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ABSTRACT

The problem of magnetohydrodynamic (MHD) flow of viscoelastic fluid in a deforma-
ble vertical porous layer with entropy generation analysis has been investigated. The vertical
walls are subjected to a constant injection/suction velocity. The expressions for solid dis-
placement, fluid velocity and temperature distribution are derived. The impact of relevant pa-
rameters on the solid displacement, fluid velocity, temperature, entropy generation number

and Bejan number are discussed graphically.
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1. Introduction

The study of viscous fluid flow
through deformable porous material has
been studied by many researchers due to its
wide applications in the fields of engineer-
ing, biological problems of skin and tissue
mechanics for articular cartilage. Terzaghi
[1] initiated the study of deformation of po-
rous materials and fluid movement. Biot [2]
developed this theory of deformation and
acoustic propagation of fluid. This model is
used to study the permeability of arterial
wall [3- 5] and articular cartilage [6-7]. Bar-
ry et al. [8] investigated the problem of vis-
cous fluid in a channel of deformable po-

rous material for the examination of the im-
pact of glycocalyx on flow inside blood ves-
sels. Ambrosi [9] studied the mechanics of
infiltration over porous medium. Sreenadh
et al. [10] studied Couette flow in a deform-
able bed. Sreenadh et al. [11-12] analyzed
Jeffrey fluid flow over deformable porous
layer. Murthy [13] studied the MHD Casson
liquid flow over a deformable porous medi-
um with slip effects.

The study of entropy generation in a
system of fluid is an important part of heat
transfer analysis and in its efficiency in per-
forming. Bejan [14] explained the analysis
of heat transfer in viscous fluid. Also, Bejan
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[15] presented entropy generation analysis
and heat transfer in fluid flow system. Ee-
gunjobi and Makinde [16] studied the entro-
py generation of an MHD flow with varia-
ble viscosity in a channel. Das and Jana [17]
studied entropy in a flow of an incompressi-
ble viscous fluid in a porous channel incor-
porating Navier slip condition. Sreenadh et
al. [18] analyzed the entropy generation for
MHD flow in a vertical deformable porous
layer.

The above works have motivated us
to study the MHD flow of viscoelastic fluid
through a deformable porous layer with
constant injection/ suction at the walls.
Here, the aim is to investigate the effects of
viscoelastic parameter and entropy genera-
tion analysis in MHD flow. The novelty of
this work lies in the study of flow behavior
of viscoelastic fluid in the case of a deform-
able porous layer.

2. Mathematical Formulation

Consider a steady MHD flow of an
incompressible viscoelastic fluid, character-
ized by Walters’ liquid model B’ through a
deformable, vertical porous layer with con-
stant injection/suction velocity at the porous
walls. The porous material is designed as a
continuous, homogeneous and isotropic
mixture of fluid and solid phases where
each point in the binary mixture is occupied
concurrently by fluid and solid. The X - axis
is taken along the midway of the channel
and Y -axis at right angles to it as shown in
Fig.1. The heat is generated in the fluid by
viscous and Darcy dissipations. The walls of
the channel are at a distance 2h .

The governing equations of the flow,
following Barry et al. [8] and Sreenadh et al.
[12] for viscoelastic fluid become
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Fig. 1. Physical model of the problem.
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The boundary conditions are
Vv=0,0=0T =T,at y=h;
d—\i O,d—ljzo d—T_—o aty=0, (2.4)
dy —dy dy
where U,V are velocity components along

X,y -axes, P is pressure, u is Lame con-
stant, ¢ is volume fraction component for
fluid phase, ,0f is fluid density, x,is ap-
parent viscosity of fluid, V is constant suc-
tion/injection velocity, B, is strength of
magnetic field, S; is coefficient of heat
transfer, o is electrical conductivity, K is
drag coefficient, K, is thermal conductivi-

ty,and T is temperature.
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The following non-dimensional quantities
are introduced:
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Using (2.5) in Egs. (2.1)-(2.3), we get

U gprsi—o, (26)
dy’

dv d* dv
Reny—+—-—+Renp—-— +GrT

ny " dy? n dy Pn

—(5+M)n =0, (2.7)
d?e do dv d?v

+PrRe— - BrRe——=0,(2.8
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where Re is Reynolds number, Pr is

Prandtl number, Bris Brinkman number,
y is viscoelastic parameter, Gr is thermal

Grash of number, M is Hartman number.
The boundary conditions are

u=0,v=0,0=1at y=1

dv_gdu_odo_o
dy

, =0
dy dy y

(2.9)

The Egs. (2.6)-(2.8) cannot be solved
in closed form. As y <<1 for small shear

rate, so to solve these non-linear coupled
equations, we can take

(u,v,0) = (uo’vo’90)+7(u0!vor90)+0(7/2)
(2.10)
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Using (2.10) in (2.6)-(2.8) and neglecting
the higher powers y, we obtain the follow-
ing system of equations

d’u,
& —(1-g)P+6v, =0, (2.11)
o° VO+Re d —¢Pn+Gro,
dy”
—-(6+ M)77V0 =
(2.12)
%0y | prre% _Reprd ™Yo W% _o (2.13)
dy? dy dy?
2
% + 8, =0, (2.14)
y
2 3
v, Rendvl +Re77d Yo +Grg,
dy? dy dy’
—(5+M)nv, =0, (2.15)
2
d<é, +PrRed9 _Re dv, d?v, 0, (2.16)
dy? dy dy dy?

with boundary conditions

Up=u,=0,v,=v,=0,6,=1,6,=0 at
y=1

du, _du, _ dvo_%_ode de, _

dy dy dy dy dy dy

at y=0. (2.17)

Solving the Egs. (2.11)-(2.16) with bounda-
ry conditions (2.17), we get

Uy = A exp(—=my) + A exp(-m,y) + Ay
+AY + A, (2.18)
U = Agexp(-my) + A, exp(-m,y)
+ Ay exp(=2m,y) + Ay exp(-2m,y)
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+ Ay, eXp(=my —m,y)
+ A exp(—PrRey) + ALY? + Agy
VA, (2.19)

Vo = A, exp(—=m,y) + Ajexp(-m,y) + A,
(2.20)

v, = Agexp(-my) + Ay exp(-m,y)

+ Ay eXp(=2myy) + A, exp(-2m,Y)

+ Ay, exp(—=my —m,y) A,; exp(—PrReYy)

+A,, (2.21)

6, =1, (2.22)
6, = Asexp(=2m,y) + A, exp(-m,y)

+ Az exp(-my —m,y) + As exp(—PrRey)
+A;, (2.23)

where
o Ren+Re?n? +4(M + )y
1 2 )
. Ren—+Re? 7% +4(M +5)y
2 2 !
and the constants A (i=1t036) are not
presented here for brevity.

3. Entropy Generation

Following Das and Jana [17], the
entropy generation for the fluid flow
through a deformable porous layer is

—\2 N2
E. :K—g d—-[ A d—\_/ Ky
T, L dy T, \dy) T,
2— J—
+ﬁdT‘2’d—Y. 3.1)
T, dy” dy

The non-dimensional form of the entropy
generation number N is given as
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temperature difference.

The Bejan number is defined as

Nl

= , Where @ :& is the
Ng 1+ N,

irreversibility ratio.

Be

4. Results and Discussion

Numerical computations are carried
out with the following parameter values
Pr=2,M =1Re=2,7=1,Br=1,¢=0.5,
P=-2,Gr=2,7=0.2. Figs. 2-5 repre-
sent the displacement profile u for various
values of viscoelastic parameter y, volume
fraction parameter ¢, drag parameter o

and Hartmann number M, respectively.
Fig. 2 shows that the solid displacement
profile decreases due to an increase in y

from =0 to »=0.3 through
7 =0.1,0.2. The solid displacement pro-
file for » =0 corresponds to Newtonian
fluid and y #0 corresponds to viscoelastic

fluid. Fig. 3 shows that the solid displace-
ment profile decreases due to an increase in
¢ . Fig. 4 depicts that the U increases when

the drag parameter O increases from
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0=0.2 to 6 =0.8 through 6=0.4,0.6.

Physically, it can be said that during the
growth of porosity there is less solid to im-
pede and thus solid displacement decreases
due to less drag on solid components. Fig. 5
shows that the values of U decrease as the
Lorentz force i.e., the Hartmann number M
increases.

Figs. 6-9 represent the fluid velocity
profile v for various values of viscoelastic
parameter y, volume fraction parameter ¢,
drag parameter ¢ and Hartmann number

M , respectively. It is observed that the val-
ues Vv decrease due to an increase in y,9,

M , while the reverse effect is seen for in-
crease in ¢@.
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Fig. 2. Displacement profile for different .
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Fig. 3. Displacement profile for different ¢ .
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Fig. 4. Displacement profile for different o .
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Fig. 5. Displacement profile for different M .
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Fig. 8. Velocity profile for different o .
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Fig. 9. Velocity profile for different M .
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Fig. 10. Temperature profile for different ¢ .
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Fig. 11. Temperature profile for different o .
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Fig. 12. Temperature profile for different Br .

Temperature profiles (&) for different ¢,

0, and Br are shown in Figs. 10-12. From
Figs. 10 and 12 it is observed that tempera-
ture profiles decrease due to an increase in
¢ and Br while they increase when drag

parameter ¢ increases (Fig. 11). Figs. 13-
14 represent the entropy generation number
and Bejan number for various.
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Fig. 13. Entropy generation number for different
Br

Br
Fig. 14. Bejan number for different E
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values of % It is observed that both the

entropy generation number and Bejan num-
. . . . Br
ber increase with the increase in E Also,

from Fig. 13 it is seen that the entropy gen-
eration number increases with the increase
in y from y =20 to the wall y =1, while
Fig. 14 shows that the Bejan number de-
creases with the increase in y from y =0
to y=0.5 (nearly). After that the Bejan
number again increases for y = 0.5 (nearly)
to y=1.

Figs. 15-16 show the impact of y on

entropy generation number and Bejan num-
ber. It is observed that due to an increase
in viscoelastic parameter y from y =0 to

y =0.3 through y =0.1,0.2
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Fig. 15. Entropy generation number for different
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Fig. 16. Bejan number for different y .
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entropy generation numbers increase while
Bejan number decreases. Figs. 17 -18 show
the impact of o on the entropy generation
number and Bejan number. From Fig. 17 it
is observed that the entropy generation
number increases due to an increase in o
for y=0 to y=0.3 (nearly), but the re-
verse effect is seen for y e (0.3,1]. Figure
18 shows that the Bejan number decreases
due to an increase in o . Figs. 19-20 show
the impact of ¢ on entropy generation num-
ber and Bejan number. It is observed that
both entropy generation number and Bejan
number increase when the values of ¢ in-
crease.

5. Conclusions

The above study led to the following
conclusions:
1. The displacement profile increases due

to an increase in the drag parameter,
while it decreases due to an increase in
the viscoelastic parameter, volume frac-
tion parameter, and Hartmann number.

2. The fluid velocity profile increases due
to an increase in the volume fraction pa-
rameter, while it decreases due to an in-
crease in viscoelastic parameter, drag pa-
rameter, and Hartmann number.

3. The temperature profile decreases due to
an increase in the volume fraction pa-
rameter and Brinkman number, while it
increases when the drag parameter in-
creases.

4. The entropy generation number increases

. . . Br . .
with the increase in E , the viscoelastic

parameter and volume fraction parame-
ter.
5. The Bejan number increases with the

. . Br .
increase in o and volume fraction pa-

rameter, while it decreases when the vis-
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coelastic parameter and drag parameter
increase.
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