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ABSTRACT 
 Tunicate Swarm Algorithm (TSA) is a metaheuristic method that imitates the life of the 
tunicate. It occurs during navigation and foraging using jet propulsion and swarm behavior. A 
feed-forward neural network ( FFNN)  is a neural network that is often used, and applied. 
computational methods have been widely used to optimize FFNN weights in order to produce 
better output.  This paper proposes a compound algorithm based on a tunicate swarm 
algorithm to optimize an FFNN.  It is applied to power system stabilizers.   The proposed 
method is compared with other algorithm methods such as the feed-forward (FFNN), cascade 
forward backpropagation (CFBNN), focused time delay (FTDNN), and distributed time delay 
(DTDNN). The proposed method has the ability to improve the output of FFNN methods. The 
proposed method has the average ability to reduce the overshoot of the speed by 35.17%  and 
the undershoot of the rotor angle by 15.36% .  In addition, the proposed method has better 
capabilities than the comparison method. The results of the experiment show that the use of 
the submitted algorithm has preferable adaptability and performance than the other methods. 
 

Keywords: Feed-forward neural network; Metaheuristic; Neural network; Power system 
stabilizer; Tunicate Swarm Algorithm 
 

1. Introduction  
Progress in economic and 

technological development is followed by 
demand for electric system requirements. 
The electrical network is a collection of 
non-linear and complex systems that is 
influenced by the increase in load changes. 
The main key in a reliable power system 

operation is to keep the synchronous 
generator running at its work point and able 
to meet load demands according to the 
available capacity.  Synchronous machines 
do not handly go down of swing under 
regular forms.  If a machine swing tends to 
increase or decrease, synchronizing induces 
it to perform normally. A condition often 
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occurs when the synchronization from the 
generator is less reliable and has a little 
influence on the system, causing a generator 
to lose synchronization. Meanwhile, 
changes in load are followed by an 
imbalance between supply and demand. 
This results in the generator having to try to 
stay in sync to adapt to new operating 
conditions. Some disturbances often occur 
in the form of major disturbances such as 
disconnection of the generator from the 
system, network outages, or small and 
random load changes that occur in regular 
conditions. Oscillations often follow 
disturbances. Oscillations can be damped by 
leading to new operating conditions. This is 
called a stable system. 

 Oscillations that often occur and have 
a large impact are low frequencies in the 
0.2-2 Hz range [1]. The equipment used in 
solving the sway stability obstacle is the 
power system stabilizer (PSS). The PSS is 
able to increase damping so that it can 
reform the achievement of the power 
system. 

Conventional PSS has a design using 
control theory. Power system modeling is 
assumed to be linear around nominal 
operation. The PSS variable is assumed and 
assigned to get the best performance. In 
fact, the power system has a nonlinear 
character and operation that varies over a 
wide range. This is a weakness of 
conventional PSS which cannot provide 
optimal performance with complex 
problems. This is exacerbated by the 
configuration of an electrical system that 
turns frequently. It also requires attention in 
the PSS adjustment in maintaining its best 
performance [2]. 

In recent years, methods using artificial 
intelligence have begun to be used with the 
aim of optimizing PSS variables such as 
particle swarm optimization (PSO) [3-5], 
taboo search [6], genetic algorithm [7-9], 
Biogeography-Based Optimization [10-12], 
bat algorithm [13-15], world cup 
optimization algorithm [16], Harmony 

Search Algorithm [17-20], Fuzzy [20-22] 
and neural networks [23-26].  
 Research on the power system 
stabilizer is a popular area.  Although many 
studies have presented research in the power 
system stabilizer area, there is still plenty of 
room to explore for the best performance. 
This paper has main contributions, namely: 
1) Application of the newest and promising 
method of metaheuristics, namely the 
Tunicate Swarm Algorithm. The method 
was presented by Kaur et al in April 2020. 
In a study conducted by Kaur et al, it was 
found that the TSA method had the best 
performance compared to the Spotted 
Hyena Optimizer (SHO) method, Gray Wolf 
Optimizer (GWO), Particle Swarm 
Optimization (PSO), Multiverse Optimizer 
(MVO), Sine Cosine Algorithm (SCA), 
Gravitational Search Algorithm (GSA), 
Genetic Algorithm (GA), and Emperor 
Penguin Optimizer (EPO) [27]. Based on 
research by Kaur et al, this paper is using 
the TSA method to optimize the feed-
forward neural network method. The 
proposed method is called TSA-FFNN. The 
proposed method is used to adjust the power 
system stabilizer. 
2) The focus of this research is to measure 
the output performance of the rotor speed 
and angle in a single machine. 
3) Accuracy and potential are presented by 
conducting in-depth comparisons using 
several methods, namely feed-forward 
(FFNN), cascade forward backpropagation 
(CFBNN), focus time delay (FTDNN), and 
distributed delay time (DTDNN). 
 

2. Materials and Methods   
2.1 Tunicate Swarm Algorithm 
 Tunicate Swarm Algorithm is an 
algorithm that duplicates tunicate colonies. 
This animal is a group of marine animals 
which live on docks, rocks or the bottom of 
boats.  To most people, they look like tiny 
blobs of color.  The tunicate can be seen 
from afar because it is capable of producing 
bright blue-green light or bioluminescence. 
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 Tunicates have two ends that have 
different functions; an open end, which is 
used as a propulsion such as jet propulsion 
using atrial siphons, and a closed end. 
Tunicates move by relying on fluid bursts 
[ 27] .  This burst is so powerful that it can 
move tunicates vertically in the ocean. This 
animal has a shape in the millimeter scale. 
Tunicates have the expertise to find food 
sources in the sea when there is no food 
source information. Tunicates have the 
readiness to recognize food.  This is called 
jet propulsion and swarm intelligence 
 Mathematical modeling of the first 
behavior of the tunicates, namely the 
propulsion of the jet, must meet three 
conditions:  to prevent disputes between 
tunicates, to shift the potential tunicate 
locatoin, and to close on the potential 
tunicate.  On the other hand, the swarm 
behavior has a function to update the 
existence of other seekers in order to find 
the best optimal solution.  
 

2.1.1 Keep away the conflict among 
tunicate 

To dodge the clash between tunicates, 
the new search agent position calculation 
(T) can be modeled as follows in Eq. (2.1). 
 

   (2.1) 

            (2.2) 
                                     (2.3) 

 

where gravity force is  in Eq. (2.1) and 
Eq. (2.2). The movement of water advection 
in the deep sea is  in Eq. (2.2) and Eq. 
(2.3).  and  are disorder grade that 

have a range [0, 1].  in Eq. (2.4) is the 
colony strength between the tunicates.  
describes the social compels between search 
agents. 
 

 (2.4) 
 

where   and   reflect the beginning 
and lower speeds to create social contact. 
The variables  and   have work 
values 1 and 4. 
 

2.1.2 Shifting to the position of the 
best tunicate 

If conflict between tunicates can be 
avoided, the tunicates will approach the best 
tunicates. 

 

                   (2.5) 
 

where the distance between the food source 
and tunicate is  in Eq. (2.5),  is the 
current iteration. The location of the food 
source is  . Vector  shows the 
location of the tunicate. A disordered grade 
in space [0, 1] is . 
 

2.1.3 Assemble with the best tunicate 
Tunicate can update its position 

towards the best tunicate. It is related to the 
position of food source 

 

     (2.6) 

 

where  in Eq. (2.6) is the updated 
position of tunicate with respect to the 
position of food source . 
 

2.1.4 Swarm behavior 
Optimal solutions are the best kept 

and other tunicates positions are updated by 
searching for the best tunicate positions. 
The tunicate crowd behavior can be 
formulated as follows in Eq. (2.7). 

 

                  (2.7) 

The tunicate position will determine the last 
position in a random area. The key points of 
the turnicate swarm algorithm are: 
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- Parameters  and  guard and 
support a specified search space and 
avoid conflict between tunicates. 

- It is hoped that the exploration and 
exploitation phase will get a better value 
by using vector variations  and . 

- The group behavior of the TSA 
algorithm can be observed from jet 
propulsion and tunicate colony behavior. 

 

2.2 Feed forward neural networks 
Neural Networks are designs that try 

to replicate several of the fundamental 
information execution methods proposed in 
the brain. The advantages of neural 
networks are high-level computing 
applications, the ability to learn and 
generalize (generalization is to produce the 
appropriate output for input), ability for 
non-linear problems, and adaptability [28]. 
ANN has an advanced neural network and a 
feedback neural network. Feed-forward 
networks have the characteristics of a 
simple network structure and are easy to 
implement [29]. The network is developed 
from several neurons in each layer which 
are connected by weighting intermediaries. 
Neurons from related units in the previous 
layer, the weighted input which is summed 
by the refractive unit is passed to a single 
neuron. The function of bias is to adapt the 
input to a practical and possible range. The 
Model of FFNN is illustrated in Fig. 1. 

 

 
Fig. 1. Conceptual model of a feed-forward 
neural network. 
 

Output is the sum of the weighted and 
biased inputs that have passed through the 
transfer function. The Formula Processing 
can be seen in Eq. (2.8) and Eq. (2.9). 
Output is processed by going through the 
next layer weight. This process is repeated 
until it matches the algorithm specified.  

 

             (2.8) 

 (2.9) 

 
Neural network weighting optimization is to 
get the best weight to achieve a higher 
classification in terms of accuracy.  

The mean square error (mse) is taken 
to assess the fallacy. The MSE formula can 
be seen in Eq. (2.10). 

 

 (2.10) 

 

2.3 Power system stabilizer 
 The power system stabilizer (PSS) 
has the function of adding attenuation to the 
system to avoid electromechanical 
oscillations caused by minor disturbances. A 
PSS in general has three important 
components, namely gain, washout and 
phase compensation. The block unit of a 
PSS can be seen in Fig. 2. In a conventional 
PSS, gain is still used and requires good 
resetting capability when operating 
conditions change. 
 

 
 

Fig. 2. PSS Block Diagram. 
 

The conventional PSS consists of a  
gain unit related to a high-pass filter with a 
time constant  and a lead-lag 
compensated phase unit with time  and 
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of PSS represents the synchronous speed 
deviation from the system . 
 

          (2.11) 

 

3. Results and Discussion  
The generator is modeled in the 

Heffron-Phillips model. The model can be 
seen in Fig. 3. It includes K1-K6, well-
known Heffron-Phillips variables.  is 
input torque and  is the reference 

voltage of the AVR. The rotor speed and the 
rotor angle are  and . The transient and 
steady state internal voltage of the armature 
are  and . 

In the mechanical loop,  is DC 
gain and  is time constant of the AVR.  

 and  indicate the damping 
factor and rotor inertia.  is the direct axis 
open circuit time constant.   is DC gain.  

 is time constant of the AVR.  

 

 
Fig. 3. Heffron–Phillips block diagram for SMIB power system [30]. 

 
Fig. 4 is the assembly of TSA with 

FFNN for setting PSS in a single machine. 
In this paper, the training data is using the 
output speed and rotor angle of the system 
as input for FFNN. At the start of the 
processing in the TSA session, the random 
weighting values were derived from the 
FFNN. The random weight value is 
optimized using the TSA method. The 
output will be the strength weight for 
FFNN. 
 Verification and validation are 
employed to assess the achievement of the 
submitted method. TSA-FFNN was 
measured by comparing the results of the 

speed and rotor angle. The methods used for 
comparison are FFNN, CFBNN, FTDNN, 
and DTDNN. In this paper, the neural 
network setting is using 4 hidden layers. 
The number of iterations is limited to 1000 
in order to avoid overfitting. Meanwhile, the 
training method used Levenberg Marquardt 
which has advantages in speed and stability. 
The loading variation is also used to 
examine the capability of the submitted 
algorithm.   In this study, the load variation 
uses light loads (20%), medium loads 
(60%), and loads close to full load (90%). 
The first step is knowing the variables 
required for the TSA method. This is to get 
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the optimal value. The results from the TSA 
will be used to obtain the best FFNN 
variable.  Based on research from Kaur et al, 
which used 30 and 50 tunicate populations 

with 100 iterations, this study is adding the 
population data below the data, namely 
using a population of 10. This is used to test 
the convergence of the curve. 

 

 
 

Fig. 4. The TSA-FFNN Flowchart. 
 

 The results are shown in Fig. 5. 
Details of the use of the TSA method can be 
seen in Table 1. The best value is obtained 
with a tunicate population of 50.  Once the 

TSA parameter has been obtained it is used 
for training the FFNN. Table 2 shows 
complete details of the TSA parameters 
used. 
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Fig. 5. Convergence Curve Of Tunicate for TSA-FFNN. 

 
Table 1. Parameter values for various 
population TSA. 

Population  
Tunicate Rise Time 

Settling  
Time (s) Peak 

Best 
Fitness 

10 68.5930 76.0741 1.1495 0.3922 
30 7.1213 34.4710 0.7333 0.2255 
50 28.3982 96.2053 0.6075 0.1777 

 
Table 2. Parameter of TSA. 

Algorithm Parameter Value 

TSA 
 
 

Upper And Lower Limit  [-0.5,0.5]  
Maximum number of 

iterations 100  
Population of Tunicate 50 

 
The loading variation is used to test 

the ability of the PSS modeling that applies 
the TSA-FFNN method. The case 1 is to 
give 20% loading to the system. The 

response to the speed and rotor angle can be 
seen in Fig. 6 and Fig. 7. Detailed results 
from case 1 can be seen in Table 3. In Table 
3, the proposed method has overshoot of a 
speed response value with 0.1660. The 
value is the best performance comparing 
with other methods. The second-best value 
is the application of conventional methods 
which has a value with 0.1988. The TSA-
FFNN method has 16.5% better 
performance than conventional methods. 
Meanwhile, the TSA-FFNN method has the 
best performance of undershoot rotor angle. 
This value is -1.5772. It is followed by the 
use of conventional methods with -1.6763. 
The lowest value is obtained by the 
DTDNN method with -1.9408. 
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Fig. 6. Speed  with 20 % Load. 
 

 
 

Fig. 7. Rotor Angle with 20 % Load. 
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Table 3. PSS With 20 % of Load. 

Methods 
Speed Response  Rotor Angle Response 

Under 
Shoot Over Shoot 

 
Rise Time  (s) 

Settling 
Time (s) Under Shoot 

 
Rise Time  (s) 

Settling Time 
(s) 

Conventional  -0.4012 0.1988 0.0054 110.7963 -1.6763 0.5191 145.2667 
FFNN -0.4811 0.3011 0.1720 107.2049 -1.9292 1.5021 147.0082 

CFBNN -0.4797 0.2997 0.1732 106.9809 -1.9301 1.6084 147.1597 
FTDNN -0.4316 0.2562 0.1519 109.1226 -1.8221 1.1943 148.1122 
DTDNN -0.4818 0.2986 0.1817 107.1667 -1.9408 1.8207 146.6075 

TSA-FFNN -0.3473 0.1660 0.2305 117.8808 -1.5772 1.1475 150.2386 
 

Experiment 2 is to give 60% loading to the 
system. Fig. 8 and Fig. 9 are the results of 
experiment 2. It can be seen in waves from 

the TSA-FFNN method. The waves are 
sloping compared to other methods. Details 
of case 2 can be seen in Table 4. 

 

 
 

Fig. 8. Speed  with 60 % Load. 
 

 
 

Fig. 9. Rotor angle  with 60 % Load. 
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Table 4. PSS With 60% of Load. 

Methods 
Speed Response  Rotor Angle Response 

Under 
Shoot Over Shoot 

 
Rise Time  (s) 

Settling Time 
(s) Under Shoot Time 

Rise  (s) Time Settling(s) 

Conventional  -0.6457 0.2984 0.0054 108.6542 -2.5016 0.1665 143.9857 

FFNN -0.6693 0.3794 0.2533 107.9757 -2.7096 2.1331 146.9509 

CFBNN -0.6549 0.3724 0.2600 107.9826 -2.6885 2.2132 147.3345 

FTDNN -0.6113 0.3260 0.2232 110.0022 -2.5499 1.9220 148.5396 

DTDNN -0.6583 0.3814 0.2772 108.0680 -2.6869 2.3795 147.1166 

TSA-FFNN -0.5602 0.2456 0.3364 115.2298 -2.3203 1.9272 149.3650 
 

In Table 4, the lowest value for 
overshoot of the speed response, 0.3814, is 
obtained by the DTDNN method. The best 
value is achieved by the proposed method 
with 0.2456 and followed by the 
conventional method with 0.2984. The 
method proposed in case study 2 has 
17.69% better ability than the conventional 
method. Meanwhile, the lowest value for the 
undershoot rotor angle belongs to the FFNN 
method. The value is -2,7096. The TSA-

FFNN method has the best value on the 
undershoot of rotor angle. This value is 
16.77% better than the conventional method 
which is second best.  
 In case 3 with 90%  loading assigned 
to the system, the measurement is to 
determine the system response when given a 
load nearby to 100%  full load.  The results 
of the speed and rotor angle can be seen in 
Fig. 10 and Fig. 11. 

 

 
 

Fig. 10. Speed  with 90 %  Load.
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Fig. 11. Rotor angle  with 90 % Load. 
 
Table 5. PSS With 90% of Load. 

Methods 
Speed Response  Rotor Angle Response 

Under Shoot Over Shoot 
 

Rise Time  (s) 
Settling Time 

(s) Under Shoot 
 

Rise Time  (s) Settling Time (s) 

Conventional  -0.8171 0.3768 0.0086 106.6638 -3.1336 0.1750 140.7572 
FFNN -0.8121 0.4186 0.3052 107.4492 -3.2253 2.4394 145.0699 

CFBNN -0.8009 0.4133 0.3137 107.4591 -3.1943 2.5386 145.4819 
FTDNN -0.7742 0.3757 0.2684 108.8626 -3.0737 2.1785 146.2465 
DTDNN -0.8211 0.4354 0.3343 107.3687 -3.2207 2.7557 145.0275 

TSA-FFNN -0.7226 0.3055 0.4030 112.4465 -2.8748 2.2282 146.2570 
 

Table 5 shows the results for case 3. 
The worst value for overshoot of the speed 
response is in DTDNN with 0.4354. The 
best value is from the TSA-FFNN,  which is 
followed by conventional methods. The 
TSA-FFNN method has 18.92% better 
ability than conventional methods. 
Meanwhile, the worst value for undershoot 
of the rotor angle is in the FFNN method 
with -3.2253. The best score is obtained by 
the TSA-FFNN method followed by the 
FTDNN method. The TSA-FFNN method 
has 6.5% better ability than the FTDNN 
method 
 
 
 

4. Conclusion 
This paper aims to comprehensively 

review the tunicate swarm algorithm (TSA) 
literature to improve the performance of a 
feed-forward neural network ( FFNN)  and 
compare its performance. Its objective is to 
acquire the best completion for oscillation 
attenuation in the power system by testing 
in a single machine.  The proposed method 
has better results than the comparison 
method in the load test of 20% , 60%  and 
90% .  In this study, the application of the 
TSA method used to improve the 
performance of FFNN has the benefit of 
increasing the ability of FFNN.  It can be 
seen that the value of the overshoot speed 
by FFNN in case study 1 decreased by 
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44. 67% , case study 2 decreased by about 
35. 27% , and case study 3 decreased by 
about 26.59% . Meanwhile, the value of the 
undershoot rotor angle by FFNN in case 
study 1 decreased by about 20. 84% , case 
study 2 decreased by about 14. 36% , and 
case study 3 decreased by about 10.87%. In 
addition, the proposed method has good 
adaptability with load changes.  The 
weakness of the proposed method is that the 
experiment is using a simple system. So, the 
proposed method needs to be tested on a 
more complex system and non-linear issues 
to determine its performance further. 
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