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ABSTRACT

In this paper, we present a strong convergence theorem for total asymptotically non-
expansive mappings in a real uniformly convex Banach space.
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1. Introduction

Recently, we studied a convergence
theorem for pseudocontractive mappings in
Hilbert spaces and constructed a modified
hybrid algorithm, see [[]. In this work,
we provide a strong convergence theorem
for total asymptotically nonexpansive map-
pings in a real uniformly convex Banach
space. On the other hand, researchers
may decide to focus on enriched contrac-
tion mappings, see [2]. The results provide
a flexible and effective tool for research-
ing fixed point theorems, nonlinear prob-
lems, optimization tasks, control systems,
numerical analysis, and machine learning
which have a wide range of applications
across different mathematical disciplines.
However, for effective fixed point approx-
imation, total asymptotically nonexpansive

mappings are often used in signal process-
ing, image processing, and optimization ap-
plications. In fixed point research, various
types of mappings are studied, each with
its own properties and characteristics, see
[3,4]. Our continuous motivation when it
comes to studying this subject arises from
its application as we said earlier.

Let us assume that C is a nonempty
closed convex subset of a real Banach space
X and we define a self-mapping of C as T.
Consequently, we denote F(T) as a set of
all fixed point of 7'.

A mapping T C — C is said
to be asymptotically nonexpansive [3] if
there exists a sequence {k,}, k, > 1, with
lim;, e k; = 1 such that ||[T"x — T"y|| <
knllx — y||, foreach x,y € C andn > 1.
T is said to be uniformly L - Lipschitzian
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if there exists a constant L > 0 such that
IT"x = T"y|| < L||x — y||, foreach x,y €
C,n>1. Amapping T : C — C is said to
be nonexpansive, if ||Tx — Ty|| < |lx — v,
for each x, y € C. Note that, if T is asymp-
totically nonexpansive (AN), then it is uni-
formly L - Lipschitzian. Let R* = [0, o0)
and ¢ € T'(RY) if and only if ¢ is strictly
increasing, continuous on R* and ¢(0) = 0.
A mapping T : C — C is said to be total
asymptotically nonexpansive (TAN) [(6] if
there exist two non-negative real sequences
{cn}, {d,} withlim, e ¢, = limy, 00 dy, =
1, ¢ € T(R*) such that ||T"x - T"y|| < ||x—
yll +cng(llx = yll) + dy, foreach x,y € C,
n>1.1f¢(t) =t foreacht > Oand d,, = 0,
n > 1,then TAN reduced to AN.

Arithmetic analysts are still curious
about fixing point estimation for different
sorts of nonlinear mappings, with modern
techniques being created for their applica-
tion (see citeOK, PS, KLS, SAF, MAWT,
GR). Approximating fixed points of the
modified Ishikawa iterative conspire un-
der total asymptotically nonexpansive map-
pings has been examined by a few creators;
see, for illustration, Chidume and Ofoedu
[13,14], Kim []15, 16], Kim and Kim [|L7]
and others. For a mapping T : C — C,
Suantai and Nammanee []1§] consider im-
proving the three-step preparation process
in C defined by

given x1 € C,

Zn = (1 = yu)xn + ynT"xp,
Yn = (1= Bu)xn + BuT"zn,
Xpi1 = (1 = a@p)xpy + @ T"yp,

1

where {a,}, {8} and {y,} are three real
sequences in [0,1]. If vy, 0 for all
n > 1, then iteration (1) becomes the fol-
lowing modified Ishikawa iteration process
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(Ishikawa [[19]) in C defined by

given x1 € C,

Yn = (1 - ﬁn)xn +ﬂnTnxn,
Xn+l = (1 - a’n)xn +anT"yn,

2)

where {a,} and {B,} are two real se-
quences in [0,1]. If 8, = O forall n >
1, then iteration process (2) becomes the
following modified Mann iteration process
(Mann [20]):

(3) {

where {a,} is a real sequence in [0, 1].

Theorems 1.5 and 2.3 of Schu [22]
were extended to uniformly convex Banach
spaces in the following findings by Rhoades
[21].

given x; € C,
Xn+l = (1 - an)xn +a,T"xp,

Theorem 1.1. Let C be a nonempty
bounded closed convex subset of a uni-
formly convex Banach space X, and let T :
C — C be a completely continuous asymp-
totically nonexpansive mapping with {k,}
satisfying k, > 1,27 (k;, = 1) < co,r =
max{1, p}. Then, for any x € C, the se-
quence {x, } defined by (3), where {a, } sat-
isfiesa < ap < 1—aforalln > 1 and
some a > 0, converges strongly to some
fixed point of T.

Theorem 1.2. Let C be a nonempty
bounded closed convex subset of a uni-
formly convex Banach space X, and let
T : C — C be a completely continuous
asymptotically nonexpansive mapping with
{kn} satisfying k, > 1,37 (k;, = 1) <
oo,r = max{1l, p}. Then, for any x € C,
the sequence {x,} defined by (2), where
{an}, {Bn} satisfiesa < (1-ay), (1-B,) <
1—aforalln > 1 and some a > 0, con-
verges strongly to some fixed point of T.

The following result, which general-
ized Theorem 1 of Senter and Dotson [24],
was established by Kim in 2012.
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Theorem 1.3. Let C be a nonempty
bounded closed convex subset of a uni-
formly convex Banach space X, and let T :
C — C be a nonexpansive mapping with
satisfying condition (A) and F(T) # 0.
Suppose that for x; € C, the sequence
{xn} is defined by xpe1 = (1 — ay)x, +
an[Buxn+(1=Bn)Tx,] foralln > 1, where
{an},{Bn} are sequences in [0, 1 such that
Z:;l an(l - a,) = co and Zzozl Bn < o0.
Then {x,} converges strongly to some fixed
point of T.

In 2013, Kim [[16] generalized the re-
sults due to Rhoades [21] by proving that
if T C — C is an TAN mapping
satisfying condition (A); then the squence
{x,} defined by (2) converges strongly to
some fixed point of 7. According to results
above, we were inspired to extend Kim’
s results [|L6] by using the iteration (1) to
define the sequence {x,} under T to be a
T AN mapping satisfying condition (A) and
prove that the sequence converges strongly
to some fixed point of T. Our result gener-
alizes the results due to Rhoades [21] and
Kim [[16].

2. Preliminaries

We’ll collect some helpful results in
this section, which will be used in the next
phase. IfT : C — Cisamappingand Cisa
nonempty subset of a real Banach space X,
then X is said to be uniformly convex if the
modulus of convexity 6x = dx(€),0 < € <
2, of X defined by 6x () = inf{1 — 1221,
x,y € X,xll < Lyl < Lilx =yl 2
€} satisfies the inequality dx (€) > 0 for all
€ € (0,2]. Written x,, — x will denote the
sequence {x,} converges strongly to x.

Definition 2.1 ([24]). Let T : C — C be
a mapping and F(T) # 0. T is said to
satisfy condition (A) if there exists a non-
decreasing function f : [0,00) — [0, c0)

185

and f(0) = O and f(r) > O forall r €
(0, o0) such that

llx = Tx[| > f(d(x, F(T))),

for all x € C, where d(x,F(T))

inf err) lIx — 2|l

Lemma 2.2 ([25]). Let {an},{bn} and
{6, } be sequences of non-negative numbers
such that a1 < (1+6,)a, +b,,¥n € N,
If 2% 6, < oo and 2> b, < oo, then
lim,_,ca, exists.

Lemma 2.3 ([26]). If X is a uniformly con-
vex Banach space, for x,y € X and ||x|| <
Lyl € 1Land ||x —y|| = € > O, then
[Ax + (1 = D)y|l < 1-=24(1 - 2)b(¢) for
0<aA<1.

3. Main Results

First, we prove that lim,, ., ||x, — z||
exists for all z € F(T), where the sequence
{x,} is defined by (1), as the following
lemma.

Lemma 3.1. [f'C is a nonempty closed con-
vex subset of a uniformly convex Banach
space X, T : C — C is a TAN mapping
and F(T) # 0, {cn},{dn} and ¢ satisfy the
following two condition:

(i) a, B > 0 such that (1) < at for all
r>p,

(ii)) YooiCn < ©0,X> d, < oo, then
lim,, e ||X5 — z|| exists for all z € F(T).

Proof. For any z € F(T), we let M
max{1l,#(B)} < oo. From (i) and ¢ is a
strictly increasing, so

o(t) < dp(B) +at, t = 0.
It follows that

IT"xn — zll < (1 + acp)llxn — 2ll + kuM, (3.1)
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where k, = ¢, + d,. From (1) and Eq. (B.1))
we have

llzn -zl
< YnllT"%n = zll + (1 = yn)1xn — 2|l
< Yl (L +acn)llxn =zl + kM|

+ (1= yn)llxn —zll

= (1 +aynco)llxn = zll + yuka M. (3.2)

From Eq. (8.2) it follows that

lzn = zll + cndp(llzn — zlI)

< llzn = zll + cnl@(B) + allzn — 2]l

< (L +aynen)llxn = zll + ynknM
+ M+ acy[(1+ ayncy)llxn — 2l
+ YnknM]

< (L+ayncn +acy + a®ypen?)|lxn — 2|
+ YnkaM +cyM + acpynkaM

< (1+acy +acy +a’c,?)|lxn -zl
+ k.M +c, M + ac,k,M

= (L+0ow)llxn — zll + 6, M, (3.3)

where o, = 2ac, + @%c,2 and 8, = kp + ¢, +
acpk,. And so

N1T"zn — zll

< llzn = zll + cn@(llzn = 2ll) + dn

<A +op)|xn—zll + 6, M +dnM

< (]-+O-n)”xn_zll+77nM’ (34)
where 17,, = 8,, + dj,. Then we get that
lyn =zl
< ﬁn”TnZn -zl + (]- _IBn)”xn -z||
< Bul(X+ o) llxn — 2|l + 1 M]
+ (1= Bu)llx, =zl
= (1 +,8n0'n)||xn - Z” + BunaM. (35)
and
IT"yn =zl

< lyn — 2l + cnd(llyn — zll) + dn

< lyn =zl + cnlo(B) + allyn — zll] + dn
< (L+ Buon)llxn = zll + BunpnM

+ cnM + acy[(1+ Buoy)llxn — 2|

+ BunaM] +dnM

= (L+ Buon +acy + afncuoy)||x, — 2|
+ (Bunin + cn + @Pucnon +dy) M

186

= (L+en)llxn = zll + vaM, (3.6)

where ¢, = B0y, + ac, + afycnoy and v, =
Bnlln + ¢n + @fncnoy + d,. Hence

lXns1 = zll

S anllT"yn = zll + (1 = an)llxn — 2l

< ap[(1+@p)llxn — zll + v M]

+ (]- - a'n)”xn - Z”
= (L +anen)llxn = zll + @nvaM

= (1+e&)llxn —zll + u M, (3.7

where €, = @, ¢, and 4,, = @, Vv;,.
By Lemma R.2, we get that lim,, e ||x,, — z||
exists. O

Another, we will show that {x,,} is
defined by (1) converges strongly to some
p e F(T).

Theorem 3.2. If C is a nonempty closed
convex subset of a uniformly convex space
X, T : C — CisaTAN mapping with
satisfying condition (A) and F(T) # 0,
{cn}, {dn} and ¢ satisfy the following two
condition :

(i) 3a, B > 0 such that ¢(t) < at for all
t>p,

(i) YorqCn < 00,27, d, < oo, and
suppose that Y, an(l — ay) = oo and
lim, e Bn = limy—eoyn = 0, then {x,}
converges strongly to some fixed point of T.

Proof. Letz € F(T), thenby LemmaQp.1), it
follows that {x, } is a bounded sequence and
WLOG, we assume that lim,,_,e ||X, — 2| =
r > 0. And let

U = max{1, ¢(B), sup [|x, — z[|} < co.

From Eq. (B.6) we get that
17" yn = 2ll < (L+ @p)llxn = zll +vaU

< lxn = zll + 02U, (3.8)

where 0, = ¢, +V,. By using Eq. (8.8) and
Lemma B.1|, we get that
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Ixn+1 — zll
= [[(1 = an)(xn —2) + @n(T"yn = 2|
< (lxn = zll + 0,U) [1-

7"y, = xall

20, (1 —an)5x(m
n n

)]

And so

20 (1= @) (Il = 2l + 02U (2l
< lxn = zll = lIxne1 — 2|l + 02 U.

Hence

20ty (1=ata) (=l +0al)ox (1=t <
00,

Since dx is a strictly increasing and continuous
function and };,_; @, (1 — @,) = oo, we get that
liminf, e ||T"y, — xul| = 0.

Consider,

1T xpy =zl

< |lxn-1 = zll + en-1)(llxn-1 = 2ll) + dn

< ln-1 = zll + cn-1)9(B) + @llxn-1 — zll + dn—
< (L+acy-1)|lxn-1 — zll + en-1 U,

where €,,_1 = ¢,—1 + d,,—1. Thus
lyn-1—zll
< BnaalIT"  xney = 2l + (1 = Bue1) l1xno1 = 2l
< Bn-1{(I +acp-1)llxn-1 = zll + €51 U}
+ (1= Bn-1)llxn-1 -zl
< (T+acy-1)|lxn-1 — zll + en1U.

Similarity to Eq. (B.9), it follows that
17" yno1 = zll
< (T+@n-1)llxn-1 = zll + vp1U
< (L +@n-D)llxn-1 — zll + vur U

< [lxXn-1 = 2ll + wp U, (3.9)

where w1 = @n_1 + vu_1. By using Eq. (8.9)
and Lemma B.1], we get that

llxn — zll

= [1(1 = @n-1) (Xn-1 = 2) + @1 (7" yns = 2)|
< ([lp-1 = zll + @p1 U)[1 = 251 (1

7" yn1 = xpa |l

Qp-1)0
AN P 7

)]

And so we get that liminf, e || 7" y,-1 —
Xn-1 ” =0.

Since {x,} is a bounded sequence and T is a
T AN mapping, we have
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lyn = xall
= BullT"zn — Xl
< BnlliT"zn = T xull + IT"xn = xnll]
ST zn = T"xnll + BullT"xn — x|
< llzn = xnll + cnd(llzn = xnll) + dn
+ BnllT"xn — xull
< llzn = xall + cn{d(B) + llzn = xal)}
+dn + Bl T"xn — x|
< (M +ac)llzn = xnll + dn + BullT"xpn = xn||
< (L+acn)ynlT"xn = xpll + dpU
+ BnllT"xn = xull

< (14 acy)ynW +d, U + B, W, (3.10)
where W = sup,» [T"x, — xull. By
Eq. (B-10) and lim,—e Bn = liMpseo yn =
0, so lim,,e|lxy — yull = 0 and so

liminf,—e [Ty, — yull = 0. It implies that
liminf |7 y,—1 = ya-1ll = 0.
n—0oo

Consider,
T xpe1 = X
<" xpet = Yuall + 1Tyt = x|
< -1 = Yu-1ll + cn-19(llxn-1 = yn-1l)
+dyoy + 1T Yoy — Xl
It implies that lim inf,, e || 77 xp_1 —Xpo1]| =
0. Since
llxn = xn-1l
Y [V A VI Y |
< N7 yuer = ynoall + 1yn-1 = Xnall,
it implies that lim inf,,—, |[x; — X,—1] = 0.
Consider,
17" o = x|
< |IT" 'x,

+ |Ixn-1 = xal

— T g ||+ 1T 1 — X ||

< 2”xn - xn—l” + cn—1¢(|lxn _xn—1||) +dy1
+ 17" Xpm1 = X I
It implies that lim inf,, e ||7" 'x, — x| = 0.

Since
17, = Tox,, ||

< lxn = yall + lyn = T" yall
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+ Ty = T"xn || + IT"xn = Txn|
< 20lxn = yull + cad(lxn = yal) + dn
+ [y =T"yull + IT"xn = Tx,||.

Since T is a uniformly continuous, it implies
that lim inf,,—, ||xn — Tx,|| = 0.

By T satisfies condition (A), S0
fd(xn, F(T))) < lxp — Tx,ll, for all
n>1.

From (B.7), it follows that

lxns1 = zll < (1 +€n)llxn — 2l + 2,U. (3.11)

Thus liminf, e ||xpe1 — 2zl <
(1+€,) liminf, e ||x,; — z||+ 4,U. By Lemma
D.2, we have liminf, .. d(x,,F(T)) =
¢, forsome ¢ € R. We claim that ¢ = 0.
Assume that ¢ = liminf, . d(x,, F(T)) > 0.
Then we can choose Ng € N such that
0<c/2<d(xy, F(T)) foralln > Ny. Since T

satisfies condition (A), it implies that

0 < f(5) < F(d(xy. F(T))

< lxp, =Ty, || = 0 as i — oo,

which is a contradiction. So ¢ = 0. Next, we
claim that {x,} is a Cauchy sequence. Since
Sy €n < 00,80 [[71(1+€) =L < oo,
Let € > 0. Since lim,,_,o d(x,, F(T)) = 0 and
Y1 Ap < oo, there exists N’ € N such that for
alln > N, we get

€ - €
d(xn, F(T)) < 7 and Z A < 153.12)

i:}’l()

Let n,m > ng and z € F(T). Then by (B.11)),
we have

oen = Xl < [1xXn = 2|l + llxm = Pl

n-1 n-1
<[ Ja+elen -zl+U Y A

i=ng i=ng
m=1 m—1
[ Ja+elb, —2ll+U > A
i=ng i=ng
<[ [ +eln, -2l +U D7 il
i=ng i=ng

(3.13)

Taking the infimum over z € F(T) on (B.13)
and by (B.12), we get that

lhen = xmll < 20] [(1+ €)d (., F(T))

i=ng

+Ui/ll]

€ €
U_
a+1%w

<2[(1+L) ]=e

for all n,m > ng. This implies that {x,} is
a Cauchy sequence. Thus lims x,, = p. Then
d(p,F(T)) = 0. Since F(T) is a closed set, we
have p € F(T). Hence {x, } converges strongly
to some fixed point of T m|

The following remark was intro-
duced by Kim []15].

Remark 3.3.

1. Senter and Dotson [24] as saying that if
T : CtoC is fully continuous, it fulfills demi-
compact, and if T is continuous and demi-
compact, it meets condition (A).

2. Ifa < ay < bforalln > 1 and some
a,b € (0,1), then 3,7 an(1 — a,) = o
and lim,,_,., = 0. However, the converse is
not true.

Finally, we shall demonstrate a map-
ping T : C — C that satisfies every re-
quirement of 7' in Theorem 3.2, but not Lip-
schitzian and hence not asymptotically non-
expansive.

Example 3.4. Let X := Rand C := [0, 3].
Define T : C — C by

ifx € [0,

: I
Tx — 9 b
(x-3)2, ifxel[l,

1.

NI L

Since T"x = % foreachx € C,n > 2 and
F(T) = {%t}, T is both uniformly continu-
ous and TAN on C. We will show that T
satisfies condition (A) as follows :

ifx € [0, }1], then |x — %l = |x — Tx|.

188
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Similarly, if x € [zlu %],then |x — zlx| :x—%

and (x — %)2 < %.

Thus x — }1 <x-(x-— %)2 = |x — Tx|, that
is, |x — %I < |x=Tx|.

Hence, d(x, F(T)) = |x — %| < |x — Tx| for
all x € C. Next, we will show that T is not a
Lipschitzian mapping which proved by con-
tradiction. Suppose that there exists L > 0
such that

|Tx —Ty| < Llx = y|, forall x,y € C.

i ; —3__L 1
Consider, if we take x = 3 > 1 and

y= %,then
3 3
(x——)2 =|Tx-Ty| < Lix—y| = L(-—x).
4 4
And so

3
——x>L — > L
1 EE T ey o

it is a contradiction.

4. Conclusion

This work has established a new the-
orem of fixed point approximation for to-
tal asymptotically nonexpansive mappings,
which is a more generalized than asymptot-
ically nonexpansive mappings and nonex-
pansive mappings. Our results have been
created as an alternative for applying to
other research.
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