through 

1L and 2L respectively. 

1 2( ), ( )C Cv t v t  Voltages across 
1C and 

2C respectively. 

, , ref

s out outv v v  Input, output and desired 

reference output voltages 

respectively.  

( )n sx x nT
 

State vector at st nT . 

1 (( 1) )n sx x n T  
 
State vector at 

  

                                 
( 1) st n T  .

 

 1, ,ss ss

ss sx u T

 

Steady-state state vector. 

ssu  The fixed-point steady-state 

input vector. 

1

ss
 

The fixed-point steady-state 

duty duration in the 1S state. 

1 _

ss

CCM MIN  The minimum value of 

1

ss that lastly preserve the 

SEPIC in CCM. 

max_

ss

out DCMv  The maximum achievable 

output voltage for a SEPIC  

in DCM. 

( )vuT z  The small-signal input-to-

output pulse transfer 

function. 

1
( )vT z  

The small-signal duty 

duration-to-output pulse 

transfer function. 

finalK  The scaling factor. 

( )vuG z  The input-to-output pulse 

transfer function. 

1
( )vG z  

The duty duration-to-output 

pulse transfer function. 
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