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ABSTRACT 

The problem of magnetohydrodynamic (MHD) flow of viscoelastic fluid in a deforma-

ble vertical porous layer with entropy generation analysis has been investigated. The vertical 

walls are subjected to a constant injection/suction velocity. The expressions for solid dis-

placement, fluid velocity and temperature distribution are derived. The impact of relevant pa-

rameters on the solid displacement, fluid velocity, temperature, entropy generation number 

and Bejan number are discussed graphically.

Keywords: Bejan  number;  Deformable  porous  layer;  Entropy  generation  number;  MHD; 

Viscoelastic fluid  

1. Introduction
The study of viscous fluid flow 

through deformable porous material has 

been studied by many researchers due to its 

wide applications in the fields of engineer-

ing, biological problems of skin and tissue 

mechanics for articular cartilage. Terzaghi 

[1] initiated the study of deformation of po-

rous materials and fluid movement. Biot [2]

developed this theory of deformation and

acoustic propagation of fluid. This model is

used to study the permeability of arterial

wall [3- 5] and articular cartilage [6-7]. Bar-

ry et al. [8] investigated the problem of vis-

cous fluid in a channel of deformable po-

rous material for the examination of the im-

pact of glycocalyx on flow inside blood ves-

sels. Ambrosi [9] studied the mechanics of 

infiltration over porous medium. Sreenadh 

et al. [10] studied Couette flow in a deform-

able bed.  Sreenadh et al.  [11-12] analyzed 

Jeffrey fluid flow over deformable porous 

layer. Murthy [13] studied the MHD Casson 

liquid flow over a deformable porous medi-

um with slip effects. 

The study of entropy generation in a 

system of fluid is an important part of heat 

transfer analysis and in its efficiency in per-

forming. Bejan [14] explained the analysis 

of heat transfer in viscous fluid. Also, Bejan 
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[15] presented entropy generation analysis 

and heat transfer in fluid flow system. Ee-

gunjobi and Makinde [16] studied the entro-

py generation of an MHD flow with varia-

ble viscosity in a channel. Das and Jana [17] 

studied entropy in a flow of an incompressi-

ble viscous fluid in a porous channel incor-

porating Navier slip condition. Sreenadh et 

al. [18] analyzed the entropy generation for 

MHD flow in a vertical deformable porous 

layer.  

The above works have motivated us 

to study the MHD flow of viscoelastic fluid 

through a deformable porous layer with 

constant injection/ suction at the walls. 

Here, the aim is to investigate the effects of 

viscoelastic parameter and entropy genera-

tion analysis in MHD flow.  The novelty of 

this work lies in the study of flow behavior 

of viscoelastic fluid in the case of a deform-

able porous layer. 

 

2. Mathematical Formulation 
Consider a steady MHD flow of an 

incompressible viscoelastic fluid, character-

ized by Walters’ liquid model B  through a 

deformable, vertical porous layer with con-

stant injection/suction velocity at the porous 

walls. The porous material is designed as a 

continuous, homogeneous and isotropic 

mixture of fluid and solid phases where 

each point in the binary mixture is occupied 

concurrently by fluid and solid. The x - axis 

is taken along the midway of the channel 

and y -axis at right angles to it as shown in 

Fig.1. The heat is generated in the fluid by 

viscous and Darcy dissipations. The walls of 

the channel are at a distance h2 .  

The governing equations of the flow, 

following Barry et al. [8] and Sreenadh et al. 

[12] for viscoelastic fluid become 
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Fig. 1. Physical model of the problem. 
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The boundary conditions are 

 

0,0,0 TTuv ===  at ;hy =  

0,0,0 ===
yd

Td

yd

ud

yd

vd
  at 0=y ,     (2.4)                                                          

 

where vu ,  are velocity components along 

yx, -axes, P is pressure,   is Lame con-

stant,   is volume fraction component for 

fluid phase, 
f  is fluid density, a is ap-

parent viscosity of fluid, V  is constant suc-

tion/injection velocity, 0B  is strength of 

magnetic field, T  is coefficient of heat 

transfer,   is electrical conductivity, K  is 

drag coefficient, 0K  is thermal conductivi-

ty, and T  is temperature.                                                             
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The following non-dimensional quantities 

are introduced: 
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Using (2.5) in Eqs. (2.1)-(2.3), we get 
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where Re  is Reynolds number,  Pr  is 

Prandtl number, Br is Brinkman number, 

  is viscoelastic parameter, Gr  is thermal 

Grash of number, M is Hartman number. 

The boundary conditions are 

 

1,0,0 === vu  at ;1=y  

0,0,0 ===
dy

d

dy

du

dy
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  at 0=y        (2.9)  

 

The Eqs. (2.6)-(2.8) cannot be solved 

in closed form. As 1  for small shear 

rate, so to solve these non-linear coupled 

equations, we can take  
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(2.10) 

Using (2.10) in (2.6)-(2.8) and neglecting 

the higher powers  , we obtain the follow-

ing system of equations  
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with boundary conditions  
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d
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Solving the Eqs. (2.11)-(2.16) with bounda-

ry conditions (2.17), we get 
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and the constants )36to1( =iAi  are not 

presented here for brevity.   

 

3. Entropy Generation 
 Following Das and Jana [17], the 

entropy generation for the fluid flow 

through a deformable porous layer is  
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The non-dimensional form of the entropy 

generation number SN is given as 
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entropy generation due to viscous and elas-

ticity, and 
0

0

T

TTw −=  is the dimensionless 

temperature difference.  

The Bejan number is defined as  
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irreversibility ratio. 

 

4. Results and Discussion 
Numerical computations are carried 

out with the following parameter values  

,5.0,1,1,2Re,1,2Pr ======  BrM

2.0,2,2 ==−= GrP . Figs. 2-5 repre-

sent the displacement profile u  for various 

values of viscoelastic parameter  , volume 

fraction parameter  , drag parameter   

and Hartmann number M , respectively. 

Fig. 2 shows that the solid displacement 

profile decreases due to an increase in   

from 0=  to 3.0=  through 

2.0,1.0= . The solid displacement pro-

file for 0=  corresponds to Newtonian 

fluid and  0  corresponds to viscoelastic 

fluid. Fig. 3 shows that the solid displace-

ment profile decreases due to an increase in 

 . Fig. 4 depicts that the u increases when 

the drag parameter   increases from 
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2.0=  to 8.0=  through 6.0,4.0= . 

Physically, it can be said that during the 

growth of porosity there is less solid to im-

pede and thus solid displacement decreases 

due to less drag on solid components. Fig. 5 

shows that the values of u decrease as the 

Lorentz force i.e., the Hartmann number M  

increases.   

Figs. 6-9 represent the fluid velocity 

profile v  for various values of viscoelastic 

parameter  , volume fraction parameter , 

drag parameter   and Hartmann number 

M , respectively. It is observed that the val-

ues v  decrease due to an increase in  , , 

M , while the reverse effect is seen for in-

crease in  .  

 

 
Fig. 2. Displacement profile for different . 

 

 
Fig. 3. Displacement profile for different  . 

 

 

 
Fig. 4. Displacement profile for different  . 

 

 

 
Fig. 5. Displacement profile for different M . 

 

 
Fig. 6. Velocity profile for different  . 

 

 
Fig. 7. Velocity profile for different  . 
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Fig. 8. Velocity profile for different  . 

 

 
Fig. 9. Velocity profile for different M . 

 

 
Fig. 10. Temperature profile for different  . 

 

                                                                             

Fig. 11. Temperature profile for different  . 

 

 

 
Fig. 12. Temperature profile for different Br . 

 

Temperature profiles ( ) for different  , 

 , and Br  are shown in Figs. 10-12. From 

Figs. 10 and 12 it is observed that tempera-

ture profiles decrease due to an increase in 

  and Br  while they increase when drag 

parameter   increases (Fig. 11). Figs. 13-

14 represent the entropy generation number 

and Bejan number for various. 

 
Fig. 13. Entropy generation number for different 



Br
. 

 

Fig. 14. Bejan number for different 


Br
. 

 

 



U.J. Das and M. Das | Science & Technology Asia | Vol.27 No.2 April - June 2022 

75 

values of 


Br
.  It is observed that both the 

entropy generation number and Bejan num-

ber increase with the increase in 


Br
. Also, 

from Fig. 13 it is seen that the entropy gen-

eration number increases with the increase 

in y  from 0=y  to the wall 1=y , while 

Fig. 14 shows that the Bejan number de-

creases  with the increase in y from 0=y  

to 5.0=y  (nearly).  After that the Bejan 

number again increases for 5.0=y (nearly) 

to 1=y .  

Figs. 15-16 show the impact of  on 

entropy generation number and Bejan num-

ber. It   is observed   that due to an increase 

in viscoelastic parameter   from 0=  to 

3.0=   through 2.0,1.0=    

 
Fig. 15. Entropy generation number for different 

 . 

 

 
Fig. 16. Bejan number for different  . 

 

 
Fig. 17. Entropy generation number for different 

 . 

 

 

Fig. 18. Bejan number for different  . 

 

 
Fig. 19. Entropy generation number for different 

 . 

 

 
Fig. 20. Bejan number for different  . 
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entropy generation numbers increase while 

Bejan number decreases. Figs. 17 -18 show 

the impact of    on the entropy generation 

number and Bejan number. From Fig. 17 it 

is observed that the entropy generation 

number increases due to an increase in   

for 0=y  to 3.0=y  (nearly), but the re-

verse effect is seen for ]1,3.0(y . Figure 

18 shows that the Bejan number decreases 

due to an increase in  .  Figs. 19-20 show 

the impact of  on entropy generation num-

ber and Bejan number. It is observed that 

both entropy generation number and Bejan 

number increase when the values of   in-

crease. 
 

5. Conclusions 

The above study led to the following 

conclusions: 

1. The displacement profile increases due 

to an increase in the drag parameter, 

while it decreases due to an increase in 

the viscoelastic parameter, volume frac-

tion parameter, and Hartmann number.  

2. The fluid velocity profile increases due 

to an increase in the volume fraction pa-

rameter, while it decreases due to an in-

crease in viscoelastic parameter, drag pa-

rameter, and Hartmann number. 

3. The temperature profile decreases due to 

an increase in the volume fraction pa-

rameter and Brinkman number, while it 

increases when the drag parameter in-

creases. 

4. The entropy generation number increases 

with the increase in 


Br
, the viscoelastic 

parameter  and volume fraction parame-

ter. 

5. The Bejan number increases with the 

increase in 


Br
 and volume fraction pa-

rameter, while it decreases when the vis-

coelastic parameter and drag parameter 

increase.  
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