

Association between Maternal and Infant Serum Vitamin D and Food Sensitization

Paskorn Sritipsukho^{1,2}, Charintip Somprasit³, Punnapatch Piriyanon^{2,*}

¹*Center of Excellence in Applied Epidemiology, Thammasat University,
Pathum Thani 12120, Thailand*

²*Department of Pediatrics, Faculty of Medicine, Thammasat University,
Pathum Thani 12120, Thailand*

³*Department of Obstetrics & Gynecology, Thammasat University,
Pathum Thani 12120, Thailand*

Received 7 October 2019; Received in revised form 31 July 2020

Accepted 19 August 2020; Available online 29 June 2022

ABSTRACT

This study aimed to determine the association between maternal and infant serum vitamin D levels. The association between serum vitamin D level and sensitization to food allergens in infants at the age of 4 months was investigated. Mother-child pairs were recruited at the delivery room of Thammasat University Hospital. Blood samples for 25-hydroxy vitamin D levels were obtained from mothers at delivery. The infants were scheduled to visit at the age of 4 months. Blood samples were taken from the infants for measuring serum 25-hydroxy vitamin D level and specific IgE to food allergens including cow's milk protein, egg white, and soy protein. There were 60 mother-child pairs in the study. The prevalence of maternal vitamin D deficiency at delivery was 53.3 percent (95% confidence interval: 40.0%-66.3%). For infants at 4 months, the prevalence of vitamin D deficiency was 18.8 percent (95% confidence interval: 8.9%-32.6%). Infants born from mothers who had vitamin D deficiency at delivery themselves had a higher prevalence of vitamin D deficiency ($p=0.012$) than those from mothers without vitamin D deficiency. They were more likely to have sensitization to cow's milk protein at the age of 4 months. In conclusion, the impact of vitamin D deficiency in pregnant mothers was documented. There was a positive association between maternal and infant serum 25-hydroxy vitamin D concentrations. Pregnant mothers with vitamin D deficiency were associated with vitamin D deficiency in their infants at the age of 4 months.

Keywords: Cow's milk protein; Infants; pregnancy; Sensitization; Vitamin D deficiency; White egg protein

1. Introduction

There has been growing interest in the influence of maternal vitamin D intake during pregnancy on the development of allergic diseases in children [1]. During pregnancy, the fetus is exposed to vitamin D through cord blood supply and the placenta [2]. Vitamin D has immunomodulatory effects on allergen-induced inflammatory pathways via a vitamin D receptor expressed on a variety of immune cells including B cells, T cells, dendritic cells and macrophages [3]. An inverse association between maternal vitamin D intake during pregnancy and risk of the development of atopic diseases in offspring has been reported [4-5]. Maternal diet during pregnancy has been associated with early IgE sensitization and subsequent development of allergic diseases in children [6-7].

Based on epidemiological data, the increase in food allergen sensitization parallels the increase of vitamin D deficiency [8]. Vitamin D deficiency may increase susceptibility to infections and alter intestinal microbial ecology, contributing to abnormal intestinal barrier permeability. These factors might promote maladaptive allergic responses to food antigens and result in food allergy in genetically susceptible subjects.

Vitamin D deficiency, defined as a serum 25-hydroxy vitamin D level of less than 20 ng/mL, has been a public health problem globally [9]. Both children and pregnant women are at risk of vitamin D deficiency [10]. However, the association of maternal vitamin D status with allergen sensitization and atopic disease development remains uncertain [11]. It has been reported that vitamin D is able to both enhance and inhibit the differentiation of plasma cells and the production of IgE [12-13]. This study aimed to determine association between maternal and infant serum vitamin D levels.

The association between serum vitamin D level and sensitization to food allergens in infants at the age of 4 months was investigated.

2. Materials and Methods

Mother-child pairs were recruited at the delivery room of Thammasat University Hospital between August 2018 and November 2018. Inclusion criteria included maternal age more than 18 years, no pregnancy complications, and singleton delivery of term infants with a birth weight of more than 2,500 grams. Mothers with underlying diseases including chronic liver disease, chronic renal diseases, nephrotic syndrome, vitamin D mal-absorption, diabetes mellitus and malignancy, or were on anti-epileptic drugs or systematic steroids were excluded from the study. Neonates with congenital malformations and those who were admitted to high-risk rooms or neonatal intensive care units were also excluded from the study. Blood samples for 25-hydroxy vitamin D levels by enzyme-linked immunosorbent assay (ELISA) were obtained from mothers at delivery. Demographic and parental history of allergic disease data were collected by parental-administered questionnaire. The infants were scheduled to visit at the age of 4 months. Then, blood samples were taken from the infants for serum 25-hydroxy vitamin D level ELISA measurement and specific IgE to food allergens including cow's milk protein, egg white, and soy protein by ImmunoCAP (Phadia, Uppsala, Sweden). The threshold for a reaction to be considered sensitization to a specific allergen was set at 0.35 kUA/L. Vitamin D deficiency was defined as having a serum 25-hydroxy vitamin D level of less than 20 ng/ml. This study was approved by the ethics committee of Thammasat University No1.

3. Statistical Analysis

Quantitative data are presented as mean and standard deviation. Qualitative data are presented as numbers of subjects and percentages. Prevalence of vitamin D deficiency and sensitization to food allergens were calculated and are presented with the 95% confidence intervals. Correlation between maternal and infant serum 25-hydroxy vitamin D levels are presented as scatter plots, with correlation coefficients calculated accordingly. Fisher's exact test was used to test the association between categorical variables, with a significance level of 0.05. Odds ratio was used to assess the association between sensitization to cow's milk and egg white proteins in infants at 4 months.

4. Results and Discussion

There were 60 mother-child pairs in the study; of these, 48 infants were available at the 4-month follow-up date, for measuring serum IgE to food allergens and serum 25-hydroxy vitamin D level. Maternal, family and infant characteristics are presented in Table 1. All infants in the study were term, with a mean birth weight of $3,214 \pm 304$ grams. The prevalence of maternal vitamin D deficiency at delivery was 53.3 percent (95% confidence interval: 40.0%-66.3%). Regarding infants at 4 months, the prevalence of vitamin D deficiency was 18.8 percent (95% confidence interval: 8.9%-32.6%). The prevalence of cow's milk protein and egg white protein sensitizations by serum specific IgE assays were 22.9 percent (95% confidence interval: 12.0%-

37.3%) and 10.4 percent (95% confidence interval: 3.5%-22.7%), respectively. All had soy-specific IgE serum levels < 0.35 kUA/L.

Data for the relationship between infant serum 25-hydroxy vitamin D concentrations at 4 months and maternal serum 25-hydroxy vitamin D concentrations are presented as a scatter plot (figure 1), having a correlation coefficient of 0.435. At the age of 4 months, infants of mothers who had vitamin D deficiency at delivery had a higher prevalence of vitamin D deficiency (10%) than those without vitamin D deficiency (25%) with $p = 0.012$ as detailed in Table 2.

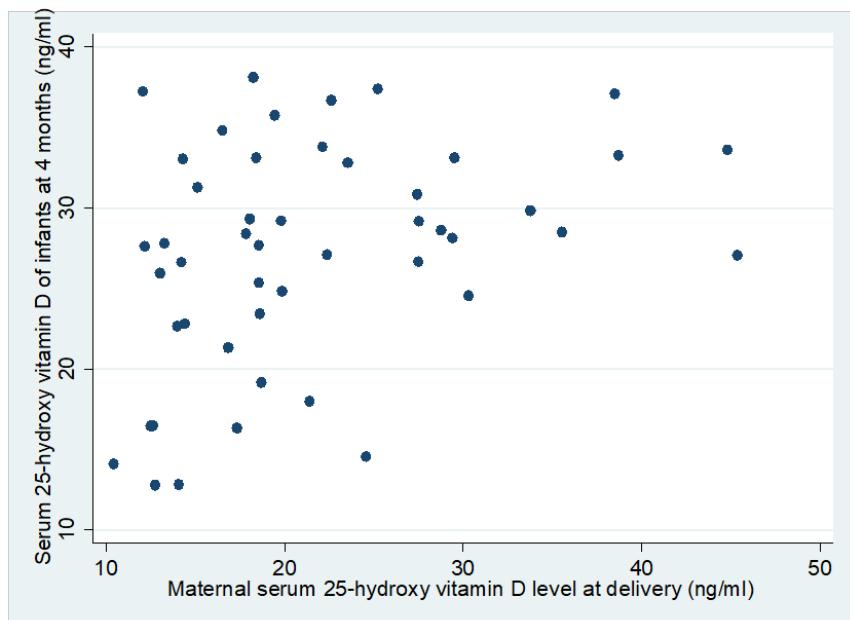
For infants with vitamin D deficiency at the age of 4 months, there was no statistically significant impact on sensitization to cow's milk protein (odds ratio = 1.9) or egg white protein (odds ratio = 3.4) (Table 3).

Maternal vitamin D deficiency (< 20 ng/ml) is rather common, as evidenced by the 53.3 percent prevalence seen in this study. This finding is consistent with the high prevalence reported globally: 21.2% in the UK, 44.6% in Belgium, and 83.6% in China [14-16]. A strong correlation between the serum 25-hydroxy vitamin D level of pregnant mothers and their newborns has been reported [17]. The 25-hydroxy vitamin D has the ability to cross the placenta and expose the fetus to vitamin D during pregnancy [18]. Since many pregnant mothers worldwide were shown to have deficient vitamin D status, this consequence may result in deficient vitamin D levels in their newborns [10].

Table 1. Maternal, family and infant characteristics.

Characteristics	N	%
Maternal and family (N=60)		
Highest education among parents		
Primary school	7	11.7
Secondary school	32	53.3
Bachelor's degree or higher	21	35.0
Paternal allergy	20	33.3
Maternal allergy	18	30.0
Smoking during pregnancy	1	1.7
Passive smoking at home	29	48.3
Maternal age in years	26.2 [±] 3.8	
Maternal vitamin D deficiency	32	53.3
Serum 25-hydroxy D level in ng/ml	21.7 [±] 8.7	
Gestational age in weeks	38.2 [±] 1.9	
Infant characteristics at birth (N=60)		
Birth weight in grams	3214 [±] 304	
Boys	28	46.7
The first child	31	51.7
Infant characteristics at 4 months (N=56)		
Exclusive breast feeding	22	39.3
History of eczema	12	21.5
Vitamin D deficiency (N=48)	9	18.8
Serum 25-hydroxy vitamin D level in ng/ml	27.2 [±] 7.0	
Allergen sensitization* (N=48)		
cow's milk protein	11	22.9
egg white protein	5	10.4
soy protein	0	0

Note: *Serum specific IgE level > 0.35 kUA/L


Table 2. Association of vitamin D deficiency between mothers at delivery and infants at 4 months (N=48 pairs).

Vitamin D status of infants at 4 months	Vitamin D status of mothers at delivery		P-value
	No deficiency	Deficiency	
No deficiency (n=39)	18 (90.0%)	21 (75%)	0.012
Deficiency (n=9)	2 (10.0%)	7 (25.0%)	
Total	20 (100%)	28 (100%)	

Table 3. Association between vitamin D deficiency in infants at 4 months and sensitization to cow's milk and egg white protein in infants at 4 months.

Vitamin D status	Sensitization *	No Sensitization*	Odds ratio	P-value
			(95% confidence interval)	
To cow' milk protein				
No deficiency (n=39)	8 (20.5%)	31 (79.5%)	1.9 (0.4-9.8)	0.414
Deficiency (n=9)	3 (33.3%)	6 (66.7%)	-	
To egg white protein				
No deficiency (n=39)	3 (7.7%)	36 (92.3%)	3.4 (0.2-35.1)	0.198
Deficiency (n=9)	2 (22.2%)	7 (77.8%)	-	

Note: *Specific IgE level by the cutoff value of 0.35 kUA/L.

Fig. 1. Scatter plots between serum 25-hydroxy vitamin D level of infants at 4 months and maternal serum 25-hydroxy vitamin D levels at delivery (Correlation coefficient = 0.435).

This study found an association between maternal and infant 25-hydroxy vitamin D levels ($r=0.435, p<0.001$), which is consistent with the findings from a study in Greece ($r=0.626, p<0.001$) [19]. Children born to mothers with vitamin D deficiency appeared to have persistent and significantly lower serum vitamin D levels, compared to those with sufficient vitamin D levels [20-21]. In this study, maternal vitamin D deficiency and infant vitamin D deficiency seemed to be associated with a higher prevalence of food sensitization at the age of 4 months. Vitamin D deficiency might contribute to early-life sensitization by further compromising the maturation of the infant immune system [20]. However, no consistent data have addressed the relationship between maternal vitamin D levels and allergen sensitization in infants. Some authors have reported that maternal vitamin D levels were inversely associated with sensitization to food allergens [20-22]. On the other hand, a higher risk for food sensitization in infants was seen in mothers with high vitamin D levels during pregnancy [17]. One study even showed that low

vitamin D levels (<20 ng/ml) and high vitamin D levels (>40 ng/ml) at birth were associated with total serum IgE concentrations and aeroallergen sensitization in early childhood [23]. Vitamin D deficiency might impair epithelial barrier integrity. This leads to increased and inappropriate mucosal exposure to food antigens and also a pro-sensitization immune imbalance that compromises immunological tolerance [24].

The strength of this study comes from its longitudinal design, allowing temporality in mother-child pair measurements of serum vitamin D levels and specific IgE levels. Limitations of this study include the relatively small sample size of only 48 mother-child pairs available for analysis, with limited power to detect a statistically significant association for sub-analyses. This study did not assess clinical outcomes. The follow-up period of 4 months may not have been long enough to detect allergic diseases throughout the childhood period. Future studies of vitamin D supplementation in mothers during pregnancy may be beneficial

to establish the role of vitamin D in the development of atopic diseases in children.

5. Conclusion

These results address the impact of vitamin D deficiency in pregnant mothers. A positive association between maternal and infant serum 25-hydroxy vitamin D levels was documented. Deficient vitamin D status in pregnant mothers may result in deficient vitamin D status in newborns and subsequent sensitization to food allergies at the age of 4 months.

Acknowledgements

This study was funded by Thammasat University. We would like to thank the Research group in Pediatrics, Faculty of Medicine, Thammasat University.

References

- [1] Searing DA, Leung DY. Vitamin D in atopic dermatitis, asthma and allergic diseases. *Immunol Allergy Clin North Am* 2010; 30:397-409.
- [2] Salle BL, Delvin EE, Lapillonne A, Bishop NJ, Glorieux FH. Perinatal metabolism of vitamin D. *Am J Clin Nutr* 2000; 71:1317S- 24S.
- [3] Adorini L, Penna G, Giarratana N, Roncari A, Amuchastegui S, Daniel KC, Uskokovic M. Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands. *J Steroid Biochem Mol Biol* 2004; 89–90: 437-41.
- [4] Erkkola M, Kaila M, Nwaru BI, Kronberg- Kippilä C, Ahonen S, Nevalainen J, et al. Maternal vitamin D intake during pregnancy is inversely associated with asthma and allergic rhinitis in 5-yr-old children. *Clin Exp Allergy* 2009; 39:875-82.
- [5] Camargo CA Jr, Rifas- Shiman SL, Litonjua AA, Rich- Edwards JW, Weiss ST, Gold DR, et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. *Am J Clin Nutr* 2007; 85:788-95.
- [6] van Gool CJAW, Thijs C, Dagnelie PC, Henquet CJ, van Houwelingen AC, Schrander J, et al. Determinants of neonatal IgE level: parity, maternal age, birth season and perinatal essential fatty acid status in infants of atopic mothers. *Allergy* 2004; 59:961-8.
- [7] Chiu CY, Huang YL, Tsai MH, Tu YL, Hua MC, Yao TC, et al. Sensitization to food and inhalant allergens in relation to atopic diseases in early childhood: a birth cohort study. *PLoS ONE* 2014; 9:e102809.
- [8] Hoxha M, Zoto M, Deda L, Vyshka G. Vitamin D and Its Role as a Protective Factor in Allergy. *Int Sch Res Notices* 2014; 2014:951946.
- [9] Mulligan ML, Felton SK, Riek AE, Bernal- Mizrachi C. Implications of vitamin D deficiency in pregnancy and lactation. *Am J Obstet Gynecol* 2010; 202:429,e1-9.
- [10] Holick MF. Vitamin D deficiency. *N Engl J Med* 2007; 357:266-81.
- [11] Chiu CY, Huang SY, Peng YC, Tsai MH, Hua MC, Yao TC, et al. Maternal vitamin D levels are inversely related to allergic sensitization and atopic diseases in early childhood. *Pediatr Allergy Immunol* 2015; 26:337-43.
- [12] Daynes RA, Enioutina EY, Butler S, Mu HH, McGee ZA, Araneo BA. Induction of common mucosal

immunity by hormonally immunomodulated peripheral immunization. *Infect Immun* 1996; 64:1100–09.

[13] Chen S, Sims GP, Chen XX, Gu YY, Lipsky PE. Modulatory effects of 1, 25-dihydroxyvitamin D3 on human B cell differentiation. *J Immunol* 2007; 179:1634-47.

[14] Gale CR, Robinson SM, Harvey NC, Javaid MK, Jiang B, Martyn CN, et al. Maternal vitamin D status during pregnancy and child outcomes. *Eur J Clin Nutr* 2008; 62:68-77.

[15] Vandevijvere S, Amsalkhir S, Van Oyen H, Moreno- Reyes R. High prevalence of vitamin D deficiency in pregnant women: a national cross-sectional survey. *PLoS One* 2012; 7:e43868.

[16] Xiang F, Jiang J, Li H, Yuan J, Yang R, Wang Q, et al. High prevalence of vitamin D insufficiency in pregnant women working indoors and residing in Guiyang, China. *J Endocrinol Invest* 2013; 36:503-7.

[17] Weisse K, Winkler S, Hirche F, Herberth G, Hinz D, Bauer M, et al. Maternal and newborn vitamin D status and its impact on food allergy development in the German LINA cohort study. *Allergy* 2013; 68:220-8.

[18] Salle BL, Delvin EE, Lapillonne A, Bishop NJ, Glorieux FH. Perinatal metabolism of vitamin D. *Am J Clin Nutr* 2000; 71:1317S-24S.

[19] Nicolaïdou P, Hatzistamatiou Z, Papadopoulou A, Kaleyias J, Floropoulou E, Lagona E, et al. Low vitamin D status in mother-newborn pairs in Greece. *Calcif Tissue Int* 2006; 78:337-42.

[20] Chiu CY, Huang SY, Peng YC, Tsai MH, Hua MC, Yao TC, et al. Maternal vitamin D levels are inversely related to allergic sensitization and atopic diseases in early childhood. *Pediatr Allergy Immunol* 2015; 26:337-43.

[21] Nwaru BI, Ahonen S, Kaila M, Erkkola M, Haapala AM, Kronberg-Kippilä C, et al. Maternal diet during pregnancy and allergic sensitization in the offspring by 5 yrs of age: a prospective cohort study. *Pediatr Allergy Immunol* 2010; 21:29-37.

[22] Vassallo MF, Camargo CA Jr. Potential mechanisms for the hypothesized link between sunshine, vitamin D, and food allergy in children. *J Allergy Clin Immunol* 2010; 126:217-22.

[23] Rothers J, Wright AL, Stern DA, Halonen M, Camargo CA Jr. Cord blood 25-hydroxyvitamin D levels are associated with aeroallergen sensitization in children from Tucson, Arizona. *J Allergy Clin Immunol* 2011; 128:1093-9.

[24] Roider E, Ruzicka T, Schäuber J. Vitamin D, the cutaneous barrier, antimicrobial peptides and allergies: is there a link? *Allergy, asthma & immunology research* 2013; 5:119-28.