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ABSTRACT

Due to the situation of increasingly severe PM-10 pollution that adverse affects on
humans and environment across the globe, the purpose of this work is to implement the
optimal PM-10 forecast model as a basis tool in process of planing/controlling air pollution
and public awareness apply to Chiang Mai city and surrounding area, in Northern Thailand.
Accurate and reliable forecasting model are our goal. Due to the fuzzy feature of PM-10 as
well as the high correlated hotspot during open burning and forest fires season of this study
area, the adaptive neuro-fuzzy inference system (ANFIS)-based forecasting model has been
statistically implemented as tool for daily mean PM-10 concentration estimation. For
achieving more efficient and realistic model, the hotspot count among other meteorological
parameters is utilized as the exogenous variable through the design and optimization. The
forecasting performance evaluated in terms of the tradeoff between accuracy with regard to
RMSE and MAE, computational complexity with respect to the multiplications per an
execution, and reliablity through Akaike criterion information (AIC) is used to assess the
forecast models. As forecasting results, the proposed ANFIS model with an integrated
hotspots outperforms the other existing models.
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1. Introduction

Chiang Mai (CM), the largest city in
northern Thailand having around 1.7 million
people (2017), large agriculture and forest
coverage, experienced increasingly severe
ambient air pollution related to the
particulate matter with a diameter of 10
micrometers or less (PM-10) for a decade.
Especially during the high open burning and
forest fires season in the period January to
April, PM-10 level is frequently exceed the
ambient air quality standard (AQI) of 120
ng/ms. PM-10’s sources mainly go beyond
local forest fires and biomass burning, and
further extend beyond Thailand’s border.
PM-10 is critical severity for the health of
people in this city that literally 60,000 of
people were admitted to hospital with
various respiratory illnesses (Disease
prevention control of CM, 2016).

Since, the PM-10 concentration
nonlinearly varies with various factors and
depends on locations. Unfortunately, the
monitoring devices and permanent stations
are insufficient due to the high cost
(200,000 USD for construction and 30,000
USD per year for maintenance [1]), for
example, in the area 20,000 km? of CM only
two stations providing. In addition, they
could not provide the relation between PM-
10 concentration and other related factors.
Furthermore, PM-10 is usually measured
and officially announced in the daily
morning to warn the people but this

information may not be thoroughly
accessible and cannot prevent people’s
health in advance. Accordingly, to

overcome the stated problems, the PM-10
forecast model should be implemented
similar to the weather forecast as a tool for
minimizing health risk to the public through
online with mobile applications, and others.
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In survey research on PM-10 forecast
model for CM and surrounding area, most
of the existing models preferably used the
conventional regression techniques, e.g.,
simple linear regression [1-2], multi-linear
regression [1], logarithm regression [3] and
logistic regression [3], due to simplicity and
ease of formulation. However, they are not
able to capture the PM-10 characteristics at
high season that are highly affected by
various factors. Autoregressive integrated
moving average (ARIMA) model-based
PM-10 forecast was presented in [4-7] using
some significant time lags of historical PM-
10 data as the input. It also performed worst
at high season PM-10. Then, ARIMA with
exogenous variables or ARIMAX model-
based PM-10 forecast [6] is developed using
the other correlated toxic gases and related
meteorological parameters as the input
variables but needs more accurate
forecasting improvement. Shortly, various
neural network (NN) models as a nonlinear
model, i.e., multilayer perceptron NN
(MLPNN) [4-5, 8] and radial basis function
NN (RBFNN) [8], have been proposed
which provide reasonably accurate forecast.
However, a number of training data, and an
over-fitting are the main drawbacks. To
improve this model, the hybrid ARIMA-
support vector regression (SVR) [7] and the
hybrid ARIMA-NN [4-5] were alternatively
formulated. Since the main pattern of the
PM-10 problem is nonlinear then the
nonlinear transformation using NN should
be implemented on the first stage, and the
linear residuals are continued to process
linearly by the other linear models. Then,
the hybrid NN-ARIMA models [5, 9] and
the hybrid NN-ARIMAX models [6, 9] are
proposed. They outperformed among the
rest with regard to the forecasting accuracy.
However, a number of system parameters
causing computational complexity, design
cost and unreliability are disadvantage.

The purpose of this work is to
implement the optimal PM-10 forecast
model apply to CM city based on adaptive
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neurofuzzy inference system (ANFIS) by
including the number of hotspots as the
exogenous variable since it is demonstrated
the great impacts of the burning in this area
[10]. ANFIS, as the powerful learning of the
internal fuzzy rules by NN, is optimized
through the experimental design. The
performance comparison between the
proposed model and the existing models as
referred to [4-6, 8-9] are evaluated by the
tradeoff between model accuracy using the
criteria of mean absolute error (MAE) and
root mean squared error (RMSE),
computational complexity with regard to the
number of multiplications and reliability
through Akaike information criterion (AIC).

2. Methodology

2.1 Study Area

CM is located in Chiang Mai-
Lamphun basin, where smoke from itself
and neighboring Myanmar and Lao is prone
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to settle (Fig. 1). The hotspots, detected four
times daily from the Terra- and Aqua-
MODIS satellites, are evident and shown in
Fig. 2 against PM-10 with well correlation.
Therefore, the basic assumption of this work
is that using the number of hotspots as the
exogenous variable can improve the
forecasting performance.
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Fig. 1. Study area and a number of hotspots
(blue dotted) detected daily from Terra and Aqua
MODIS satellites.
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Fig. 2. The relationship between hotspots (red line) and PM-10 (black line) during Jan-Apr, 2012-2017
of (@) Chiang Mai, (b) Chiang Rai, (c) Lampang and (d) Mae Hong Son, Thailand.
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2.2 Data Collection and Analysis

In this work, special emphasis
focused on PM-10 forecast during a high
open burning season which the variations of
PM-10 are high and depends on various
factors. In the study of [11], the
meteorology has a strong impact on PM-10
accumulation in CM. For a past few years, it
is evident from the studies of [12-13] that
open burning increases the PM-10 level in
this area, then the correlated hotspots
associated with meteorological variables are
introduced as exogenous variables in our
proposed forecast model. The positive
relationship between the hotspots and PM-
10 can be seen in Fig. 2.

The data including the historical PM-
10, influenced meteorological variables, i.e.,
gust wind (GW), temperature (T), pressure
(P) and relative humidity (RH), and hotspot

count (Hotspot) within a circle of 150 km
radius around the CM city, collected from
Thai government PCD and MODIS during
2012-2017 is employed to formulate the
forecast model. The descriptive statistics of
these variables are presented in Table 1. The
entire data is pre-processed and cleared
form missing and outlier values to transform
into daily average values. It is seen that
most of the variables have a wide range of
the relative change (ratio of variance
compared to range) from 0.43 of T to 342 of
Hotspot. The model based on one rule
describing the dynamic change of the inputs
probably would not be sufficient to provide
the best performance. To verify the
statement above, the ANFIS based forecast
model is implemented to compare its
performance with the other existing models
as will be shown later in the next Section.

Table 1. The descriptive statistics of 600 testing data of PM-10 and exogenous variables.

Parameter Symbol  Unit Range Min. Max. Mean Variance iﬁ?glgvee
PM-10 PM pug/m®* 2601 29.9 290  42.65 1065 4.09
Wind gust GW km/hr 54.7 0 54.7 21.0 44.8 0.81
Temperature T Celsius  19.8 194  39.2 26.7 8.5 0.43
Pressure P hPa 184 9644 9828 9735 11.8 0.64
Relative humidity RH - 68 24 92 64.9 136.6 2.0
Hotspots Hotspot  point 22,836 0 22,836 1,248 7.8x10° 342

The coefficients of the correlation
between the 6-time lag of historical PM-10
(PMy,...,PM¢s), the meteorological variables
and Hotspot, and 5-day PM-10 forecast
(PMt+1, ..., PMus) are determined. It is seen
from Fig. 3 that the Hotspot is positively
well-correlated with the forecast PM-10 as
well as the other variables. Then, it is
considered as one of the tentative exogenous
variables for the forecasting model, whereas
Tmin, Rain, WD and GW mean not
consideration. To achieve the optimal PM-
10 forecast model, the input variable set
should contain the fewest significant input
variables to describe the PM-10 behavior.
The forward selection (FS) method [14] is
applied to identify an optimal set of input
variables. By this approach, the variable
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with most significant determining from
correlated coefficient is initially analyzed in
the beginning through the pilot models, and
continued adding other variables to the
model as long as its P-value is below some
pre-set level. After input selection, the PM-
10 forecast model is further optimized.

T —puE)
= PM(t+2)

PM(t+3)
— PM(t+4)
=¥=PM(t+5)

|corre.coeff.|

orecast with

Fig. 3. Correlation of 5-day PM-10
the tentative input variables.
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The model implementations were
developed through the MATLAB program
and all simulations were run on 2.27 GHz
Intel Pentium Core i5 processor with 6 GB
of RAM laptop computer. The description
of the proposed forecasting models is
detailed in the next Sub-Section.

2.3 ANFIS based Forecast Model

Generally, an ANFIS is a fuzzy
inference system (FIS) implemented in the
framework of adaptive NN. It typically
consists of 5 layers in which nodes of the
same layer have similar membership
function (MF). The ANFIS model illustrated
in Fig. 4 using (P+1)-significant lag of
historical PM-10 data and exogenous
variable vector (X) including meteorological
variables and hotspot counts as the input
variables. The single output is i-day PM-10
forecast, PMwi.

The stepwise procedures of ANFIS
are as follows,

1 Layer 1: The significant input variables
obtained from FS method are normalized
into the range [-1, 1]. The number of
these variables is denoted by Nvyar.

1 Layer 2: Adaptive node consisting of the
Gaussian MFs (GMF) computes the

degree of MF, wpp 1),y H#ppm (t-P),y"
and u, , according to the number of MFs

as Npm),- . .,Neme-p), and Nx, respectively,
where y is the linguistic variable set.
[1 Layer 3: The number of constructed if-
then rules (Nre) equals to Nemgpx...x
NemiryxNx. For the case of first-order
Sugeno, the fuzzy rule is shown in the
example below:
Rule i IF PMtis NB and ... and PMpis
NB and X is NB, THEN
6 =P, PM, +...+ pp ,PM,_ +p X+,
where po,...,pp+1, and px are consequent
parameters of fuzzy rule.
Layer 4: For the rule premise evaluation,
the product for T-norm is applied
resulting the weight values as,
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Wj = Upp .y XX Upm (t-P),y ><;leyy ' (21)

where j=1, 2, ..., Nrue. The consequence
rule evaluations correspond to their
weight values are posed to next layer for
the implications evaluating.

Layer 5: The output is calculated using
the weight average (WA),

PM (t+i)=z'j“;fwjej /Zj“jwj (2.2)

The outputs of adaptive nodes depend
on the adjusted parameters iteratively varied
through a hybrid learning rule combining
the back-propagation (BP) based gradient
descent algorithm and a least-squares
method to minimize the objective function,

3(Gop) =Y 5"y (PMe ),
k=1 i

(2.3)
where N and n is the number of samples and
maximum iterations, respectively, c, &, p
are the column vector of the premise
parameters (c and o), and the consequent
parameters matrix (po, Pi,..., Pe+1 and px),
respectively.

Remark 1: The proposed ANFIS
([NpM(t),..., Npm(t.p), Nx], Nrute, 1) model
generates (Nemqt. .. +Npm-py+Nx)x2+(po +p1
+...+pp+1t+ Px)xNrule parameters.

—PM actual

t+i, ]

Layer 1 Layer 2 Layer 3

Layer 4

Layer 5

PM, 1,PM,5,....PM,p, X
Fig. 4. ANFIS-based PM-10 forecast model.
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Remark 2: To further determine
computational complexity of the proposed
ANFIS, the computing of the degree of
GMF, exp[-(x-c)¥257], represented by 3-
term Taylor series at x=u, i.e., " =1+(x-
u)+(x-u)?2+O(x®), where |x-u|<l, on the
second layer, the computing of fire strength
(w) on the fourth layer and the computing of
WA (2.2) on the fifth layer provide (3+2)x
(Nemt...FNpmep)tNx),  NruexNvar, —and
(2xNryet+l), respectively. Therefore, the
ANFIS model generates total (Nem*...+
NPM(t—P) + NX)XS + (NruIeXNVar) + (ZXNruIe +1)
multiplications. For the optimization of the
ANFIS([Npms ..., Nemep), Nx], Nrue, 1), the
parameters of New,...,Nem@-p), Nx, and Nrue
are selected through the experiment.

2.4 Design of PM-10 forecast model
In this work, the different ANFIS
models of i-day forecast are constructed and
optimized through the experimental design.
The collected data during January-April of
2011-2017 (600 samples) is divided into 3
parts, i.e., training, validating, and testing
for 2011-2014, 2012-2015, and 2016-2017,
respectively. The input variables including
the historical PM-10 for 5-lags (P=4), PM;,
,PMcs, the meteorological variables
(Pmax, Pmin, Tmax, Hmax; Hmin, RH), and the
hotspot are selected through the FS method.
A large number of system parameters
and multiplications requiring for ANFIS
model resulting from a number of MFs and
fuzzy rules can lead to very slow
convergence or terminated program. To
optimize the ANFIS, the initial number of
MFs is set as 5 for each input variables then
ye{NB, NS, Z, PS, PB}where NB is
negative big, NS is negative small, Z is zero,
PS is positive small and PB is positive big.
The pilot models are ANFIS i ([5, 5,...,5],
Nrue, 1), i=1,2,..., 5. The experimental result
of input selection using FS method is shown
in Fig. 5. It is seen that two significant
variables, PM; and Hotspot, are selected for
(1-3)-day forecast and one significant
variable of PM; for (4-5)-day forecast.
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Fig. 6. The optimal ANFIS_ i based PM-10
forecast model.

After reducing the number of MFs by
one until the error is not improved, the
optimal structure of i-day forecast models
denoted by ANFIS_i([Nemq) ». - -,Neme-s), Nx],
Nrute, 1) is illustrated in Fig. 6.

3. Forecasting results and discussion
The (1-5)-day PM-10 forecast results
using the proposed ANFIS through the
testing and validating data are shown in Fig.
7(a)-(b). The accuracy is satisfied only 1-
day forecast, whereas the performance is
gradually deteriorates for the others since
the instant PM-10 is naturally affected by
the current uncertain meteorology variation,
unexpected source volume, and others.
Then, for 1-day forecast, the forecasting
performance of the proposed ANFIS_1([2,
1],2,1) model, single models (Model 1-4)
[4,6,8] and hybrid models (Model 5-10)
[5,9] are assessed under various criteria, i.e.,
MAE, RMSE, the number of system
parameters  (Nk), the number  of
multiplication per an execution (Nw). It is
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seen from Table 2 that the proposed ANFIS
model performs the best in accuracy. It is
able to provide 17-75% more accurate
forecast when compared to other existing
ten models. To measure the reliability of the
models, AIC [15] is applied as a criterion
that seeks a model which has a good fit but
few parameters. It is defined as,

>
AIC =N, log NI +2Ny s

(2.4)

test

where e; is the residuals from forecast, Niest
is the number of test data. The preferred
model is the one with the minimum AIC.
From Table 2, the proposed model is the
most reliable. Therefore, the proposed
ANFIS with Hotspot model is indicated as
the optimal PM-10 forecasting model
tradeoff by several criteria. However, a
number of multiplications are the drawback
for implementing software.

Table 2. The comparison of forecasting performance between the proposed model and

existing models [4-6, 8-9].

Model Reference RMSE MAE Nk AIC Nwm
1) ARIMA(4.1.3) 4] 247 166 7 9.9 7
2) ARIMA(,1,3)X(1) 6] 231 157 8 918 8
3) MLPNN(L,1,1) 4, 8] 254 160 4 936 5
4) RBFNN(L,2,1) [, 8] 257 16.0 7 1008 10
5) hARIMA(4,1,3)-
T 5] 255 153 13 122 14
6) hARIMA(,1,3)-
palian [5] 282 179 18 127 2
7Y hARIMA(4,1.3)X(1)-
N 9] 246 160 13 1086 13
8) hARIMA(4.1.3)X(1)-
R 9] 264 150 21 1317 23
9) hMLPNN(L,1,1)-
AT [5, 8] 122 89 5 198 5
10) IMLPNN((X[7].3),1,1)-
Ao e [6, 9] 138 93 14 50.1 18
Proposed ANFIS([2,1],2,1) with Hotspot 13 58 0':312p=2><3=6) 153 (1532 P
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Fig. 7. The results of 5-day PM-10 forecast from the proposed ANFIS model with hotspot counts data
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To verify the impact of the hotspot
counts on the PM-10 (Fig. 2) for the other
area nearby CM, e.g., Chiang Rai (CR),
Lampang (LP) and Mae Hong Son (MHS),
the hotspot counts, including other
exogenous variables has been utilized to
formulate the ANFIS forecast model
through the experimental design similar to
CM. CR is the northernmost province and
border on Myanmar and Laos which has
very high levels of PM-10. For LP, the
province that is affected by the air pollution
from another sources, especially coal-fired
electrical power station in Mae Moh district.
For MHS, one of the most beautiful and
popular tourism destinations of Thailand, it
is most severely affected by PM-10
pollution. It has reached PM-10 level as
high as 431 pg/m?in 2013.
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Fig. 8. The PM-10 forecasting results of the

proposed ANFIS model with hotspot counts for

Chiang Rai, Lampang, and Mae Hong Son.

&0 20 100 120

68

The ANFIS_1([2,2,1],4,1) model with
input variable set of {PM;, Hotspot, Hmax},
ANFIS_1([2,2,1],4,1) model with the input
variable set of {PM;, Hotspot, Tmax}, and
ANFIS([2,2,1],4,1) model with the input
variable set of {PM; Hotspot, Pmin} are
formulated for CR, LP, and MHS,
respectively. The forecasting results through
the validating data of these formulated
ANFIS models for CR, LP and MHS shown
in Fig. 8 are quite good. The RMSE and
MAE of CR are 28.71 and 21.19, of LP are
17.21 and 13.39, and of MHS are 10.23 and
7.8. It is seen that CR obtained the highest
forecast error among others, since its PM-10
level greatly varies and is higher than that of
the others.

4. Conclusion

In this work, CM city of Northern
Thailand where is located in the high open
burning area with critically harmful PM-10
level is selected as a case study for
developing PM-10 forecast model. The
optimized ANFIS-based PM-10 forecast
model is implemented by utilizing the
hotspot counts associated with the
meteorological variables and historical PM-
10 with significant time lag as the
exogenous variables. Due to the fuzzy
feature of the PM-10 and the high correlated
hotspot during high open burning season of
the study area, the proposed ANFIS model
with an integrated Hotspot variable
outperforms the other existing single and
hybrid models without using the hotspot. As
forecasting results, providing high accuracy
with regard to RMSE and MAE, and
achieving high reliability through the AIC
support the above statement. Furthermore,
the forecast results obtained from the
ANFIS model with hotspot counts for the
nearby cities are verified its performance.

To further develop and improve the
performance of PM-10 forecast model, the
regional online coupled meteorology-
atmospheric chemistry or Weather Research
and Forecasting with Chemistry (WRF-
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Chem) [16-17] is alternatively interesting
choice since it was successful in effective
and reliable forecasting PM-10 in many
areas [18-20].

Abbreviation and symbol

The full meaning of abbreviations and
meaning of symbols used in this study are
given in Table 3 and Table 4, respectively.

Table 3. List of abbreviations

Abbreviation Full meaning

Particulate matter with a diameter of

PM-10 :
10 micrometers or less
AQI The ambient air quality standard
ARIMA Autoregressive integrated moving
average
ARIMAX ARIMA with exogenous variable
NN Neural network

MLPNN Multilayer perceptron neural NN

RBFNN Radial basis function NN

FS Forward selection method
ANEIS Adaptive  neurofuzzy inference
system
FIS Fuzzy inference system
MF Membership function
GMF Gaussian MF
WA Weight average
BP Back propagation
MAE Mean absolute error
RMSE Root mean squared error
AIC Akaike information criterion
CM Chiang Mai province
LP Lampang province
MHS Mae Hong Son province

Table 4. List of symbols

Symbol Meaning
GW Gust wind
T Temperature
P Pressure

WD Wind direction

RH Relative humidity

X Exogenous variable
u Degree of MF
Y Linguistic variable
Nrule The number of constructed if-then rules
p Consequent parameter
c Centre of GMF
o Width of GMF
Nk The number of system parameters
Nwm The number of multiplications
e Residual forecast

Niest The number of test data
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