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ABSTRACT

The fractional g-differintegral operator defines two new subclasses of analytic func-
tions in the open unit disc in this article. Fekete-Szegd inequalities are also derived for these

newly defined subclasses.
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1. Introduction and Preliminaries

The theory of fractional calculus has
risen to prominence and acclaim in recent
years, owing to its demonstrable break-
throughs in a variety of fields of science and
engineering. Because of the widespread us-
age of the g-calculus in mathematics and
physics, there has been a huge expansion in
the quantity of articles written in this area
recently. Inquisitive readers might consult
the articles on the issue by [[I-d] for further
details.

Indeed, the first author of this pa-
per examined some classes of analytic func-
tions related with fractional g-calculus op-
erators with Choi and Purohit in [[7]. Sev-
eral scholars have recently introduced new
classes of analytic functions that are defined
utilizing quantum calculus operators. We
recommend that the reader consult the ar-
ticles [8-14] and the references included
therein for some new studies on the classes
of analytic functions defined in combina-
tion with quantum calculus operators and
related points. The goal of this paper is to
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introduce two new classes of analytic func-
tions defined using g-calculus operators and
the notion of subordination in the open unit
disc. Fekete-Szegd inequalities for func-
tions belonging to these classes are also ob-
tained.

Let H(a,n) represents the class of
functions f(w) of the type

flw)=a+ Z an+pwn+p’ (w e D),

p=0
(1.1)
that are analytic in the open unit disk D =
{w € C : |w| < 1}, and let A be the
subclass of (0, 1) having functions in the

type
flw)=w+ Z a,w".

n=2

(1.2)

The classes of functions in A that are
univalent, convex, starlike and close-to-
convex in D are represented respectively by
S, §%, C and K. Let fi(w) and fo(w) are
functions analytic in D. A function f; is
subordinate to f> in D, for the existence of
an analytic function ¢(w) in D with the con-
dition

¢(0) =0,

such that

fi(w) = f2(¢(w))

This subordination is denoted by
filw) < fo(w). Further, if the func-
tion fo(w) is univalent in D, then fi(w) <
fo(w) (w€D) & fi(0) = f2(0) and
/(D) c fo(D).

lp(w)| <1 (weD),

(w € D).

Using the extended fractional g¢-
derivative operator Dg ., which was re-
cently investigated in [9], a fractional ¢-
differintegral operator Q7 . : A — A is
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defined as below:

Fq(2 B T) T NT
T, ¢ Pl

y(2-7)y(n+1) n
iT, T n+1-0) "

(1.3)
(tr<2; 0<g<1, weDb),

Q) f(w) =

Z

where D/ . f(w) in (1.3) denotes, a frac-
tional g-integral of the function f(w) of
order 7 when —o0 < 7 < 0 (Refer: []18])
and a fractional g-derivative of the function
f(w) of order T when 0 < 7 < 2. Note

Q) . f(w) = f(w).

The linear multiplier fractional g-
differintegral operator Z)qTIT determined
recently by Selvakumaran et al. [23]] as fol-
lows:

DI f(w) = f(w),
Dy f(w) = (1-0Q] , f(w)
+Adw Dq(QZI,Zf(w)), (1 =0),
DI f(w) =Dr Dy f(w)),

m e N,
(1.4)

If f(w) is of the form ([.2), by (1.4) we

have

m [y2-7)Iy(n+1)
Dyaf(w)= ‘“+Z(rq(2)rq(n+1—r)

DTmf( )_DTl(Z)Tm 1 (w)),

m
[1 -1+ [n]q/l]) a,w".
More simply,

;:T(n)anwn’

(o]
D f(w)=w +ZE
n=2
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—T,m
where E (n)

Iy (2-7)Ty (n+1)
Iy (2)Ty (n+1-7)

m

[1 -2+ [n]41]

The operator Z) m reduces to many new
and known dlfferentlal and integral opera—
tors. Partlcularly, wheng — 17 and 7 =
the operator Z)q becomes an operator in-
troduced in[l9] andif¢g — 17, 7 = 0 and

= 1 it becomes an operator 1ntroduced by
Sélﬁgean [22].

Let the subclass of functions o be
% that are univalent and analytic in D and
for which o(D) is convex and p(0) =
R(o(w)) > 0 for w € D.

Definition 1.1. A function f € A is called
the class S;’Zy( o) provided that

1 (wD (DT’Z’f(w))

(VEC\{O}, 0 €P).
(1.5)

Definition 1.2. A function f € A is called
the class CqT’Ty(Q) provided that

1 (Dy(wDy (D7 @)

N\ DD () el
(y e C\{0}, o0€?P).
(1.6)

We can easily verify the following:

(i) If m = 0, then 77 (0) = S,5(0)
and CT -0 ,(0) = Cgy(0), (y€C\
{0} (Seoudy and Aouf [24]).

(i) f m = 0and ¢ — 17, then
S;0 (@) = Sy(e) and C;) (o) =

Cy(0), (y e C\{0}) (Ravfcflandran
etal. [21]).

(i) If m = 0,y = 1and ¢ — 17, then
S;01(0) = S*(0) and 0721(9) =
C(Q) (Ma and Minda [15])
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1+(1-2a)z
1z and

then 877 _(0) = Si(¥)

and C;7)_(0) = Ca(y), (y € C\
{0},0 < a < 1)(Frasin [20]).

(iv) If m = 0, o(w) =
qg — 17,

(V) Ifm =0, o(w) =

- 7,0
, then Sq/ly(g)

q,’A,y(Q) = C(y), (y € C\{0})
(Nasr and Aouf [[16,17]).

By making use of the following lemmas we
are establishing our primary outcomes.

Lemma 1.3. /U5] Ifg1(€) = 1+u1E+usé+
- is a function having positive real part in
D and u is a complex number, then we get

lug — puf| < 2max{1;[2u - 1|}.

For the functions g1(w) = (1+&2)/(1-¢&2)
and g1(w) = (1 + &)/ (1 = &) the result is
sharp.

Lemma 1.4. [15] Ifg1(€) = 1+u1E+usé+
- is an analytic function having positive
real part in D, thus

—da+2 if a<0,
lug—au?| < { 2 if 0<ac<l,
da-2 if ax1.

When a < 0 or a@ > 1, the equality exists

iff g1(&) is (1 + &)/ (1 = &) or one of its ro-
tations. If 0 < a < 1, the equality exists

iff g1(€) is (1 + &2)/(1 = &2) or one of its

rotations. If a = 0, the equality exists iff

{14\ 1+E (1—y\1-£
gl(‘f)‘( 2 )1—§+( 2 )1+§
(0<y<1

or one of its rotations. If « = 1, the equal-
ity exists iff g1(w) is the reciprocal of one of
the functions such that the equality holds for
a = 0. The upper bound mentioned above
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is also sharp, and it can be enhanced as fol- w(w) = 0(£(w)) = (u1 (w)—l)

lows: when 0 < a < 1, ur(w)+1
2
-1 -1
Uy —ai| +alug2 <2 O<a<1/2) =1 +H1(Zi§i’3+1) +H2(Z1§Z§+1) +o
and Hicy |Hi cf) Hal]
) ) =1+ wt|—|co— =+ w+
luo—aui|+(1-a)ui|* <2 (1/2<a <1). 2 2 4
(2.2)
2. Main Results From equatlons (2.1)) and (2.2), we get by =
Theorem 2.1. Suppose o(w) =1+ Hiw + H12°1 and by = (62 - C%) + H2C1 . On the
PIQ(I_)2 + H30)3 + - with H]_ # 0. lfthe other hand, Slnce
function f(w) determined by (I.3) belongs .
to S;”/’{”y(g), then we get wDy(D, ) f(w))
DI (w)
|ag — paj| < h/Hllm = 1+q:T’m(2)a w +[q (1+q)"Tm(3)a
q(1+q)2, 733l 94 22 K
!—!T m
L|He  vHL ) (1+Q)”T’"(3) 4 (557 @) ]’ +-
max | Lj|——+— H—/i . .
H,y q i m(2))2 from equation (2.1)), we have
The result is sharp. yb1=gq E;’/’{’(2)a2
Proof. Let yb2 = q (1+q)E " (3)az - q (B (2)%a3,
1 {wD (DT’/'I” f(w)) or equivalently,
nw):= _( DI f(w) _)
w g = ybr  yHi
=1l+biw+bew®+---. (2.1 YT YEINQ)  2qE(2)
m . 1 ,y2b2
If f € S 7, (o), there exist a Schwarz b
. 9.y . . . as = T Yb2 +
function £(w), that is analytic in D with g (1+ 61) 13
|é(w)] < 1and £(0) = 0in D, in such a 7H1
way that T2q(1+ Q)= (3)
. 1 {wD (@T’mf(w)) ) [CQ 21 (1 _Hy _ VHl) C2}
+ = -1| = w)). 1|-
Since the function o(w) is univalent and Therefore,
p < o, then the function 9 vH; [ 2]
as — Hag = =T.m -l
1+ 07 (u(w) _ 1+£(w) 241+ @)% 03
T T u(w) T 1-¢w) 23
) where
=l+ciw+cow+---
| o poi| 1oty YMIELE
is the analytic function having positive real 2 H, q q (B (2))?
part in D . Hence we have, 24)
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Thus, the result following the application of
Lemma |L.3] and we observe that the func-
tions deﬁned by

1(@wDg(D; ) f(w))

L+ —( e~ - 1) = 0(?)
v\ Dy f(w)

and
1 (wDg(D) f(w))

1+—( i T’,Z’/l —1)=Q(w).
Y D,y f(w)

This completes the proof. O

For the function class C;”fy (0) we have the
accompanying outcome. The proof of the
Theorem P.2is neglected as it is same to that
of Theorem R.1].

Theorem 2.2. Suppose o(w) =1+ Hiw +
How? + Hyw? + -+ with Hy # 0. If f(w)
defined by (II.2) is in C;’Zly(g), then we get

lyH|
Nes 7 (3l

(1  (4g+q*)E77 (3) )

2
laz — paj| <

q 3l

7H1

H2+

Hax {15 ey @ H

The result is sharp.

Substituting m 0 in Theorem P.1|, we
get the inequality for the function class

Sy.y(0).

Corollary 2.3. [24] Let the function
olw)=1 + Hiw+ How? + H3w? + - - - with
Hy #0. If f(w) € Sg,4(0), then

lyHi|
|ag — pa3| < ————
7T q(l+q)
H H
max{l; =24 u(1 —(1 +q),u)’} .
H,
The inequality is sharp.
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Taking ¢ — 1~ in the Corollary 2.3, we get
the inequality for the function class S, (o)
which enhances the result of ([21]], Theorem
4.1).

Corollary 2.4. Suppose o(w) =1+ Hiw+
How? + H3w? +- -+ with Hy # 0. If f(w) €
S, (0), then we get

Substituting m = 0 in Theorem P.2, we get
the accompanying corollary.

laz — pas|
< lyH1| m
2

H
ax {1; ‘—2 +(1-2u)yHy
Hq

The inequality is sharp.

Corollary 2.5. /24] Suppose o(w) =
Hiw + Hyw? + H3w? + - - - with H; # 0. If
f(w) € Cy,(0), then we get

lyHi|
las — pa3) <
2 Q[s]q!
Hy, yH 1+q+q?
Xmax{l +7 1( —( el CI),U)‘}
H g (1+49)
. The inequality is sharp.

Letting ¢ — 1~ in Corollary 2.3, we get the
result for the function class Cy (o).

Corollary 2.6. Let the function o(w) =1+
Hiw + Hyw? + H3w? + - - - with H; # 0. If
f(w) € C,(0), then we get

|as — pa3|

H
< |y61| max{l;‘ %+(1— %,u)yHl ”
The inequality is sharp.

Theorem 2.7. Let the function o(w) = 1 +
Hiw+ How? + H3w? +- - - with Hy > 0 and
Hy > 0. Consider

By ’"(2))2 [q(Hg — Hy) +yH?

2
(1+q)yH;

g1 =
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BN (2)? [q(Hy + Hy) +yH?
o2 = =0
73 (1+q)yH?
oy = g m(2)) qH> +yH%
ENG) | (1+q)yH?
If f(w) given by (II.2) belongs to S; /’l”y(g)

withy > 0, then

lag - a3 < —20
PTHOLS (i gETT )

Hy | yHi [{ _ (1+¢1)E;ﬁ"(3)

mt g (1 Emer K
if p<o1

1, lf o1 S u<oy

_Hy _ yHi (4 _ (1+q)E] 7 (3)

g (1 e K

if p= o

Further, if o1 < u < 03, then
4(E7"(2))?
1+ )= m(3)7H2
a +q>:; ")
q
yH:

S 1 :T,m
q(1+q)8

2
lasz — pas| +

yH? )
u

- Hy - |as|?

(3)
and if o3 <y < 09, then we get

(2))?
BN (3)yH}
1+ q)”T 13

—~T,m

9,
(I+4q)

2
yH? (

2
laz — ,ua2|

|
)]|a2|2

+ Ho +

H
<
q(1+q)2

(3)
The result is sharp.

Proof. Using Lemma to the equations
(2.3) and (2.4), we can demonstrate our

165

outcomes. To show the sharpness of the
bounds, we define £, , (n =2,3,...) by
| (@D (DI F g ()
1+_( T.m = _1)29("0"—1)’
Y\ D) Fon(w)

Fon(0)=0= Té,n(O) 1

and the functions G, and H; (0 < A < 1)

by

1+ ( 1):g( )
Ga(0)=0=G7(0) -1

and1+§( —1)

Q(— )

H,(0) = 0 = H}(0) - 1.

wDg (D Ga(w)
DI Ga(w)

w(w+A)
1+A4z

1

Y

wDy (Z)q M Hi(w))
Z)T’m’H,l(a))

1+1z
w(w+A)

Clearly, Fp.n, Ga and H, € S;”/’{fy(g). If
U < o1 or u > o039, then the equality exists
iff f is F, 2 or one of its rotations. When
o] < p < 09, the equality exists iff f is
Fo,3 or one of its rotations. If 4 = o7, then
the equality exists iff f is G, or one of its
rotations. If u = o, then the equality exists
iff f is H, or one of its rotations. O

In the same way, we can get the inequality
for C™"" (p).

a4y
Theorem 2.8. Let the function
o(w) = 1+ Hiw+ Hyw? + H3w? + - - - with
H, > 0and Hy > 0. Let

,and .

(B0 (2)? (1+¢)°
2003

[ q(Ho—Hy)+yH?
[3]4!yH?

&1 =

—=T,m

(EF(2)) (1+9)?
200

[ g(Ho+Hy)+yH?
[31q!vH?

|

€2

(EL7(2))? (1+q)°
ET7T(3)

[ qHo+yH}
L [3]q!7H12

€3
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If f(w) given by (1.3) belongs to C (Q)
withy > 0, then
YH:
|ag — paj| < AR S
ST MCSE))
Hy Ly (1 [31q'"”"<3>
et (1 Tt
if u<er
1, if €1 <u<e
Hy, yHi (31427 (3)
“H T (1 IRCTEESHE R
if e

In addition, if 1 < u < g3, then we get

—~T,m

L a4 qRE @)
R N TN eI [Hl_HQ
CyHY [ (+q+gMET(3) )
. (1 T+ E ) “)]'“2'
YH,

D S —
ql314!2;77 (3)

and if e3 < u < &9, then we get

L g+ g E )
laz — pas| + Bl _Tm(?)) H2 1+ Hs
yH} [ (+q+a)E0E3 ) )
¢ ' araET@rE ]
YH,

< - -
T al3lg BT (3)

The result is sharp.

Letting ¢ — 1~ and m = 0 in Theorem 2.7,
we get the accompanying outcome.

Corollary 2.9. Let the function o(w) = 1+
Hiw+How?+ H3w? +- - - with Hy > 0 and
Hy > 0. Consider
(Hy — Hy) + yH?

27H%

gy =

166

(Hy + H1) + yH? Ho +yH?
2)/Hf - 2yH% .
If f(w) € Sy (0) withy > 0, then we get

g5 =

H. ’}/2H2
)/22 21 (1_2/1)’
ifu <oy
laz—pa3l < { B, if ou<p<os
H. 2H2
% 721 (1_2/~1)’
if p=os

In addition, if o4 < p < o, then

1
lag — pa3| + ——[Hi — Hy
Hl

2y
YH;
= yHY (1=2p) Jlaol* < ==

and if g <t < 05, then

1
las — paj| + —2[1‘11 + H,
Hj

YH1
+yH? (1= 24) Jlaof® < ——.

The inequality is sharp.

Letting ¢ — 1~ and m = 0 in Theorem P.§,
we get the accompanying outcome.

Corollary 2.10. Suppose o(w) = 1+Hiw+

How? + Hyw® + -+ with Hi > 0 and
2[(Ha—Hy)+yH?]
H2 2 0 Let 84 - T’
_ 2[(Ha+H1)+yH}] _ 2[Hy+yH?] I
- 3yH} » 567 TRyEE

f(w) € C, (o) withry > 0, then we get

yHy | v*H} 138
6 776 2 )
if p<ey
2 H
lag—pas| < L&+, if e4<uc<es
_yH» _ Y°H? 1- 3¢
6 6 2 >
if p1=es
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In addition, if e4 < u < &g, then we get

las —ya§| + —2[H1 - H,
1
vHy
- yHi(1 ]Ia ?<—
and if eg < 1 < &5, then we get
2
lasz — pajz| + VHf[Hl + Hy
3u vHq
+yHT (1= =) ]laz)? < —.
2 6
The inequality is sharp.

3. Conclusion

By suitably choosing the parameters, one
can further easily obtain a number of co-
efficient inequalities from the main results.
Moreover, the classes ST o ,(0), qu ;"y(g)
defined in this article can also be used in the
investigation of various geometric proper-
ties in the unit disk.
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