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ABSTRACT 
  Due to the situation of increasingly severe PM-10 pollution that adverse affects on 

humans and environment across the globe, the purpose of this work is to implement the 

optimal PM-10 forecast model as a basis tool in process of planing/controlling air pollution 

and public awareness apply to Chiang Mai city and surrounding area, in Northern Thailand. 

Accurate and reliable forecasting model are our goal. Due to the fuzzy feature of PM-10 as 

well as the high correlated hotspot during open burning and forest fires season of this study 

area, the adaptive neuro-fuzzy inference system (ANFIS)-based forecasting model has been 

statistically implemented as tool for daily mean PM-10 concentration estimation. For 

achieving more efficient and realistic model, the hotspot count among other meteorological 

parameters is utilized as the exogenous variable through the design and optimization. The 

forecasting performance evaluated in terms of the tradeoff between accuracy with regard to 

RMSE and MAE, computational complexity with respect to the multiplications per an 

execution, and reliablity through Akaike criterion information (AIC) is used to assess the 

forecast models. As forecasting results, the proposed ANFIS model with an integrated 

hotspots outperforms the other existing models. 
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1. Introduction  
Chiang Mai (CM), the largest city in 

northern Thailand having around 1.7 million 

people (2017), large agriculture and forest 

coverage, experienced increasingly severe 

ambient air pollution related to the 

particulate matter with a diameter of 10 

micrometers or less  (PM-10) for a decade. 

Especially during the high open burning and 

forest fires season in the period January to 

April, PM-10 level is frequently exceed the 

ambient air quality standard (AQI) of 120 

µg/m3. PM-10’s sources mainly go beyond 

local forest fires and biomass burning, and 

further extend beyond Thailand’s border. 

PM-10 is critical severity for the health of 

people in this city that literally 60,000 of 

people were admitted to hospital with 

various respiratory illnesses (Disease 

prevention control of CM, 2016).  

Since, the PM-10 concentration 

nonlinearly varies with various factors and 

depends on locations. Unfortunately, the 

monitoring devices and permanent stations 

are insufficient due to the high cost 

(200,000 USD for construction and 30,000 

USD per year for maintenance [1]), for 

example, in the area 20,000 km2 of CM only 

two stations providing. In addition, they 

could not provide the relation between PM-

10 concentration and other related factors. 

Furthermore, PM-10 is usually measured 

and officially announced in the daily 

morning to warn the people but this 

information may not be thoroughly 

accessible and cannot prevent people’s 

health in advance. Accordingly, to 

overcome the stated problems, the PM-10 

forecast model should be implemented 

similar to the weather forecast as a tool for 

minimizing health risk to the public through 

online with  mobile applications, and others.  

In survey research on PM-10 forecast 

model for CM and surrounding area, most 

of the existing models preferably used the 

conventional regression techniques, e.g., 

simple linear regression [1-2], multi-linear 

regression [1], logarithm regression [3] and 

logistic regression [3], due to simplicity and 

ease of formulation. However, they are not 

able to capture the PM-10 characteristics at 

high season that are highly affected by 

various factors. Autoregressive integrated 

moving average (ARIMA) model-based 

PM-10 forecast was presented in [4-7] using 

some significant time lags of historical PM-

10 data as the input. It also performed worst 

at high season PM-10. Then, ARIMA with 

exogenous variables or ARIMAX model-

based PM-10 forecast [6] is developed using 

the other correlated toxic gases and related 

meteorological parameters as the input 

variables but needs more accurate 

forecasting improvement. Shortly, various 

neural network (NN) models as a nonlinear 

model, i.e., multilayer perceptron NN 

(MLPNN) [4-5, 8] and radial basis function 

NN (RBFNN) [8], have been proposed 

which provide reasonably accurate forecast. 

However, a number of training data, and an 

over-fitting are the main drawbacks. To 

improve this model, the hybrid ARIMA-

support vector regression (SVR) [7] and the 

hybrid ARIMA-NN [4-5] were alternatively 

formulated. Since the main pattern of the 

PM-10 problem is nonlinear then the 

nonlinear transformation using NN should 

be implemented on the first stage, and the 

linear residuals are continued to process 

linearly by the other linear models. Then, 

the hybrid NN-ARIMA models [5, 9] and 

the hybrid NN-ARIMAX models [6, 9] are 

proposed. They outperformed among the 

rest with regard to the forecasting accuracy. 

However, a number of system parameters 

causing computational complexity, design 

cost and unreliability are disadvantage. 

The purpose of this work is to 

implement the optimal PM-10 forecast 

model apply to CM city based on adaptive 
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neurofuzzy inference system (ANFIS) by 

including the number of hotspots as the 

exogenous variable since it is demonstrated 

the great impacts of the burning in this area 

[10]. ANFIS, as the powerful learning of the 

internal fuzzy rules by NN, is optimized 

through the experimental design. The 

performance comparison between the 

proposed model and the existing models as 

referred to [4-6, 8-9] are evaluated by the 

tradeoff between model accuracy using the 

criteria of mean absolute error (MAE) and 

root mean squared error (RMSE), 

computational complexity with regard to the 

number of multiplications and reliability 

through Akaike information criterion (AIC). 

 

2. Methodology 
2.1 Study Area 

CM is located in Chiang Mai-

Lamphun basin, where smoke from itself 

and neighboring Myanmar and Lao is prone 

to settle (Fig. 1). The hotspots, detected four 

times daily from the Terra- and Aqua-

MODIS satellites, are evident and shown in 

Fig. 2 against PM-10 with well correlation. 

Therefore, the basic assumption of this work 

is that using the number of hotspots as the 

exogenous variable can improve the 

forecasting performance. 

 

 

Fig. 1. Study area and a number of hotspots 

(blue dotted) detected daily from Terra and Aqua 

MODIS satellites. 

 

Fig. 2. The relationship between hotspots (red line) and PM-10 (black line) during Jan-Apr, 2012-2017 

of (a) Chiang Mai, (b) Chiang Rai, (c) Lampang and (d) Mae Hong Son, Thailand. 
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2.2 Data Collection and Analysis 

In this work, special emphasis 

focused on PM-10 forecast during a high 

open burning season which the variations of 

PM-10 are high and depends on various 

factors. In the study of [11], the 

meteorology has a strong impact on PM-10 

accumulation in CM. For a past few years, it 

is evident from the studies of [12-13] that 

open burning increases the PM-10 level in 

this area, then the correlated hotspots 

associated with meteorological variables are 

introduced as exogenous variables in our 

proposed forecast model. The positive 

relationship between the hotspots and PM-

10 can be seen in Fig. 2.  

The data including the historical PM-

10, influenced meteorological variables, i.e., 

gust wind (GW), temperature (T), pressure 

(P) and relative humidity (RH), and hotspot 

count (Hotspot) within a circle of 150 km 

radius around the CM city, collected from 

Thai government PCD and MODIS during 

2012-2017 is employed to formulate the 

forecast model. The descriptive statistics of 

these variables are presented in Table 1. The 

entire data is pre-processed and cleared 

form missing and outlier values to transform 

into daily average values. It is seen that 

most of the variables have a wide range of 

the relative change (ratio of variance 

compared to range) from 0.43 of T to 342 of 

Hotspot. The model based on one rule 

describing the dynamic change of the inputs 

probably would not be sufficient to provide 

the best performance. To verify the 

statement above, the ANFIS based forecast 

model is implemented to compare its 

performance with the other existing models 

as will be shown later in the next Section. 

Table 1. The descriptive statistics of 600 testing data of PM-10 and exogenous variables. 

Parameter Symbol Unit Range Min. Max. Mean Variance 
Relative 

change 

PM-10 PM µg/m3 260.1 29.9 290 42.65 1065 4.09 

Wind gust GW km/hr 54.7 0 54.7 21.0 44.8 0.81 

Temperature T Celsius 19.8 19.4 39.2 26.7 8.5 0.43 

Pressure P hPa 18.4 964.4 982.8 973.5 11.8 0.64 

Relative humidity RH - 68 24 92 64.9 136.6 2.0 

Hotspots Hotspot point 22,836 0 22,836 1,248 7.8106 342 

 

The coefficients of the correlation 

between the 6-time lag of historical PM-10 

(PMt,…,PMt-5), the meteorological variables 

and Hotspot, and 5-day PM-10 forecast 

(PMt+1, …, PMt+5) are determined. It is seen 

from Fig. 3 that the Hotspot is positively 

well-correlated with the forecast PM-10 as 

well as the other variables. Then, it is 

considered as one of the tentative exogenous 

variables for the forecasting model, whereas 

Tmin, Rain, WD and GW mean not 

consideration. To achieve the optimal PM-

10 forecast model, the input variable set 

should contain the fewest significant input 

variables to describe the PM-10 behavior. 

The forward selection (FS) method [14] is 

applied to identify an optimal set of input 

variables. By this approach, the variable 

with most significant determining from 

correlated coefficient is initially analyzed in 

the beginning through the pilot models, and 

continued adding other variables to the 

model as long as its P-value is below some 

pre-set level. After input selection, the PM-

10 forecast model is further optimized. 

 

 
Fig. 3. Correlation of 5-day PM-10 forecast with 

the tentative input variables. 
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The model implementations were 

developed through the MATLAB program 

and all simulations were run on 2.27 GHz 

Intel Pentium Core i5 processor with 6 GB 

of RAM laptop computer. The description 

of the proposed forecasting models is 

detailed in the next Sub-Section. 

 

2.3 ANFIS based Forecast Model 

Generally, an ANFIS is a fuzzy 

inference system (FIS) implemented in the 

framework of adaptive NN. It typically 

consists of 5 layers in which nodes of the 

same layer have similar membership 

function (MF). The ANFIS model illustrated 

in Fig. 4 using (P+1)-significant lag of 

historical PM-10 data and exogenous 

variable vector (X) including meteorological 

variables and hotspot counts as the input 

variables. The single output is i-day PM-10 

forecast, PMt+i.  

The stepwise procedures of ANFIS 

are as follows, 

 Layer 1: The significant input variables 

obtained from FS method are normalized 

into the range [-1, 1]. The number of 

these variables is denoted by NVar. 

 Layer 2: Adaptive node consisting of the 

Gaussian MFs (GMF) computes the 

degree of MF, ( ), , ...,
( ),PM t y PM t P y

 
 , 

and 
yX, according to the number of MFs 

as NPM(t),…,NPM(t-P), and NX, respectively, 

where y is the linguistic variable set. 

 Layer 3: The number of constructed if-

then rules (Nrule) equals to NPM(t)… 

NPM(t-P)NX. For the case of first-order 

Sugeno, the fuzzy rule is shown in the 

example below: 

Rule ith: IF PMt is NB and … and PMt-P is 

NB and X is NB, THEN

 
T

1 1 0...i t P t Pp PM p PM p      Xp X , 

where p0,…,pP+1, and pX are consequent 

parameters of fuzzy rule. 

 Layer 4: For the rule premise evaluation, 

the product for T-norm is applied 

resulting the weight values as, 

    ( ), ( ),...j PM t y PM t P yw       X,y , (2.1) 

where j= 1, 2, …, Nrule. The consequence 

rule evaluations correspond to their 

weight values are posed to next layer for 

the implications evaluating. 

 Layer 5: The output is calculated using 

the weight average (WA), 

  1 1
( ) /

rule ruleN

j jj j

N

jPM t i w w
 

   . (2.2) 

The outputs of adaptive nodes depend 

on the adjusted parameters iteratively varied 

through a hybrid learning rule combining 

the back-propagation (BP) based gradient 

descent algorithm and a least-squares 

method to minimize the objective function,  

 , ,

1 1

( )
n N

n k approx actual

i t i j t i j

k j

J PM PM 

 

 

  c,σ,p ,             

                      (2.3) 

where N and n is the number of samples and 

maximum iterations, respectively,  c, , p 

are the column vector of the premise 

parameters (c and ), and the consequent 

parameters matrix (p0, p1,…, pP+1 and pX), 

respectively.  

Remark 1: The proposed ANFIS 

([NPM(t),…, NPM(t-P), NX], Nrule, 1) model 

generates (NPM(t)+…+NPM(t-P)+NX)2+(p0 +p1 

+…+pP+1+ pX)Nrule parameters. 

 
Fig. 4. ANFIS-based PM-10 forecast model. 
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Remark 2: To further determine 

computational complexity of the proposed 

ANFIS, the computing of the degree of 

GMF, exp[-(x-c)2/22],  represented by 3-

term Taylor series at x=u, i.e., ex–u =1+(x–

u)+(x–u)2/2+(x3), where |x–u|<1, on the 

second layer, the computing of fire strength 

(w) on the fourth layer and the computing of 

WA (2.2) on the fifth layer provide (3+2) 

(NPM(t)+…+NPM(t-P)+NX), NruleNVar, and 

(2Nrule+1), respectively. Therefore, the 

ANFIS model generates total (NPM(t)+…+ 

NPM(t-P) + NX)5 + (NruleNVar) + (2Nrule +1) 

multiplications. For the optimization of the 

ANFIS([NPM(t),…, NPM(t-P), NX], Nrule, 1 ), the 

parameters of NPM(t),…,NPM(t-P), NX, and Nrule 

are selected through the experiment.  

 

2.4 Design of PM-10 forecast model 

In this work, the different ANFIS 

models of i-day forecast are constructed and 

optimized through the experimental design. 

The collected data during January-April of 

2011-2017 (600 samples) is divided into 3 

parts, i.e., training, validating, and testing 

for 2011-2014, 2012-2015, and 2016-2017, 

respectively. The input variables including 

the historical PM-10 for 5-lags (P=4), PMt, 

… ,PMt-4, the meteorological variables 

(Pmax, Pmin, Tmax, Hmax, Hmin, RH), and the 

hotspot are selected through the FS method. 

A large number of system parameters 

and multiplications requiring for ANFIS 

model resulting from a number of MFs and 

fuzzy rules can lead to very slow 

convergence or terminated program. To 

optimize the ANFIS, the initial number of 

MFs is set as 5 for each input variables then 

y{NB,  NS, Z, PS,  PB},where NB is 

negative big, NS is negative small, Z is zero, 

PS is positive small and PB is positive big. 

The pilot models are ANFIS_i ([5, 5,…,5], 

Nrule, 1), i=1,2,…, 5. The experimental result 

of input selection using FS method is shown 

in Fig. 5. It is seen that two significant 

variables, PMt and Hotspot, are selected for 

(1-3)-day forecast and one significant 

variable of PMt for (4-5)-day forecast. 

 

Fig. 5. Input variable selection by FS method. 

 

Fig. 6. The optimal ANFIS_i based PM-10 

forecast model. 

 

After reducing the number of MFs by 

one until the error is not improved, the 

optimal structure of i-day forecast models 

denoted by ANFIS_i([NPM(t) ,…,NPM(t-5), NX], 

Nrule, 1) is illustrated in Fig. 6. 

 

3. Forecasting results and discussion 
The (1-5)-day PM-10 forecast results 

using the proposed ANFIS through the 

testing and validating data are shown in Fig. 

7(a)-(b). The accuracy is satisfied only 1-

day forecast, whereas the performance is 

gradually deteriorates for the others since 

the instant PM-10 is naturally affected by 

the current uncertain meteorology variation, 

unexpected source volume, and others. 

Then, for 1-day forecast, the forecasting 

performance of the proposed ANFIS_1([2, 

1],2,1) model, single models (Model 1-4) 

[4,6,8] and hybrid models (Model 5-10) 

[5,9] are assessed under various criteria, i.e., 

MAE, RMSE, the number of system 

parameters (NK), the number of 

multiplication per an execution (NM). It is 
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seen from Table 2 that the proposed ANFIS 

model performs the best in accuracy. It is 

able to provide 17-75% more accurate 

forecast when compared to other existing 

ten models. To measure the reliability of the 

models, AIC [15] is applied as a criterion 

that seeks a model which has a good fit but 

few parameters. It is defined as, 
 

2

log 2
ii

test K

test

e
AIC N N

N

 
  

 
 

 ,                (2.4) 

where ei is the residuals from forecast, Ntest 

is the number of test data. The preferred 

model is the one with the minimum AIC. 

From Table 2, the proposed model is the 

most reliable. Therefore, the proposed 

ANFIS with Hotspot model is indicated as 

the optimal PM-10 forecasting model 

tradeoff by several criteria. However, a 

number of multiplications are the drawback 

for implementing software. 

Table 2. The comparison of forecasting performance between the proposed model and 

existing models [4-6, 8-9]. 
Model Reference RMSE MAE Nk AIC NM 

1) ARIMA(4,1,3) [4] 24.7 16.6 7 96.9 7 

2) ARIMA(4,1,3)X(1) [6] 23.1 15.7 8 91.8 8 

3) MLPNN(1,1,1) [4, 8] 25.4 16.0 4  93.6 5 

4) RBFNN(1,2,1) [4, 8] 25.7 16.0 7 100.8 10 

5) hARIMA(4,1,3)-  

     MLPNN(3,1,1) 
[5] 25.5 15.3 13 112.2 14 

6) hARIMA(4,1,3)-  

    RBFNN(3,2,1) 
[5] 28.2 17.9 18 132.7 21 

7) hARIMA(4,1,3)X(1)- 

    MLPNN(2,1,1) 
[9] 24.6 16.0 13  108.6 13 

8) hARIMA(4,1,3)X(1)- 

     RBFNN(4,2,1) 
[9] 26.4 15.0 21 131.7 23 

9) hMLPNN(1,1,1)- 

    ARIMA(1,1,0) 
[5, 8] 12.2 8.9 5 19.8 5 

10) hMLPNN((X[7],3),1,1)- 

      ARIMAX(1,1,0) 
[6, 9] 13.8 9.3 14 50.1 18 

Proposed ANFIS([2,1],2,1) with Hotspot  7.3 5.8 
12  

(c=3, =3, p=23=6) 
15.3 

24 

(15+4+5) 

 
        (a)                                                                    (b) 

Fig. 7. The results of 5-day PM-10 forecast from the proposed ANFIS model with hotspot counts data 

for (a) test data and (b) validate data. 
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To verify the impact of the hotspot 

counts on the PM-10 (Fig. 2) for the other 

area nearby CM, e.g., Chiang Rai (CR), 

Lampang (LP) and Mae Hong Son (MHS), 

the hotspot counts, including other 

exogenous variables has been utilized to 

formulate the ANFIS forecast model 

through the experimental design similar to 

CM. CR is the northernmost province and 

border on Myanmar and Laos which has 

very high levels of PM-10. For LP, the 

province that is affected by the air pollution 

from another sources, especially coal-fired 

electrical power station in Mae Moh district. 

For MHS, one of the most beautiful and 

popular tourism destinations of Thailand, it 

is most severely affected by PM-10 

pollution. It has reached PM-10 level as 

high as 431 µg/m3 in 2013. 

 
Fig. 8. The PM-10 forecasting results of the 

proposed ANFIS model with hotspot counts for 

Chiang Rai, Lampang, and Mae Hong Son. 

The ANFIS_1([2,2,1],4,1) model with 

input variable set of {PMt, Hotspot, Hmax}, 

ANFIS_1([2,2,1],4,1) model with the input 

variable set of {PMt, Hotspot, Tmax}, and 

ANFIS([2,2,1],4,1) model with the input 

variable set of {PMt, Hotspot, Pmin} are 

formulated for CR, LP, and MHS, 

respectively. The forecasting results through 

the validating data of these formulated 

ANFIS models for CR, LP and MHS shown 

in Fig. 8 are quite good. The RMSE and 

MAE of CR are 28.71 and 21.19, of LP are 

17.21 and 13.39, and of MHS are 10.23 and 

7.8. It is seen that CR obtained the highest 

forecast error among others, since its PM-10 

level greatly varies and is higher than that of 

the others. 

 

4. Conclusion 
In this work, CM city of Northern 

Thailand where is located in the high open 

burning area with critically harmful PM-10 

level is selected as a case study for 

developing PM-10 forecast model. The 

optimized ANFIS-based PM-10 forecast 

model is implemented by utilizing the 

hotspot counts associated with the 

meteorological variables and historical PM-

10 with significant time lag as the 

exogenous variables. Due to the fuzzy 

feature of the PM-10 and the high correlated 

hotspot during high open burning season of 

the study area, the proposed ANFIS model 

with an integrated Hotspot variable 

outperforms the other existing single and 

hybrid models without using the hotspot. As 

forecasting results, providing high accuracy 

with regard to RMSE and MAE, and 

achieving high reliability through the AIC 

support the above statement. Furthermore, 

the forecast results obtained from the 

ANFIS model with hotspot counts for the 

nearby cities are verified its performance. 

To further develop and improve the 

performance of PM-10 forecast model, the 

regional online coupled meteorology-

atmospheric chemistry or Weather Research 

and Forecasting with Chemistry (WRF-
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Chem) [16-17] is alternatively interesting 

choice since it was successful in effective 

and reliable forecasting PM-10 in many 

areas [18-20]. 

 

Abbreviation and symbol 
The full meaning of abbreviations and 

meaning of symbols used in this study are 

given in Table 3 and Table 4, respectively. 

 

Table 3. List of abbreviations 
Abbreviation Full meaning 

PM-10 
Particulate matter with a diameter of 

10 micrometers or less   

AQI The ambient air quality standard  

ARIMA 
Autoregressive integrated moving 

average  

ARIMAX ARIMA with exogenous variable 

NN Neural network 

MLPNN Multilayer perceptron neural NN 

RBFNN Radial basis function NN 

FS Forward selection method 

ANFIS 
Adaptive neurofuzzy inference 

system 

FIS Fuzzy inference system 

MF Membership function 

GMF Gaussian MF 

WA Weight average 

BP Back propagation  

MAE Mean absolute error 

RMSE Root mean squared error 

AIC Akaike information criterion 

CM Chiang Mai province 

LP Lampang province 

MHS Mae Hong Son province 

 

Table 4. List of symbols 
Symbol Meaning 

GW Gust wind 

T Temperature 

P Pressure 

WD Wind direction 

RH Relative humidity  

X Exogenous variable 

 Degree of MF 

Y Linguistic variable 

Nrule The number of constructed if-then rules  

p Consequent parameter 

c Centre of GMF 

 Width of GMF 

NK The number of system parameters  

NM The number of multiplications 

e Residual forecast 

Ntest The number of test data 

 

Acknowledgements 
The author directly acknowledges the 

research fund support from the Research 

Institute of North-Chiang Mai University.  

 

References 
 [1] Kanabkaew T. Prediction of hourly 

particulate matter concentrations in 

Chiangmai, Thailand using MODIS 

aerosol optical depth and ground-based 

meteorological data. Environmental 

Asia 2013;6(2):65-70. 

[2] Trang, NH, Tripathi NK. Spatial 

correlation analysis between particulate 

matter 10 (PM10) hazard and 

respiratory disease in Chiang Mai 

province, Thailand. The Int Archives of 

the Photogrammetry, Remote Sensing 

and Spatial Information Sciences 

2014;XL-8:185-91. 

[3] Pimpunchat B, Sirimangkhala K, 

Junyapoon S. Modeling haze problems 

in the North of Thailand using logistic 

regression. J of Mathematical and 

Fundamental Sciences 2014; 46(2):183-

93. 

[4] Wongsathan R, Seedadan I. A Hybrid 

ARIMA and Neural Networks Model 

for PM-10 Pollution Estimation: The 

Case of Chiang Mai City Moat Area. 

Procedia Comp Sci J 2016;86:273-6.  

[5] Wongsathan R, Seedadan I, Wanasri S. 

Hybrid forecast model for PM-10 

prediction: A case study of Chiang Mai 

city of Thailand during high season. 

KKU Eng J 2016;43(S2):203-6.  

[6] Wongsathan R, Chankham S. 

Improvement on PM-10 forecast by 

using ARIMAX and neural networks 

model for the summer season in Chiang 

Mai. Procedia Comp Sci J 2016; 

86:277-80.  

[7] Chuentawat R, Kerdprasop N, 

Kerdprasop K. The forecast of PM10 

Pollutant by using a hybrid model. Int J 

of Future Computer and Commun 

2017;6(3):128-32.  

 [8] Wongsathan R, Seedadan I. Prediction 

modeling of PM-10 in Chiangmai city 



R. Wongsathan | Science & Technology Asia | Vol. 23 No.3 July - September 2018 

70 

moat by using artificial networks. J of 

Applied Mech and Mat 2015;781:628-

31. 

[9] Wongsathan R. The Hybrid Neural 

Networks-ARIMA/X Models and 

ANFIS Model for PM-10 Forecasting: 

A Case Study of Chiang Mai, 

Thailand’s High Season. Engng J CMU 

2018;25(1):203-13. 

[10] Yadav IC, Devi  NL, Li J, Syed, JH, 

Zhang G, Watanabe H. Biomass 

burning in Indo-China peninsula and its 

impacts on regional air quality and 

global climate change-a review. 

Environmental Pollution 2017; 

227:414-27. 

[11] Amnuaylojaroen T, Kreasuwun J. 

Investigation of Fine and Coarse 

Particulate Matter from Burning Areas 

in Chiang Mai, Thailand using the 

WRF/CALPUFF Investigation of Fine 

and Coarse Particulate Matter. Chiang 

Mai Journal of Science 2011; 

39(2):311–26. 

[12] Sirimongkonlertkun N. Effect form 

open burning at greater Mekong sub-

region nations to the PM10 

concentration in northern Thailand: A 

case study of backward trajectoies in 

March 2012 at Chiang Rai province. In 

Proc 1st Mae Fah Luang University 

International Conf 2012:1-13. 

[13] Mitmark B, Jinsart W. A GIS for PM10 

exposure form biomass burning in the 

north of Thailand. App Envi Res 2017; 

39(2):77-87. 

[14] Blanchet FG, Legendre P, Borcard D. 

Forward selection of explanatory 

variables. Ecology 2008;89(9):2623-32. 

[15] Burnham KP, Anderson DR. Model 

Selection and Multimodel Inference. 

New York: Springer-Verlag; 2002. 

[16] Grell GA, Peckham SE, Schmitz R, 

McKeen SA, Frost G, Skamarock WC, 

Eder B. Fully coupled “online” 

chemistry withing the WRF model. 

Atmos Environ 2005;39:6957-75. 

[17] Fast JD, Gustafson JR, Richard CE, 

Zaveri RA, Barnard JC, Chapman EG, 

Grell GA, Peckham SE. Evolution of 

ozone, particulates, and aerosol direct 

radiative forcing in the vicinity of 

Houston using a fully coupled 

meteorology-chemistry-aerosol model. 

J Geophys Res 2006;111:1-29. 

[18] Malgorzata W, Maciej K, Hanna O, 

Skjoth CA, Walaszek K, Dore AJ. 

Application of WRF-Chem to 

forecasting PM10 concentration over 

Poland. Int J Environment and 

Pollution 2015;54(4):280-92. 

[19] Anikender K, Rodirgo J, Luis CB, 

Nestor YR. Application of WRF-Chem 

model to simulate PM10 concentration 

over Bogota. Aeosol and Air Quality 

Research 2016;16:1206-21. 

[20] Maryam AO, Gabriele P, Frank F, 

Negin S, Pablo S, Alan F, Dirk R, 

Petter W, James W, Gregory C. Impacts 

of physical parametrization on 

prediction of ethane concentrations for 

oil and gas emissions. Atmospheric 

Chemistry Physics 2018;384:1-35. 

 


