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ABSTRACT
In this paper, we present a strong convergence theorem for total asymptotically non-

expansive mappings in a real uniformly convex Banach space.
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1. Introduction
Recently, we studied a convergence

theorem for pseudocontractive mappings in
Hilbert spaces and constructed a modified
hybrid algorithm, see [1]. In this work,
we provide a strong convergence theorem
for total asymptotically nonexpansive map-
pings in a real uniformly convex Banach
space. On the other hand, researchers
may decide to focus on enriched contrac-
tion mappings, see [2]. The results provide
a flexible and effective tool for research-
ing fixed point theorems, nonlinear prob-
lems, optimization tasks, control systems,
numerical analysis, and machine learning
which have a wide range of applications
across different mathematical disciplines.
However, for effective fixed point approx-
imation, total asymptotically nonexpansive

mappings are often used in signal process-
ing, image processing, and optimization ap-
plications. In fixed point research, various
types of mappings are studied, each with
its own properties and characteristics, see
[3, 4]. Our continuous motivation when it
comes to studying this subject arises from
its application as we said earlier.

Let us assume that 𝐶 is a nonempty
closed convex subset of a real Banach space
𝑋 and we define a self-mapping of 𝐶 as 𝑇.
Consequently, we denote 𝐹 (𝑇) as a set of
all fixed point of 𝑇 .

A mapping 𝑇 : 𝐶 → 𝐶 is said
to be asymptotically nonexpansive [5] if
there exists a sequence {𝑘𝑛}, 𝑘𝑛 ≥ 1, with
lim𝑛→∞ 𝑘𝑛 = 1 such that ∥𝑇𝑛𝑥 − 𝑇𝑛𝑦∥ ≤
𝑘𝑛∥𝑥 − 𝑦∥, for each 𝑥, 𝑦 ∈ 𝐶 and 𝑛 ≥ 1.
𝑇 is said to be uniformly 𝐿 - Lipschitzian
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if there exists a constant 𝐿 > 0 such that
∥𝑇𝑛𝑥 − 𝑇𝑛𝑦∥ ≤ 𝐿∥𝑥 − 𝑦∥, for each 𝑥, 𝑦 ∈
𝐶, 𝑛 ≥ 1. A mapping 𝑇 : 𝐶 → 𝐶 is said to
be nonexpansive, if ∥𝑇𝑥 − 𝑇𝑦∥ ≤ ∥𝑥 − 𝑦∥,
for each 𝑥, 𝑦 ∈ 𝐶. Note that, if 𝑇 is asymp-
totically nonexpansive (𝐴𝑁), then it is uni-
formly 𝐿 - Lipschitzian. Let R+ = [0,∞)
and 𝜙 ∈ Γ(R+) if and only if 𝜙 is strictly
increasing, continuous on R+ and 𝜙(0) = 0.
A mapping 𝑇 : 𝐶 → 𝐶 is said to be total
asymptotically nonexpansive (𝑇𝐴𝑁) [6] if
there exist two non-negative real sequences
{𝑐𝑛}, {𝑑𝑛} with lim𝑛→∞ 𝑐𝑛 = lim𝑛→∞ 𝑑𝑛 =
1, 𝜙 ∈ Γ(R+) such that ∥𝑇𝑛𝑥−𝑇𝑛𝑦∥ ≤ ∥𝑥−
𝑦∥ + 𝑐𝑛𝜙(∥𝑥 − 𝑦∥) + 𝑑𝑛, for each 𝑥, 𝑦 ∈ 𝐶,
𝑛 ≥ 1. If 𝜙(𝑡) = 𝑡 for each 𝑡 ≥ 0 and 𝑑𝑛 = 0,
𝑛 ≥ 1, then 𝑇𝐴𝑁 reduced to 𝐴𝑁 .

Arithmetic analysts are still curious
about fixing point estimation for different
sorts of nonlinear mappings, with modern
techniques being created for their applica-
tion (see citeOK, PS, KLS, SAF, MAWT,
GR). Approximating fixed points of the
modified Ishikawa iterative conspire un-
der total asymptotically nonexpansive map-
pings has been examined by a few creators;
see, for illustration, Chidume and Ofoedu
[13, 14], Kim [15, 16], Kim and Kim [17]
and others. For a mapping 𝑇 : 𝐶 → 𝐶,
Suantai and Nammanee [18] consider im-
proving the three-step preparation process
in 𝐶 defined by

⟨1⟩


given 𝑥1 ∈ 𝐶,
𝑧𝑛 = (1 − 𝛾𝑛)𝑥𝑛 + 𝛾𝑛𝑇

𝑛𝑥𝑛,
𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇

𝑛𝑧𝑛,
𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇

𝑛𝑦𝑛,

where {𝛼𝑛}, {𝛽𝑛} and {𝛾𝑛} are three real
sequences in [0, 1]. If 𝛾𝑛 = 0 for all
𝑛 ≥ 1, then iteration ⟨1⟩ becomes the fol-
lowing modified Ishikawa iteration process

(Ishikawa [19]) in 𝐶 defined by

⟨2⟩

given 𝑥1 ∈ 𝐶,
𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇

𝑛𝑥𝑛,
𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇

𝑛𝑦𝑛,

where {𝛼𝑛} and {𝛽𝑛} are two real se-
quences in [0, 1]. If 𝛽𝑛 = 0 for all 𝑛 ≥
1, then iteration process ⟨2⟩ becomes the
following modified Mann iteration process
(Mann [20]):

⟨3⟩
{
given 𝑥1 ∈ 𝐶,
𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇

𝑛𝑥𝑛,

where {𝛼𝑛} is a real sequence in [0, 1].
Theorems 1.5 and 2.3 of Schu [22]

were extended to uniformly convex Banach
spaces in the following findings by Rhoades
[21].

Theorem 1.1. Let 𝐶 be a nonempty
bounded closed convex subset of a uni-
formly convex Banach space 𝑋 , and let 𝑇 :
𝐶 → 𝐶 be a completely continuous asymp-
totically nonexpansive mapping with {𝑘𝑛}
satisfying 𝑘𝑛 ≥ 1,

∑∞
𝑛=1(𝑘𝑟𝑛 − 1) < ∞, 𝑟 =

max{1, 𝑝}. Then, for any 𝑥 ∈ 𝐶, the se-
quence {𝑥𝑛} defined by ⟨3⟩, where {𝛼𝑛} sat-
isfies 𝑎 ≤ 𝛼𝑛 ≤ 1 − 𝑎 for all 𝑛 ≥ 1 and
some 𝑎 > 0, converges strongly to some
fixed point of 𝑇 .

Theorem 1.2. Let 𝐶 be a nonempty
bounded closed convex subset of a uni-
formly convex Banach space 𝑋 , and let
𝑇 : 𝐶 → 𝐶 be a completely continuous
asymptotically nonexpansive mapping with
{𝑘𝑛} satisfying 𝑘𝑛 ≥ 1,

∑∞
𝑛=1(𝑘𝑟𝑛 − 1) <

∞, 𝑟 = max{1, 𝑝}. Then, for any 𝑥 ∈ 𝐶,
the sequence {𝑥𝑛} defined by ⟨2⟩, where
{𝛼𝑛}, {𝛽𝑛} satisfies 𝑎 ≤ (1−𝛼𝑛), (1−𝛽𝑛) ≤
1 − 𝑎 for all 𝑛 ≥ 1 and some 𝑎 > 0, con-
verges strongly to some fixed point of 𝑇 .

The following result, which general-
ized Theorem 1 of Senter and Dotson [24],
was established by Kim in 2012.
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Theorem 1.3. Let 𝐶 be a nonempty
bounded closed convex subset of a uni-
formly convex Banach space 𝑋 , and let 𝑇 :
𝐶 → 𝐶 be a nonexpansive mapping with
satisfying condition (𝐴) and 𝐹 (𝑇) ≠ ∅.
Suppose that for 𝑥1 ∈ 𝐶, the sequence
{𝑥𝑛} is defined by 𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 +
𝛼𝑛 [𝛽𝑛𝑥𝑛+(1−𝛽𝑛)𝑇𝑥𝑛] for all 𝑛 ≥ 1, where
{𝛼𝑛}, {𝛽𝑛} are sequences in [0, 1 such that∑∞

𝑛=1 𝛼𝑛 (1 − 𝛼𝑛) = ∞ and
∑∞

𝑛=1 𝛽𝑛 < ∞.
Then {𝑥𝑛} converges strongly to some fixed
point of 𝑇 .

In 2013, Kim [16] generalized the re-
sults due to Rhoades [21] by proving that
if 𝑇 : 𝐶 → 𝐶 is an 𝑇𝐴𝑁 mapping
satisfying condition (𝐴); then the squence
{𝑥𝑛} defined by ⟨2⟩ converges strongly to
some fixed point of 𝑇 . According to results
above, we were inspired to extend Kim’
s results [16] by using the iteration ⟨1⟩ to
define the sequence {𝑥𝑛} under 𝑇 to be a
𝑇𝐴𝑁 mapping satisfying condition (𝐴) and
prove that the sequence converges strongly
to some fixed point of 𝑇 . Our result gener-
alizes the results due to Rhoades [21] and
Kim [16].

2. Preliminaries
We’ll collect some helpful results in

this section, which will be used in the next
phase. If𝑇 : 𝐶 → 𝐶 is a mapping and𝐶 is a
nonempty subset of a real Banach space 𝑋 ,
then 𝑋 is said to be uniformly convex if the
modulus of convexity 𝛿𝑋 = 𝛿𝑋 (𝜖), 0 < 𝜖 ≤
2, of 𝑋 defined by 𝛿𝑋 (𝜖) = inf{1 − ∥𝑥−𝑦 ∥

2 :
𝑥, 𝑦 ∈ 𝑋, ∥𝑥∥ ≤ 1, ∥𝑦∥ ≤ 1, ∥𝑥 − 𝑦∥ ≥
𝜖} satisfies the inequality 𝛿𝑋 (𝜖) > 0 for all
𝜖 ∈ (0, 2]. Written 𝑥𝑛 → 𝑥 will denote the
sequence {𝑥𝑛} converges strongly to 𝑥.

Definition 2.1 ([24]). Let 𝑇 : 𝐶 → 𝐶 be
a mapping and 𝐹 (𝑇) ≠ ∅. 𝑇 is said to
satisfy condition (𝐴) if there exists a non-
decreasing function 𝑓 : [0,∞) → [0,∞)

and 𝑓 (0) = 0 and 𝑓 (𝑟) > 0 for all 𝑟 ∈
(0,∞) such that

∥𝑥 − 𝑇𝑥∥ ≥ 𝑓 (𝑑 (𝑥, 𝐹 (𝑇))),

for all 𝑥 ∈ 𝐶, where 𝑑 (𝑥, 𝐹 (𝑇)) =
inf 𝑧∈𝐹 (𝑇 ) ∥𝑥 − 𝑧∥.

Lemma 2.2 ([25]). Let {𝑎𝑛}, {𝑏𝑛} and
{𝛿𝑛} be sequences of non-negative numbers
such that 𝑎𝑛+1 ≤ (1 + 𝛿𝑛)𝑎𝑛 + 𝑏𝑛,∀𝑛 ∈ N.
If Σ∞

𝑛=1𝛿𝑛 < ∞ and Σ∞
𝑛=1𝑏𝑛 < ∞, then

𝑙𝑖𝑚𝑛→∞𝑎𝑛 exists.

Lemma 2.3 ([26]). If 𝑋 is a uniformly con-
vex Banach space, for 𝑥, 𝑦 ∈ 𝑋 and ∥𝑥∥ ≤
1, ∥𝑦∥ ≤ 1 and ∥𝑥 − 𝑦∥ ≥ 𝜖 > 0, then
∥𝜆𝑥 + (1 − 𝜆)𝑦∥ ≤ 1 − 2𝜆(1 − 𝜆)𝛿(𝜖) for
0 ≤ 𝜆 ≤ 1.

3. Main Results
First, we prove that lim𝑛→∞ ∥𝑥𝑛 − 𝑧∥

exists for all 𝑧 ∈ 𝐹 (𝑇), where the sequence
{𝑥𝑛} is defined by ⟨1⟩, as the following
lemma.

Lemma 3.1. If𝐶 is a nonempty closed con-
vex subset of a uniformly convex Banach
space 𝑋 , 𝑇 : 𝐶 → 𝐶 is a 𝑇𝐴𝑁 mapping
and 𝐹 (𝑇) ≠ ∅, {𝑐𝑛}, {𝑑𝑛} and 𝜙 satisfy the
following two condition:
(i) ∃𝛼, 𝛽 > 0 such that 𝜙(𝑡) ≤ 𝛼𝑡 for all
𝑡 ≥ 𝛽,
(ii)

∑∞
𝑛=1 𝑐𝑛 < ∞,

∑∞
𝑛=1 𝑑𝑛 < ∞, then

lim𝑛→∞ ∥𝑥𝑛 − 𝑧∥ exists for all 𝑧 ∈ 𝐹 (𝑇).

Proof. For any 𝑧 ∈ 𝐹 (𝑇), we let 𝑀 :=
max{1, 𝜙(𝛽)} < ∞. From (𝑖) and 𝜙 is a
strictly increasing, so

𝜙(𝑡) ≤ 𝜙(𝛽) + 𝛼𝑡, 𝑡 ≥ 0.

It follows that

∥𝑇𝑛𝑥𝑛 − 𝑧∥ ≤ (1 + 𝛼𝑐𝑛)∥𝑥𝑛 − 𝑧∥ + 𝑘𝑛𝑀, (3.1)
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where 𝑘𝑛 = 𝑐𝑛 + 𝑑𝑛. From ⟨1⟩ and Eq. (3.1)
we have

∥𝑧𝑛 − 𝑧∥
≤ 𝛾𝑛∥𝑇𝑛𝑥𝑛 − 𝑧∥ + (1 − 𝛾𝑛)∥𝑥𝑛 − 𝑧∥
≤ 𝛾𝑛 [(1 + 𝛼𝑐𝑛)∥𝑥𝑛 − 𝑧∥ + 𝑘𝑛𝑀]
+ (1 − 𝛾𝑛)∥𝑥𝑛 − 𝑧∥

= (1 + 𝛼𝛾𝑛𝑐𝑛)∥𝑥𝑛 − 𝑧∥ + 𝛾𝑛𝑘𝑛𝑀. (3.2)

From Eq. (3.2) it follows that
∥𝑧𝑛 − 𝑧∥ + 𝑐𝑛𝜙(∥𝑧𝑛 − 𝑧∥)
≤ ∥𝑧𝑛 − 𝑧∥ + 𝑐𝑛 [𝜙(𝛽) + 𝛼∥𝑧𝑛 − 𝑧∥]
≤ (1 + 𝛼𝛾𝑛𝑐𝑛)∥𝑥𝑛 − 𝑧∥ + 𝛾𝑛𝑘𝑛𝑀

+ 𝑐𝑛𝑀 + 𝛼𝑐𝑛 [(1 + 𝛼𝛾𝑛𝑐𝑛)∥𝑥𝑛 − 𝑧∥
+ 𝛾𝑛𝑘𝑛𝑀]
≤ (1 + 𝛼𝛾𝑛𝑐𝑛 + 𝛼𝑐𝑛 + 𝛼2𝛾𝑛𝑐𝑛

2)∥𝑥𝑛 − 𝑧∥
+ 𝛾𝑛𝑘𝑛𝑀 + 𝑐𝑛𝑀 + 𝛼𝑐𝑛𝛾𝑛𝑘𝑛𝑀

≤ (1 + 𝛼𝑐𝑛 + 𝛼𝑐𝑛 + 𝛼2𝑐𝑛
2)∥𝑥𝑛 − 𝑧∥

+ 𝑘𝑛𝑀 + 𝑐𝑛𝑀 + 𝛼𝑐𝑛𝑘𝑛𝑀

= (1 + 𝜎𝑛)∥𝑥𝑛 − 𝑧∥ + 𝛿𝑛𝑀, (3.3)

where 𝜎𝑛 = 2𝛼𝑐𝑛 + 𝛼2𝑐𝑛
2 and 𝛿𝑛 = 𝑘𝑛 + 𝑐𝑛 +

𝛼𝑐𝑛𝑘𝑛. And so
∥𝑇𝑛𝑧𝑛 − 𝑧∥
≤ ∥𝑧𝑛 − 𝑧∥ + 𝑐𝑛𝜙(∥𝑧𝑛 − 𝑧∥) + 𝑑𝑛

≤ (1 + 𝜎𝑛)∥𝑥𝑛 − 𝑧∥ + 𝛿𝑛𝑀 + 𝑑𝑛𝑀

≤ (1 + 𝜎𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜂𝑛𝑀, (3.4)

where 𝜂𝑛 = 𝛿𝑛 + 𝑑𝑛. Then we get that
∥𝑦𝑛 − 𝑧∥
≤ 𝛽𝑛∥𝑇𝑛𝑧𝑛 − 𝑧∥ + (1 − 𝛽𝑛)∥𝑥𝑛 − 𝑧∥
≤ 𝛽𝑛 [(1 + 𝜎𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜂𝑛𝑀]
+ (1 − 𝛽𝑛)∥𝑥𝑛 − 𝑧∥

= (1 + 𝛽𝑛𝜎𝑛)∥𝑥𝑛 − 𝑧∥ + 𝛽𝑛𝜂𝑛𝑀. (3.5)

and
∥𝑇𝑛𝑦𝑛 − 𝑧∥
≤ ∥𝑦𝑛 − 𝑧∥ + 𝑐𝑛𝜙(∥𝑦𝑛 − 𝑧∥) + 𝑑𝑛

≤ ∥𝑦𝑛 − 𝑧∥ + 𝑐𝑛 [𝜙(𝛽) + 𝛼∥𝑦𝑛 − 𝑧∥] + 𝑑𝑛

≤ (1 + 𝛽𝑛𝜎𝑛)∥𝑥𝑛 − 𝑧∥ + 𝛽𝑛𝜂𝑛𝑀

+ 𝑐𝑛𝑀 + 𝛼𝑐𝑛 [(1 + 𝛽𝑛𝜎𝑛)∥𝑥𝑛 − 𝑧∥
+ 𝛽𝑛𝜂𝑛𝑀] + 𝑑𝑛𝑀

= (1 + 𝛽𝑛𝜎𝑛 + 𝛼𝑐𝑛 + 𝛼𝛽𝑛𝑐𝑛𝜎𝑛)∥𝑥𝑛 − 𝑧∥
+ (𝛽𝑛𝜂𝑛 + 𝑐𝑛 + 𝛼𝛽𝑛𝑐𝑛𝜎𝑛 + 𝑑𝑛)𝑀

= (1 + 𝜑𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜈𝑛𝑀, (3.6)

where 𝜑𝑛 = 𝛽𝑛𝜎𝑛 + 𝛼𝑐𝑛 + 𝛼𝛽𝑛𝑐𝑛𝜎𝑛 and 𝜈𝑛 =
𝛽𝑛𝜂𝑛 + 𝑐𝑛 + 𝛼𝛽𝑛𝑐𝑛𝜎𝑛 + 𝑑𝑛. Hence

∥𝑥𝑛+1 − 𝑧∥
≤ 𝛼𝑛∥𝑇𝑛𝑦𝑛 − 𝑧∥ + (1 − 𝛼𝑛)∥𝑥𝑛 − 𝑧∥
≤ 𝛼𝑛 [(1 + 𝜑𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜈𝑛𝑀]
+ (1 − 𝛼𝑛)∥𝑥𝑛 − 𝑧∥
= (1 + 𝛼𝑛𝜑𝑛)∥𝑥𝑛 − 𝑧∥ + 𝛼𝑛𝜈𝑛𝑀

= (1 + 𝜖𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜆𝑛𝑀, (3.7)

where 𝜖𝑛 = 𝛼𝑛𝜑𝑛 and 𝜆𝑛 = 𝛼𝑛𝜈𝑛.
By Lemma 2.2, we get that lim𝑛→∞ ∥𝑥𝑛 − 𝑧∥
exists. □

Another, we will show that {𝑥𝑛} is
defined by ⟨1⟩ converges strongly to some
𝑝 ∈ 𝐹 (𝑇).

Theorem 3.2. If 𝐶 is a nonempty closed
convex subset of a uniformly convex space
𝑋 , 𝑇 : 𝐶 → 𝐶 is a 𝑇𝐴𝑁 mapping with
satisfying condition (𝐴) and 𝐹 (𝑇) ≠ ∅,
{𝑐𝑛}, {𝑑𝑛} and 𝜙 satisfy the following two
condition :
(i) ∃𝛼, 𝛽 > 0 such that 𝜙(𝑡) ≤ 𝛼𝑡 for all
𝑡 ≥ 𝛽,
(ii)

∑∞
𝑛=1 𝑐𝑛 < ∞,

∑∞
𝑛=1 𝑑𝑛 < ∞, and

suppose that
∑∞

𝑛=1 𝛼𝑛 (1 − 𝛼𝑛) = ∞ and
lim𝑛→∞ 𝛽𝑛 = lim𝑛→∞ 𝛾𝑛 = 0, then {𝑥𝑛}
converges strongly to some fixed point of 𝑇 .

Proof. Let 𝑧 ∈ 𝐹 (𝑇), then by Lemma 3.1, it
follows that {𝑥𝑛} is a bounded sequence and
WLOG, we assume that lim𝑛→∞ ∥𝑥𝑛− 𝑧∥ =
𝑟 > 0. And let

𝑈 := max{1, 𝜙(𝛽), sup ∥𝑥𝑛 − 𝑧∥} < ∞.

From Eq. (3.6) we get that
∥𝑇𝑛𝑦𝑛 − 𝑧∥ ≤ (1 + 𝜑𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜈𝑛𝑈

≤ ∥𝑥𝑛 − 𝑧∥ + 𝜚𝑛𝑈, (3.8)

where 𝜚𝑛 = 𝜑𝑛+𝜈𝑛. By using Eq. (3.8) and
Lemma 3.1, we get that
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∥𝑥𝑛+1 − 𝑧∥
= ∥(1 − 𝛼𝑛)(𝑥𝑛 − 𝑧) + 𝛼𝑛 (𝑇𝑛𝑦𝑛 − 𝑧)∥
≤ (∥𝑥𝑛 − 𝑧∥ + 𝜚𝑛𝑈) [1−

2𝛼𝑛 (1 − 𝛼𝑛)𝛿𝑋 (
∥𝑇𝑛𝑦𝑛 − 𝑥𝑛∥

∥𝑥𝑛 − 𝑧∥ + 𝜚𝑛𝑈
)] .

And so
2𝛼𝑛 (1 − 𝛼𝑛)(∥𝑥𝑛 − 𝑧∥ + 𝜚𝑛𝑈)𝛿𝑋 ( ∥𝑇 𝑛𝑦𝑛−𝑥𝑛 ∥

∥𝑥𝑛−𝑧 ∥+𝜚𝑛𝑈 )
≤ ∥𝑥𝑛 − 𝑧∥ − ∥𝑥𝑛+1 − 𝑧∥ + 𝜚𝑛𝑈.
Hence
2𝛼𝑛 (1−𝛼𝑛) (∥𝑥𝑛−𝑧∥+𝜚𝑛𝑈)𝛿𝑋 ( ∥𝑇 𝑛𝑦𝑛−𝑥𝑛 ∥

∥𝑥𝑛−𝑧 ∥+𝜚𝑛𝑈 ) <
∞.
Since 𝛿𝑋 is a strictly increasing and continuous
function and

∑∞
𝑛=1 𝛼𝑛 (1 − 𝛼𝑛) = ∞, we get that

lim inf𝑛→∞ ∥𝑇𝑛𝑦𝑛 − 𝑥𝑛∥ = 0.
Consider,
∥𝑇𝑛−1𝑥𝑛−1 − 𝑧∥
≤ ∥𝑥𝑛−1 − 𝑧∥ + 𝑐𝑛−1)𝜙(∥𝑥𝑛−1 − 𝑧∥) + 𝑑𝑛−1

≤ ∥𝑥𝑛−1 − 𝑧∥ + 𝑐𝑛−1)𝜙(𝛽) + 𝛼∥𝑥𝑛−1 − 𝑧∥ + 𝑑𝑛−1

≤ (1 + 𝛼𝑐𝑛−1)∥𝑥𝑛−1 − 𝑧∥ + 𝜀𝑛−1𝑈,

where 𝜀𝑛−1 = 𝑐𝑛−1 + 𝑑𝑛−1. Thus
∥𝑦𝑛−1 − 𝑧∥
≤ 𝛽𝑛−1∥𝑇𝑛−1𝑥𝑛−1 − 𝑧∥ + (1 − 𝛽𝑛−1)∥𝑥𝑛−1 − 𝑧∥
≤ 𝛽𝑛−1{(1 + 𝛼𝑐𝑛−1)∥𝑥𝑛−1 − 𝑧∥ + 𝜀𝑛−1𝑈}

+ (1 − 𝛽𝑛−1)∥𝑥𝑛−1 − 𝑧∥
≤ (1 + 𝛼𝑐𝑛−1)∥𝑥𝑛−1 − 𝑧∥ + 𝜀𝑛−1𝑈.

Similarity to Eq. (3.6), it follows that
∥𝑇𝑛−1𝑦𝑛−1 − 𝑧∥
≤ (1 + 𝜑𝑛−1)∥𝑥𝑛−1 − 𝑧∥ + 𝜈𝑛−1𝑈

≤ (1 + 𝜑𝑛−1)∥𝑥𝑛−1 − 𝑧∥ + 𝜈𝑛−1𝑈

≤ ∥𝑥𝑛−1 − 𝑧∥ + 𝜔𝑛−1𝑈, (3.9)

where 𝜔𝑛−1 = 𝜑𝑛−1 + 𝜈𝑛−1. By using Eq. (3.9)
and Lemma 3.1, we get that
∥𝑥𝑛 − 𝑧∥
= ∥(1 − 𝛼𝑛−1) (𝑥𝑛−1 − 𝑧) + 𝛼𝑛−1 (𝑇𝑛−1𝑦𝑛−1 − 𝑧)∥
≤ (∥𝑥𝑛−1 − 𝑧∥ + 𝜔𝑛−1𝑈) [1 − 2𝛼𝑛−1 (1−

𝛼𝑛−1)𝛿𝑋 (
∥𝑇𝑛−1𝑦𝑛−1 − 𝑥𝑛−1∥
∥𝑥𝑛−1 − 𝑧∥ + 𝜔𝑛−1𝑈

)] .

And so we get that lim inf𝑛→∞ ∥𝑇𝑛−1𝑦𝑛−1 −
𝑥𝑛−1∥ = 0.
Since {𝑥𝑛} is a bounded sequence and 𝑇 is a
𝑇𝐴𝑁 mapping, we have

∥𝑦𝑛 − 𝑥𝑛∥
= 𝛽𝑛∥𝑇𝑛𝑧𝑛 − 𝑥𝑛∥
≤ 𝛽𝑛 [∥𝑇𝑛𝑧𝑛 − 𝑇𝑛𝑥𝑛∥ + ∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥]
≤ ∥𝑇𝑛𝑧𝑛 − 𝑇𝑛𝑥𝑛∥ + 𝛽𝑛∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥
≤ ∥𝑧𝑛 − 𝑥𝑛∥ + 𝑐𝑛𝜙(∥𝑧𝑛 − 𝑥𝑛∥) + 𝑑𝑛

+ 𝛽𝑛∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥
≤ ∥𝑧𝑛 − 𝑥𝑛∥ + 𝑐𝑛{𝜙(𝛽) + 𝛼∥𝑧𝑛 − 𝑥𝑛∥)}
+ 𝑑𝑛 + 𝛽𝑛∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥

≤ (1 + 𝛼𝑐𝑛)∥𝑧𝑛 − 𝑥𝑛∥ + 𝑑𝑛 + 𝛽𝑛∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥
≤ (1 + 𝛼𝑐𝑛)𝛾𝑛∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥ + 𝑑𝑛𝑈

+ 𝛽𝑛∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥
≤ (1 + 𝛼𝑐𝑛)𝛾𝑛𝑊 + 𝑑𝑛𝑈 + 𝛽𝑛𝑊, (3.10)

where 𝑊 = sup𝑛≥1 ∥𝑇𝑛𝑥𝑛 − 𝑥𝑛∥. By
Eq. (3.10) and lim𝑛→∞ 𝛽𝑛 = lim𝑛→∞ 𝛾𝑛 =
0, so lim𝑛→∞ ∥𝑥𝑛 − 𝑦𝑛∥ = 0 and so
lim inf𝑛→∞ ∥𝑇𝑛𝑦𝑛 − 𝑦𝑛∥ = 0. It implies that

lim inf
𝑛→∞

∥𝑇𝑛−1𝑦𝑛−1 − 𝑦𝑛−1∥ = 0.

Consider,
∥𝑇𝑛−1𝑥𝑛−1 − 𝑥𝑛−1∥
≤ ∥𝑇𝑛−1𝑥𝑛−1 − 𝑦𝑛−1∥ + ∥𝑇𝑛−1𝑦𝑛−1 − 𝑥𝑛−1∥
≤ ∥𝑥𝑛−1 − 𝑦𝑛−1∥ + 𝑐𝑛−1𝜙(∥𝑥𝑛−1 − 𝑦𝑛−1∥)
+ 𝑑𝑛−1 + ∥𝑇𝑛−1𝑦𝑛−1 − 𝑥𝑛−1∥.

It implies that lim inf𝑛→∞ ∥𝑇𝑛−1𝑥𝑛−1 − 𝑥𝑛−1∥ =
0. Since

∥𝑥𝑛 − 𝑥𝑛−1∥
≤ 𝛼𝑛−1∥𝑇𝑛−1𝑦𝑛−1 − 𝑥𝑛−1∥
≤ ∥𝑇𝑛−1𝑦𝑛−1 − 𝑦𝑛−1∥ + ∥𝑦𝑛−1 − 𝑥𝑛−1∥,

it implies that lim inf𝑛→∞ ∥𝑥𝑛 − 𝑥𝑛−1∥ = 0.
Consider,

∥𝑇𝑛−1𝑥𝑛 − 𝑥𝑛∥
≤ ∥𝑇𝑛−1𝑥𝑛 − 𝑇𝑛−1𝑥𝑛−1∥ + ∥𝑇𝑛−1𝑥𝑛−1 − 𝑥𝑛−1∥
+ ∥𝑥𝑛−1 − 𝑥𝑛∥
≤ 2∥𝑥𝑛 − 𝑥𝑛−1∥ + 𝑐𝑛−1𝜙(∥𝑥𝑛 − 𝑥𝑛−1∥) + 𝑑𝑛−1

+ ∥𝑇𝑛−1𝑥𝑛−1 − 𝑥𝑛−1∥.

It implies that lim inf𝑛→∞ ∥𝑇𝑛−1𝑥𝑛 − 𝑥𝑛∥ = 0.
Since

∥𝑥𝑛 − 𝑇𝑥𝑛∥
≤ ∥𝑥𝑛 − 𝑦𝑛∥ + ∥𝑦𝑛 − 𝑇𝑛𝑦𝑛∥
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+ ∥𝑇𝑛𝑦𝑛 − 𝑇𝑛𝑥𝑛∥ + ∥𝑇𝑛𝑥𝑛 − 𝑇𝑥𝑛∥
≤ 2∥𝑥𝑛 − 𝑦𝑛∥ + 𝑐𝑛𝜙(∥𝑥𝑛 − 𝑦𝑛∥) + 𝑑𝑛

+ ∥𝑦𝑛 − 𝑇𝑛𝑦𝑛∥ + ∥𝑇𝑛𝑥𝑛 − 𝑇𝑥𝑛∥.

Since 𝑇 is a uniformly continuous, it implies
that lim inf𝑛→∞ ∥𝑥𝑛 − 𝑇𝑥𝑛∥ = 0.
By 𝑇 satisfies condition (𝐴), so
𝑓 (𝑑 (𝑥𝑛, 𝐹 (𝑇))) ≤ ∥𝑥𝑛 − 𝑇𝑥𝑛∥, for all
𝑛 ≥ 1.
From (3.7), it follows that

∥𝑥𝑛+1 − 𝑧∥ ≤ (1 + 𝜖𝑛)∥𝑥𝑛 − 𝑧∥ + 𝜆𝑛𝑈. (3.11)

Thus lim inf𝑛→∞ ∥𝑥𝑛+1 − 𝑧∥ ≤
(1+ 𝜖𝑛) lim inf𝑛→∞ ∥𝑥𝑛 − 𝑧∥ +𝜆𝑛𝑈. By Lemma
2.2, we have lim inf𝑛→∞ 𝑑 (𝑥𝑛, 𝐹 (𝑇)) =
𝑐, for some 𝑐 ∈ R. We claim that 𝑐 = 0.
Assume that 𝑐 = lim inf𝑛→∞ 𝑑 (𝑥𝑛, 𝐹 (𝑇)) > 0.
Then we can choose 𝑁0 ∈ N such that
0 < 𝑐/2 < 𝑑 (𝑥𝑛, 𝐹 (𝑇)) for all 𝑛 ≥ 𝑁0. Since 𝑇
satisfies condition (𝐴), it implies that

0 < 𝑓 ( 𝑐
2
) ≤ 𝑓 (𝑑 (𝑥𝑛𝑖 , 𝐹 (𝑇)))

≤ ∥𝑥𝑛𝑖 − 𝑇𝑥𝑛𝑖 ∥ → 0 as 𝑖 → ∞,

which is a contradiction. So 𝑐 = 0. Next, we
claim that {𝑥𝑛} is a Cauchy sequence. Since∑∞

𝑛=1 𝜖𝑛 < ∞, so
∏∞

𝑛=1 (1 + 𝜖𝑛) := 𝐿 < ∞.
Let 𝜖 > 0. Since lim𝑛→∞ 𝑑 (𝑥𝑛, 𝐹 (𝑇)) = 0 and∑∞

𝑛=1 𝜆𝑛 < ∞, there exists 𝑁 ′ ∈ N such that for
all 𝑛 ≥ 𝑁

′ , we get

𝑑 (𝑥𝑛, 𝐹 (𝑇)) <
𝜖

4𝐿 + 4
and

∞∑
𝑖=𝑛0

𝜆𝑖 <
𝜖

4𝑈
.(3.12)

Let 𝑛, 𝑚 ≥ 𝑛0 and 𝑧 ∈ 𝐹 (𝑇). Then by (3.11),
we have

∥𝑥𝑛 − 𝑥𝑚∥ ≤ ∥𝑥𝑛 − 𝑧∥ + ∥𝑥𝑚 − 𝑝∥

≤
𝑛−1∏
𝑖=𝑛0

(1 + 𝜖𝑖)∥𝑥𝑛0
− 𝑧∥ +𝑈

𝑛−1∑
𝑖=𝑛0

𝜆𝑖

+
𝑚−1∏
𝑖=𝑛0

(1 + 𝜖𝑖)∥𝑥𝑛0
− 𝑧∥ +𝑈

𝑚−1∑
𝑖=𝑛0

𝜆𝑖

≤ 2[
∞∏

𝑖=𝑛0

(1 + 𝜖𝑖)∥𝑥𝑛0
− 𝑧∥ +𝑈

∞∑
𝑖=𝑛0

𝜆𝑖] .

(3.13)

Taking the infimum over 𝑧 ∈ 𝐹 (𝑇) on (3.13)
and by (3.12), we get that

∥𝑥𝑛 − 𝑥𝑚∥ ≤ 2[
∞∏

𝑖=𝑛0

(1 + 𝜖𝑖)𝑑 (𝑥𝑛0
, 𝐹 (𝑇))

+𝑈
∞∑

𝑖=𝑛0

𝜆𝑖]

< 2[(1 + 𝐿) 𝜖

4𝐿 + 4
+𝑈

𝜖

4𝑈
] = 𝜖,

for all 𝑛, 𝑚 ≥ 𝑛0. This implies that {𝑥𝑛} is
a Cauchy sequence. Thus lim∞ 𝑥𝑛 = 𝑝. Then
𝑑 (𝑝, 𝐹 (𝑇)) = 0. Since 𝐹 (𝑇) is a closed set, we
have 𝑝 ∈ 𝐹 (𝑇). Hence {𝑥𝑛} converges strongly
to some fixed point of 𝑇 □

The following remark was intro-
duced by Kim [15].

Remark 3.3.
1. Senter and Dotson [24] as saying that if
𝑇 : 𝐶𝑡𝑜𝐶 is fully continuous, it fulfills demi-
compact, and if 𝑇 is continuous and demi-
compact, it meets condition (𝐴).

2. If 𝑎 ≤ 𝛼𝑛 ≤ 𝑏 for all 𝑛 ≥ 1 and some
𝑎, 𝑏 ∈ (0, 1), then ∑∞

𝑛=1 𝛼𝑛 (1 − 𝛼𝑛) = ∞
and lim𝑛→∞ = 0. However, the converse is
not true.

Finally, we shall demonstrate a map-
ping 𝑇 : 𝐶 → 𝐶 that satisfies every re-
quirement of𝑇 in Theorem 3.2, but not Lip-
schitzian and hence not asymptotically non-
expansive.

Example 3.4. Let 𝑋 := R and 𝐶 := [0, 34 ].
Define 𝑇 : 𝐶 → 𝐶 by

𝑇𝑥 =

{
1
4 , if 𝑥 ∈ [0, 14 ];
(𝑥 − 3

4 )2, if 𝑥 ∈ [ 14 ,
3
4 ].

Since 𝑇𝑛𝑥 = 1
4 for each 𝑥 ∈ 𝐶, 𝑛 ≥ 2 and

𝐹 (𝑇) = { 14 }, 𝑇 is both uniformly continu-
ous and 𝑇𝐴𝑁 on 𝐶. We will show that 𝑇
satisfies condition (𝐴) as follows :
if 𝑥 ∈ [0, 14 ], then |𝑥 − 1

4 | = |𝑥 − 𝑇𝑥 |.
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Similarly, if 𝑥 ∈ [ 14 ,
3
4 ], then |𝑥 − 1

4 | = 𝑥 − 1
4

and (𝑥 − 3
4 )2 ≤ 1

4 .
Thus 𝑥 − 1

4 ≤ 𝑥 − (𝑥 − 3
4 )2 = |𝑥 − 𝑇𝑥 |, that

is, |𝑥 − 1
4 | ≤ |𝑥 − 𝑇𝑥 |.

Hence, 𝑑 (𝑥, 𝐹 (𝑇)) = |𝑥 − 1
4 | ≤ |𝑥 − 𝑇𝑥 | for

all 𝑥 ∈ 𝐶. Next, we will show that 𝑇 is not a
Lipschitzianmappingwhich proved by con-
tradiction. Suppose that there exists 𝐿 > 0
such that

|𝑇𝑥 − 𝑇𝑦 | ≤ 𝐿 |𝑥 − 𝑦 |, for all 𝑥, 𝑦 ∈ 𝐶.

Consider, if we take 𝑥 = 3
4 −

𝐿
4(𝐿+1) >

1
4 and

𝑦 = 3
4 , then

(𝑥− 3

4
)2 = |𝑇𝑥−𝑇𝑦 | ≤ 𝐿 |𝑥− 𝑦 | = 𝐿 (3

4
−𝑥).

And so

3

4
− 𝑥 ≥ 𝐿 ⇐⇒ 𝐿

4(𝐿 + 1) ≥ 𝐿,

it is a contradiction.

4. Conclusion
This work has established a new the-

orem of fixed point approximation for to-
tal asymptotically nonexpansive mappings,
which is a more generalized than asymptot-
ically nonexpansive mappings and nonex-
pansive mappings. Our results have been
created as an alternative for applying to
other research.
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