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ABSTRACT
This article aimed to compare the effectiveness of regression models using data on the

number of road traffic injuries from the Injury Surveillance System of the Thai Department
of Disease Control between 2018 and 2022. The regression models used in this study for
the count data include the Poisson, negative binomial, zero-inflated Poisson, zero-inflated
negative binomial, and Conway-Maxwell-Poisson models. These were compared to find a
suitable regression model to predict the number of road traffic injuries. The results show
that the negative binomial regression model provides an appropriate regression equation for
predicting the number of road traffic injuries because it gives the lowest Akaike information
criterion (AIC). Moreover, this model can still be used as a preliminary tool for predicting
the number of road accident injuries since it does not rely on many independent variables.
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1. Introduction
Road traffic accidents claim the lives

of approximately 1.3 million individuals
annually. Between 20 and 50 million more
people suffer nonfatal injuries, with many
developing a disability as a result of their
injuries. More than half of all road traffic

fatalities involve vulnerable road users such
as pedestrians, cyclists, and motorcycle rid-
ers. Despite the fact that low- and middle-
income countries host approximately 60%
of the world’s vehicles, these countries ac-
count for 93% of all fatalities that occur on
the world’s roadways [1].
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According to the data on the number
of road accident injuries collected by the
Injury Surveillance System of the Depart-
ment of Disease Control, Ministry of Pub-
lic Health (MOPH), Thailand [2], between
2018 and 2022, specifically for outpatient
departments (OPD) found that males had a
higher number of injuries from road acci-
dents than females. Motorcycle accidents
were to blame for a sizable portion of these
injuries. The majority of the injuries oc-
curred in the 15–19 age group. Therefore,
the number of injuries caused by road ac-
cidents is an important indicator in assess-
ing travel safety and this justifies the im-
portance of analyzing the factors influenc-
ing the number of injuries occurring.

The study of accidents on Thailand’s
roads and the important indicators has been
a popular topic and the subject of extensive
researcharticle over the years [3–10]. These
studies also examined the relevant indica-
tors such as residential area by region, eco-
nomic factors, energy consumption, pop-
ulation, age, gender, vehicle registration,
road and environmental factors, festival and
holiday seasons, etc. These variables af-
fect various response variables, including
the mortality rate, the number of fatalities,
the number of accidents, and the number of
accident injuries.

In the past, there have been studies
of the number of people injured in road ac-
cidents with and without the use of mod-
els to examine the factors or indicators that
affect this number [11–13]. A few studies
have examined the relationship between the
number of road accident injuries and fac-
tors such as road factors [6, 7], festival pe-
riods [6], and economic factors [10]; how-
ever, demographic factors (such as gender
and age ranges) and accident types have not
been investigated.

The number of road accident-related

injuries is count data with non-negative in-
teger values and a right-skewed or non-
normality distribution. Consequently, the
occurrence of road accidents is not a con-
tinuous variable, and it is common to en-
counter data with a large number of zero
values. To comprehend the relationship be-
tween independent (relevant factors) and
count-dependent (road accident injuries)
variables, several count regression mod-
els were studied to predict and explain the
aforementioned relationship.

Poisson (POI) and negative binomial
(NB) regression are two commonly used
models for count regression. The POI re-
gression model makes the assumption that
the mean and variance of the count variable
are equal. However, this may not be the
case for many datasets since these datasets
frequently exhibit overdispersion and un-
derdispersion, which renders the Poisson
regression model inappropriate [6, 14, 15].
For data with overdispersion, the NB re-
gressionmodel is themost frequent solution
[14]. In addition, when there are numerous
zeros for the dependent variable and a POI
distribution is assumed, the accuracy of the
POI regression model will be diminished.
Hence, the zero-inflated Poisson (ZIP) re-
gression model was developed to treat ex-
cess zeros [15–17]. Comparable to the ZIP
regression model, the zero-inflated nega-
tive binomial (ZINB) regression model ac-
counts for superfluous zeros in the count
variable that assumes a NB distribution, and
it can deal with the issue of overdispersion
[18]. Furthermore, an alternative that is
more flexible than the POI regressionmodel
is the Conway-Maxwell-Poisson (CMP) re-
gression model. This model can be applied
to both overdispersed and underdispersed
data [6, 8].

As a result, the purpose of this study
was to determine the relationship between
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the number of road traffic injuries and de-
mographic factors (gender and age ranges)
as well as the different accident types that
occurred in Thailand between 2018 and
2022 by employing the POI, NB, ZIP,
ZINB, and CMP regression models. In ad-
dition, we evaluated these models to find
a suitable model for predicting the number
of injuries in road accidents, which can be
used for planning purposes to cope with the
events and the number of road accident in-
juries that will occur in the future.

2. Materials and Methods
In this section, the data and the mod-

els employed will be summarized briefly.

2.1 Data source
The data used in this study are sec-

ondary data showing the number of road
accident injuries (RAIs) from the Injury
Surveillance System of the Department of
Disease Control, MOPH, Thailand, be-
tween 2018 and 2022, specifically for the
OPD [2]. The number of RAIs is the de-
pendent variable (𝑦), while the categorical
independent variables (𝑥) include gender
(𝑥1), age ranges (𝑥2), and accident types
(𝑥3).

2.2 Utilised models
For the sample size 𝑛, let 𝑦𝑖 be the

number of RAIs at the 𝑖th observation, and
𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖 𝑝)⊤ be the vector of 𝑝
independent variables for the 𝑖th observa-
tion. Also, 𝜷 = (𝛽1, 𝛽2, . . . , 𝛽𝑝)⊤ is a 𝑝×1
vector of the unknown regression coeffi-
cient. For 𝑦𝑖 = 0, 1, 2, ... and 𝑖 = 1, 2, ..., 𝑛,
the POI, NB, ZIP, ZINB, and CMP regres-
sion models can be summarized in the fol-
lowing subsection.

2.2.1 Poisson (POI) regression
model

Let 𝑦𝑖 be the independent POI ran-
dom variable with mean parameter 𝜇𝑖 , the
probability function for 𝑦𝑖 given 𝑥𝑖 is de-
fined as

𝑓 (𝑦𝑖 |𝒙𝑖) =
𝑒−𝜇𝑖 𝜇𝑦𝑖

𝑖

𝑦𝑖!
, (2.1)

where 𝜇𝑖 = exp(𝒙⊤𝑖 𝜷) and 𝜇𝑖 > 0. The con-
ditional mean and variance of the dependent
variable are 𝐸 [𝑦𝑖 |𝒙𝑖] = 𝑉𝑎𝑟 [𝑦𝑖 |𝒙𝑖] = 𝜇𝑖 .

Under the assumption of independent
observation, the log-likelihood function of
the POI regression model is given by

ln 𝐿 (𝜷) =
𝑛∑
𝑖=1

(
−𝑒𝒙⊤𝑖 𝜷 + 𝑦𝑖𝒙

⊤
𝑖 𝜷 − ln 𝑦𝑖!

)
.

(2.2)

2.2.2 Negative Binomial (NB) re-
gression model

The probability function of the NB
regression model can be expressed as a
function of 𝜇𝑖 and 𝜃 as follows:

𝑓 (𝑦𝑖 |𝒙𝑖) =
Γ

(
𝑦𝑖 + 1

𝜃

)
Γ

(
1
𝜃

)
𝑦𝑖!

(
1

1 + 𝜃𝜇𝑖

) 1
𝜃

×
(

𝜃𝜇𝑖
1 + 𝜃𝜇𝑖

) 𝑦𝑖
, (2.3)

with 𝐸 [𝑦𝑖 |𝒙𝑖] = 𝜇𝑖 and 𝑉𝑎𝑟 [𝑦𝑖 |𝒙𝑖] =
𝜇𝑖 (1 + 𝜃𝜇𝑖), where 𝑦𝑖 is the negative bino-
mial distribution count and 𝜃 is the overdis-
persion parameter. As 𝜃 > 0, we can ob-
serve that 𝑉𝑎𝑟 [𝑦𝑖 |𝒙𝑖] > 𝐸 [𝑦𝑖 |𝒙𝑖]. When
𝜃 = 0, the POI distribution is a special case
of the NB distribution under the POI as-
sumption that 𝐸 [𝑦𝑖 |𝒙𝑖] = 𝑉𝑎𝑟 [𝑦𝑖 |𝒙𝑖].

Assuming that the independent vari-
ables are independent, the log-likelihood
function of the NB regression model is
given by

ln 𝐿 (𝜷) =
𝑛∑
𝑖=1

ln

[
Γ

(
𝑦𝑖 +

1

𝜃

)]
−

𝑛∑
𝑖=1

ln 𝑦𝑖!

56



W. Phaphan et al. | Science & Technology Asia | Vol.28 No.4 October - December 2023

−
𝑛∑
𝑖=1

ln

[
Γ

(
1

𝜃

)]
+

𝑛∑
𝑖=1

𝑦𝑖 ln 𝜃 +
𝑛∑
𝑖=1

𝑦𝑖𝒙
⊤
𝑖 𝜷

−
𝑛∑
𝑖=1

(
𝑦𝑖 +

1

𝜃

)
ln

(
1 + 𝜃𝑒𝒙

⊤
𝑖 𝜷

)
. (2.4)

2.2.3 Zero-Inflated Poisson (ZIP)
regression model

The ZIP model is a mixture model
consisting of a Poisson distribution and a
degenerate distribution at zero. When con-
sidering an independent random variable 𝑦𝑖
with a ZIP distribution, it is assumed that
the occurrence of zeros is linked to two dif-
ferent underlying states as follows:

𝑦𝑖 ∼
{
𝑘𝑖0 , with probability 𝜋𝑖
POI(𝜇𝑖), with probability 1 − 𝜋𝑖 ,

}
,

(2.5)
where 𝑘𝑖0 is a degenerate distribution at
zero. Then, the probability function de-
scribing the two components is as follows:

𝑓 (𝑦𝑖 |𝒙𝑖) =
{
𝜋𝑖 + (1 − 𝜋𝑖)𝑒−𝜇𝑖 , if 𝑦𝑖 = 0

(1 − 𝜋𝑖) 𝑒
−𝜇𝑖 𝜇𝑖 𝑦𝑖
𝑦𝑖 !

, if 𝑦𝑖 > 0,

(2.6)
where 𝜇𝑖 > 0 and 0 ≤ 𝜋𝑖 ≤ 1. The condi-
tional mean and variance of the ZIP regres-
sion model are 𝐸 [𝑦𝑖 |𝒙𝑖] = 𝜇𝑖 (1 − 𝜋𝑖) and
𝑉𝑎𝑟 [𝑦𝑖 |𝒙𝑖] = 𝜇𝑖 (1 − 𝜋𝑖) (1 + 𝜋𝑖𝜇𝑖), respec-
tively.

In order to implement the ZIP regres-
sion model in practical modeling situations,
the logit link is defined as follows:

logit(𝜋𝑖) = ln

(
𝜋𝑖

1 − 𝜋𝑖

)
= 𝑮⊤

𝑖 𝜸, (2.7)

where 𝑮⊤
𝑖 is the vector of independent vari-

ables, while 𝜸 is the vector of unknown pa-
rameters. Therefore,

𝜋𝑖 =
𝑒𝑮

⊤
𝑖 𝜸

1 + 𝑒𝑮
⊤
𝑖 𝜸

. (2.8)

In the event that 𝜋𝑖 is not a function of
𝜇𝑖 , the log-likelihood function for the ZIP
model is assumed below.

ln 𝐿 (𝜷, 𝜸) =
∑

{𝑖:𝑦𝑖=0}
ln

(
𝑒𝑮

⊤
𝑖 𝜸 + 𝑒−𝑒

𝒙⊤𝑖 𝜷
)

−
∑

{𝑖:𝑦𝑖=0}
ln

(
1 + 𝑒𝑮

⊤
𝑖 𝜸

)
−

∑
{𝑖:𝑦𝑖>0}

ln(𝑦𝑖!)

+
∑

{𝑖:𝑦𝑖>0}

(
𝑦𝑖𝒙

⊤
𝑖 𝜷 − 𝑒𝒙

⊤
𝑖 𝜷

)
. (2.9)

2.2.4 Zero-Inflated Negative Bino-
mial (ZINB) regression model

The ZINB model is proposed in or-
der to illustrate variables with an excess of
zeros and overdispersion. This model pro-
vides a better fit for the dependent variable
with overdispersion than the ZIP model.
Suppose that 𝑦𝑖 ∼ ZINB(𝜇𝑖 , 𝜃, 𝜋𝑖), we can
define the probability function of the ZINB
regression model as follows.
If 𝑦𝑖 = 0,
we get

𝑓 (𝑦𝑖 |𝒙𝑖) = 𝜋𝑖+(1−𝜋𝑖)
(

1

1 + 𝜃𝜇𝑖

) 1
𝜃

, (2.10)

while 𝑦𝑖 > 0,

𝑓 (𝑦𝑖 |𝒙𝑖) = (1 − 𝜋𝑖)
Γ

(
𝑦𝑖 + 1

𝜃

)
Γ

(
1
𝜃

)
𝑦𝑖!

(
1

1 + 𝜃𝜇𝑖

) 1
𝜃

×
(

𝜃𝜇𝑖
1 + 𝜃𝜇𝑖

) 𝑦𝑖
. (2.11)

The conditional mean and variation of the
ZINB regression model are 𝐸 [𝑦𝑖 |𝒙𝑖] =
𝜇𝑖 (1− 𝜋𝑖) and 𝑉𝑎𝑟 [𝑦𝑖 |𝒙𝑖] = 𝜇𝑖 (1− 𝜋𝑖)(1+
𝜋𝑖𝜇𝑖 + 𝜃𝜇𝑖), respectively.

We obtain the log-likelihood function
of the ZINB regression model in the same
way as we did for the ZIP regression model.
For 𝑦𝑖 = 0, we obtain

ln 𝐿 (𝜷, 𝜸) =
𝑛∑
𝑖=1

ln

(
𝑒𝑮

⊤
𝑖 𝜸 +

(
1

1 + 𝜃𝑒𝒙
⊤
𝑖 𝜷

) 1
𝜃

)
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−
𝑛∑
𝑖=1

ln
(
1 + 𝑒𝑮

⊤
𝑖 𝜸

)
. (2.12)

The log-likelihood function is as follows for
𝑦𝑖 > 0:

ln 𝐿 (𝜷, 𝜸) = −
𝑛∑
𝑖=1

ln
(
1 + 𝑒𝑮

⊤
𝑖 𝜸

)
+

𝑛∑
𝑖=1

ln

[
Γ

(
𝑦𝑖 +

1

𝜃

)]
−

𝑛∑
𝑖=1

ln

[
Γ

(
1

𝜃

)]
−

𝑛∑
𝑖=1

ln 𝑦𝑖! +
𝑛∑
𝑖=1

𝑦𝑖 ln 𝜃 +
𝑛∑
𝑖=1

𝑦𝑖𝒙
⊤
𝑖 𝜷

−
𝑛∑
𝑖=1

(
𝑦𝑖 +

1

𝜃

)
ln

(
1 + 𝜃𝑒𝒙

⊤
𝑖 𝜷

)
. (2.13)

2.2.5 Conway-Maxwell-Poisson
(CMP) regression model

The CMP regression model, an ex-
tension of the POI regression with the pa-
rameters mean 𝜇𝑖 and dispersion parame-
ter 𝜈, can accommodate both overdispersion
and underdispersion in the data. The prob-
ability function of the CMP model can be
expressed as follows:

𝑓 (𝑦𝑖 |𝒙𝑖) =
𝜇
𝑦𝑖
𝑖

(𝑦𝑖!)𝜈
1

𝑍 (𝜇𝑖 , 𝜈)
, (2.14)

where 𝑍 (𝜇𝑖 , 𝜈) =
∑∞

𝑚=0 𝜇
𝑚
𝑖 /(𝑚!)𝜈 , 𝜇𝑖 > 0

and 𝜈 ≥ 0. If 𝜈 = 1 and as 𝜈 → ∞, the
CMPdistribution becomes the standard POI
distribution. On the other hand, 𝜈 < 1 and
𝜈 > 1 indicate overdispersion and underdis-
persion, respectively.

With the use of an asymptotic esti-
mate for 𝑍 (𝜇𝑖 , 𝜈), the conditional mean and
the variance can be approximated as fol-
lows:

𝐸 [𝑦𝑖 |𝒙𝑖] ≈ 𝜇
1
𝜈
𝑖 − 𝜈 − 1

2𝜈
, (2.15)

and 𝑉𝑎𝑟 [𝑦𝑖 |𝒙𝑖] ≈
𝜇

1
𝜈
𝑖

𝜈
. (2.16)

The expression for the log-likelihood
function for observation 𝑖 of the CMP re-
gression model is:

ln 𝐿 (𝜷) =
𝑛∑
𝑖=1

(
𝑦𝑖𝒙

⊤
𝑖 𝜷

)
− 𝜈

𝑛∑
𝑖=1

ln 𝑦𝑖!

−
𝑛∑
𝑖=1

ln
[
𝑍

(
𝑒𝒙

⊤
𝑖 𝜷 , 𝜈

)]
. (2.17)

2.3 Parameter estimation
The maximum likelihood technique

is used to estimate the parameter 𝜷 and 𝜸
by calculating the first derivative of the log-
likelihood function with respect to 𝜷 and 𝜸,
and setting it to zero. The score equations
are given as follows:

𝜕 ln 𝐿 (·)
𝜕𝜷

= 0, (2.18)

and
𝜕 ln 𝐿 (·)

𝜕𝜸
= 0, (2.19)

where 𝐿 (·) is 𝐿 (𝜷), 𝐿 (𝜸), or 𝐿 (𝜷, 𝜸). The
resulting score equations are nonlinear with
respect to the coefficients and do not have
a closed form to estimate the parameters
in the POI, NB, ZIP, ZINB, and CMP re-
gression models. As a result, numerical
methods must be taken into consideration to
produce the maximum likelihood estimates
(MLEs), such as the iteratively reweighted
least squares [19], Newton-Raphson [20],
or EM (expectation maximization) [21, 22]
algorithms, etc., which are available in stan-
dard programs.

2.4 Model comparison criteria
In this article, the likelihood-ratio

(LR) test and the Akaike information crite-
rion (AIC) were utilized to choose the most
suitable model to fit the data. The following
will provide an explanation of these criteria.
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2.4.1 Likelihood-ratio test for
nested model

The LR test is a statistical test that
compares the goodness of fit of two statis-
tical models to determine if adding com-
plexity to a model significantly improves its
accuracy. Begin by considering the situa-
tion in which there are two models, (1) sim-
pler model (SM) or nested model and (2)
complex model (CM), with the SM nested
within the CM. The performance of the two
models can be compared using the LR test
statistic. In their most basic form, the hy-
potheses for the LR test are as follows:

𝐻0 : Data fit both the SM and CM.
The SM should be used.

𝐻1 : The data fit the CM better than the SM.
The CM should be used.

The likelihood-ratio test statistic is
typically expressed as

ΛLR = −2
[
ln 𝐿0( 𝜷̂) − ln 𝐿1( 𝜷̂)

]
, (2.20)

which is the difference between the log-
likelihoods. Here, ln 𝐿0( 𝜷̂) and ln 𝐿1( 𝜷̂)
represent the log-likelihood function values
under the null and alternative hypotheses,
respectively.

Assuming 𝐻0 is true, the test statistic
(ΛLR) will be asymptotically chi-squared
distributed (𝜒2) with degrees of freedom
equal to the dimensionality difference be-
tween CM and SM as 𝑛 approaches∞.

2.4.2 Vuong Test for Non-Nested
Model

The Vuong non-nested test compares
the predicted probabilities of two models
that do not nest within one another. This
test is typically applied to evaluate whether
a count model with zero inflation is better

than one with non-zero inflation. The hy-
potheses are as follows:

𝐻0 : Two models are comparable.
𝐻1 : Model 2 is superior to Model 1.

The relationship of the likelihood-
ratio test is given by

𝑚𝑖 = ln

[
𝑓1(𝑦𝑖 |𝒙𝑖)
𝑓2(𝑦𝑖 |𝒙𝑖)

]
. (2.21)

Therefore, the Vuong test statistic is

𝑉 =

𝑛∑
𝑖=1

𝑚𝑖

𝑠𝑑𝑚
√
𝑛
, (2.22)

where 𝑠𝑑𝑚 is the sample standard deviation
of𝑚𝑖 . For a large sample size and under the
null hypothesis, the Vuong test statistic is
asymptotically normally distributed by the
central limit theorem.

2.4.3 Akaike Information Criterion
In statistics, the AIC is used to com-

pare various possiblemodels to find the best
fit. The best-fit model is the one that ex-
plains the most variation with the fewest in-
dependent variables, and the better a model
is, the lower the AIC. The formula for the
AIC is as follows:

AIC = −2 ln 𝐿 ( 𝜷̂) + 2𝑞, (2.23)

where 𝑞 is the number of predictors in the
model and 𝐿 ( 𝜷̂) is the value of the log-
likelihood function at the model’s estimated
parameter vector ( 𝜷̂).

2.5 Software utilized
The statistical software R-4.2.3 and

three major packages for count regression
models (MASS, pscl, and COMPoissonReg)
were used to analyse the data. In the
MASS package, the glm() and glm.nb()
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functions were used to construct the POI
and NB regression models within a gen-
eralized linear model framework. The
zeroinfl() function in the pscl package
was used to build the ZIP and ZINB regres-
sion models. The glm.cmp() function in
the COMPoissonReg package was used to
construct the CMP regression model.

3. Empirical Results
This section presents the empirical

findings of this study’s analysis. Two ma-
jor components comprise the analysis: de-
scriptive analysis and model analysis.

3.1 Results of descriptive analysis
There were a total of 1,050 observa-

tions in the data set. When separated by
gender, age ranges, and accident types, it
was found that the number of RAIs ranged
from 0 to 103,939. Moreover, no injuries
were reported in some of the incidents ac-
counting for 39 observations or roughly
3.71% of the total dataset.

Analyses of the data found that males
accounted for 59.64% of RAIs, while fe-
males accounted for only 40.36%. RAIs
were most common in those between the
ages of 15 and 19, who accounted for
17.61%. Next came those aged 20-24
(12.25%), then those aged 10-14 (9.56%).
Furthermore, the number of RAIs due to
various modes of transportation can be bro-
ken down based on the accident types as fol-
lows: motorcycles tallied 82.69%, followed
by bicycles (9.18%), cars (4.81%), pedestri-
ans (3.01%), and buses (0.31%).

Table 1 shows that the number of
RAIs had a larger variance (96,424,826)
than their mean (3,699.61), indicating
the count dependent variable’s value has
overdispersion. The histogram in Fig. 1
also deviates from the normal distribution
because it is right-skewed (skewness > 0)

and has a larger kurtosis than zero.
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Fig. 1. Histogram for the number of road acci-
dent injuries.

Table 1. Summary statistics for the number of
road accident injuries.

Mean : 3,699.61
Variance : 96,424,826.00
Skewness : 4.95
Kurtosis : 31.95

3.2 Results of model analysis and per-
formance comparison

The relationship between the num-
ber of RAIs and independent variables such
as gender, age ranges, and accident types
was analyzed using count regression mod-
els. Cramer’s V was used to analyze the in-
tercorrelations of the independent variables
before the establishment of the model. The
investigation showed no significant corre-
lations between variables. These results
demonstrate that the independent variables
are not multicollinear, supporting the re-
gression models.

The estimated regression coefficients
with standard errors (SE) are shown in Ta-
ble 2, and can be used to create confidence
intervals for the coefficients. This table also
includes the AIC and log-likelihood values
from the analysis. The count part modeling
employed POI, NB, and CMP regression.
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Table 2. Estimated parameters and standard errors from the Poisson, negative binomial, zero-inflated
Poisson, zero-inflated negative binomial, and Conway-Maxwell-Poisson regression models.

Parameter POI NB ZIP ZINB CMP
Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Count Part
Intercept 0.3245∗∗∗ 0.0420 0.5426∗∗∗ 0.1175 0.3441∗∗∗ 0.0424 0.5765∗∗∗ 0.1225 -0.7327∗∗∗ 0.0311
Gender
Female (baseline)
Male 0.3907∗∗∗ 0.0010 0.3432∗∗∗ 0.0342 0.3907∗∗∗ 0.0010 0.3440∗∗∗ 0.0344 1.2290∗∗∗ 0.0012
Age Ranges
≥ 100 (baseline)
95 - 99 -1.0934∗∗∗ 0.0836 -0.3499∗ 0.1609 -1.1129∗∗∗ 0.0838 -0.3843∗ 0.1722 -0.1730∗∗∗ 0.0489
90 - 94 0.8035∗∗∗ 0.0504 1.6254∗∗∗ 0.1413 0.7839∗∗∗ 0.0507 1.5911∗∗∗ 0.1462 -0.3640∗∗∗ 0.0564
85 - 89 2.4228∗∗∗ 0.0437 3.0485∗∗∗ 0.1365 2.4032∗∗∗ 0.0441 3.0143∗∗∗ 0.1409 -1.2030∗∗∗ 0.1222
80 - 84 3.5503∗∗∗ 0.0425 4.0282∗∗∗ 0.1349 3.5307∗∗∗ 0.0429 3.9941∗∗∗ 0.1391 -0.4395∗∗∗ 0.0600
75 - 79 4.2730∗∗∗ 0.0422 4.6332∗∗∗ 0.1343 4.2534∗∗∗ 0.0425 4.5992∗∗∗ 0.1384 2.1298∗∗∗ 0.0311
70 - 74 4.8799∗∗∗ 0.0420 5.1448∗∗∗ 0.1339 4.8603∗∗∗ 0.0424 5.1109∗∗∗ 0.1378 2.8579∗∗∗ 0.0310
65 - 69 5.3267∗∗∗ 0.0420 5.5915∗∗∗ 0.1338 5.3071∗∗∗ 0.0424 5.5578∗∗∗ 0.1377 0.6611∗∗∗ 0.0342
60 - 64 5.6198∗∗∗ 0.0420 5.8473∗∗∗ 0.1337 5.6002∗∗∗ 0.0423 5.8136∗∗∗ 0.1375 -0.5092∗∗∗ 0.0637
55 - 59 5.8258∗∗∗ 0.0419 6.0401∗∗∗ 0.1336 5.8062∗∗∗ 0.0423 6.0065∗∗∗ 0.1375 -0.2931∗∗∗ 0.0534
50 - 54 5.9228∗∗∗ 0.0419 6.0903∗∗∗ 0.1336 5.9032∗∗∗ 0.0423 6.0568∗∗∗ 0.1374 2.6009∗∗∗ 0.0310
45 - 49 5.9395∗∗∗ 0.0419 6.0564∗∗∗ 0.1336 5.9199∗∗∗ 0.0423 6.0229∗∗∗ 0.1373 -3.3497∗∗∗ 0.5371
40 - 44 5.9861∗∗∗ 0.0419 6.0671∗∗∗ 0.1336 5.9665∗∗∗ 0.0423 6.0336∗∗∗ 0.1373 1.6932∗∗∗ 0.0313
35 - 39 6.0420∗∗∗ 0.0419 6.1283∗∗∗ 0.1336 6.0224∗∗∗ 0.0423 6.0948∗∗∗ 0.1373 0.6902∗∗∗ 0.0340
30 - 34 6.1154∗∗∗ 0.0419 6.1686∗∗∗ 0.1336 6.0958∗∗∗ 0.0423 6.1351∗∗∗ 0.1373 -1.5492∗∗∗ 0.1649
25 - 29 6.4025∗∗∗ 0.0419 6.3619∗∗∗ 0.1336 6.3829∗∗∗ 0.0423 6.3285∗∗∗ 0.1371 3.9046∗∗∗ 0.0310
20 - 24 6.7277∗∗∗ 0.0419 6.4917∗∗∗ 0.1335 6.7081∗∗∗ 0.0423 6.4585∗∗∗ 0.1368 -1.7436∗∗∗ 0.1929
15 - 19 7.0900∗∗∗ 0.0419 6.7168∗∗∗ 0.1335 7.0704∗∗∗ 0.0423 6.6836∗∗∗ 0.1367 2.3196∗∗∗ 0.0311
10 - 14 6.4794∗∗∗ 0.0419 6.5359∗∗∗ 0.1335 6.4598∗∗∗ 0.0423 6.5020∗∗∗ 0.1374 1.7751∗∗∗ 0.0312
5 - 9 5.6120∗∗∗ 0.0420 6.3008∗∗∗ 0.1336 5.5924∗∗∗ 0.0423 6.2664∗∗∗ 0.1383 1.4730∗∗∗ 0.0315
0 - 4 5.0319∗∗∗ 0.0420 5.6685∗∗∗ 0.1337 5.0123∗∗∗ 0.0424 5.6344∗∗∗ 0.1380 0.5438∗∗∗ 0.0351
Accident Types
Pedestrians (baseline)
Bicycles 1.1160∗∗∗ 0.0034 0.9308∗∗∗ 0.0535 1.1160∗∗∗ 0.0034 0.9316∗∗∗ 0.0544 -0.6074∗∗∗ 0.0034
Motorcycles 3.3142∗∗∗ 0.0030 2.8610∗∗∗ 0.0531 3.3142∗∗∗ 0.0030 2.8585∗∗∗ 0.0554 1.1644∗∗∗ 0.0015
Buses -2.2732∗∗∗ 0.0096 -2.5211∗∗∗ 0.0563 -2.2732∗∗∗ 0.0096 -2.5216∗∗∗ 0.0575 0.8956∗∗∗ 0.0016
Cars 0.4703∗∗∗ 0.0037 0.1758∗∗ 0.0539 0.4703∗∗∗ 0.0037 0.1755∗∗ 0.0556 0.1573∗∗∗ 0.0020

Zero Part
Intercept -2.4843∗∗ 0.7661 -3.1610∗ 1.4270
Age Ranges
≥ 100 (baseline)
95 - 99 -12.4801 353.0238 -22.4150 91402.1440
90 - 94 -12.9149 349.3678 -21.8190 44456.0350
85 - 89 -11.8795 207.9169 -14.5440 1215.1000
80 - 84 -20.7188 15452.7476 -20.7190 21678.6890
75 - 79 -20.7188 15452.7476 -20.7190 21678.6890
70 - 74 -20.7188 15452.7476 -20.7190 21678.6890
65 - 69 -20.7188 15452.7476 -20.7190 21678.6890
60 - 64 -20.7188 15452.7476 -20.7190 21678.6890
55 - 59 -20.7188 15452.7476 -20.7190 21678.6890
50 - 54 -20.7188 15452.7476 -20.7190 21678.6890
45 - 49 -20.7188 15452.7476 -20.7190 21678.6890
40 - 44 -20.7188 15452.7476 -20.7190 21678.6890
35 - 39 -20.7188 15452.7476 -20.7190 21678.6890
30 - 34 -20.7188 15452.7476 -20.7190 21678.6890
25 - 29 -20.7188 15452.7476 -20.7190 21678.6890
20 - 24 -20.7188 15452.7476 -20.7190 21678.6890
15 - 19 -20.7188 15452.7476 -20.7190 21678.6890
10 - 14 -20.7188 15452.7476 -20.7190 21678.6890
5 - 9 -20.7188 15452.7476 -20.7190 21678.6890
0 - 4 -20.7188 15452.7476 -20.7190 21678.6890
AIC 735027.30 14184.61 735062.20 14225.84 19566081.00
Log Lik -367487.60 -7065.31 -367484.10 -7064.92 -9783013.00

Note: *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05, and SE is standard error.
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Zero-inflated models using ZIP and ZINB
regression were implemented to improve
model fitting in zero-part modeling, where
the age ranges are the factor that affects the
occurrence of actual zero. Comparing all
models in Table 2, it was determined that
the AIC for the NB regression model was
14,184.61, which was less than the other re-
gression models. This indicates that the NB
regression model may be the most appropri-
ate.

In order to determine if the nega-
tive binomial regression model is appropri-
ate for use, it was necessary to determine
whether or not the dependent variable dis-
played overdispersion and zero-inflation.
This was accomplished through the use of
hypothesis tests that compared the proposed
negative binomial model to the POI and
ZINB regression models shown in Table 3.

If the mean and variance of the num-
ber of RAIs were equal or the dispersion ra-
tio is near one, the POI regression model fit
the data. For the overdispersion test with
the hypotheses:

𝐻0 : POI fits the data nicely.
𝐻1 : NB would suit the data better.

Table 3 demonstrates that the NB regression
model would suit the datamore than the POI
regression model (𝑝 < 0.001).

It indicates that the overdispersion
parameter is greater than zero, correspond-
ing to Table 1, and that the mean number of
RAIs is less than its variance. This clearly
shows that there is overdispersion.

Moreover, the AIC value of the NB
regression model is close to that of the
ZINB regression model (AIC = 14,225.84).
As a result, a hypothesis test was carried out
to validate these findings by applying the
Vuong test. The hypotheses for this test are

as follows:

𝐻0 : Both NB and ZINB are equivalent.
𝐻1 : ZINB is better than NB.

The results in Table 3 show that the Vuong
z-statistic between the NB and ZINB re-
gression models was -0.4008, indicating
that both models performed similarly (𝑝 >
0.05). Because of this, we go with the
model that is the least complicated, which
is the NB regression model.

Table 3. Overdispersion and zero-inflation test-
ing.

Testing Overdispersion Zero-inflation
Method LR Test Vuong Test
Model 1 POI NB
Model 2 NB ZINB
Statistic 720845 -0.4008
𝑝-value < 0.001*** 0.344

For the NB regression model, as can
be shown in Table 2, the number of RAIs
is significantly correlated with the indepen-
dent variables of gender, age ranges, and ac-
cident types. When all other variables are
constant, males had 1.41 (𝑒0.3432) times the
number of RAIs compared to females. In
addition, there is a chance that the number
of RAIs between the ages of 15 and 19 is
826.17 (𝑒6.7168) times as high as compared
to those ≥ 100 years old when other vari-
ables are held constant. Moreover, motor-
cycle accidents resulted in a 17.48 (𝑒2.8610)
times higher number of RAIs compared to
pedestrian accidents when other variables
are held constant.

3.3 Results of data prediction
After comparing different models,

it was determined that the NB regression
model was the most appropriate model to
be used to predict the number of RAIs.

The train-test split is a common
method for evaluating a model’s perfor-
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mance, specifically its accuracy in mak-
ing predictions that estimate how well the
model performs on new data (unseen data)
—data not used in the training process. In
this investigation, the data for 2018-2021
were contained in the training set, while the
data for 2022 were included in the test set.
The predicted values derived from the test
set were compared to the actual values using
the graphical representations and root mean
square error (RMSE).

Table 4. Estimated parameters, standard er-
rors, and the exponential of estimated param-
eters from negative binomial regression mod-
els using data from the training set (Year 2018-
2021).

Parameter Estimate SE exp(Est.)
Intercept 0.7115∗∗∗ 0.1164 2.0370
Gender
Female (baseline)
Male 0.3379∗∗∗ 0.0335 1.4020
Age Ranges
≥ 100 (baseline)
95 - 99 -0.4998∗∗ 0.1625 0.6066
90 - 94 1.5299∗∗∗ 0.1402 4.6175
85 - 89 2.9551∗∗∗ 0.1350 19.2029
80 - 84 3.9308∗∗∗ 0.1333 50.9472
75 - 79 4.5511∗∗∗ 0.1326 94.7321
70 - 74 5.0467∗∗∗ 0.1323 155.5059
65 - 69 5.5051∗∗∗ 0.1320 245.9535
60 - 64 5.7754∗∗∗ 0.1320 322.2653
55 - 59 5.9630∗∗∗ 0.1319 388.7711
50 - 54 6.0232∗∗∗ 0.1319 412.8958
45 - 49 5.9924∗∗∗ 0.1319 400.3574
40 - 44 5.9949∗∗∗ 0.1319 401.3578
35 - 39 6.0572∗∗∗ 0.1319 427.1835
30 - 34 6.0957∗∗∗ 0.1319 443.9552
25 - 29 6.2900∗∗∗ 0.1318 539.1458
20 - 24 6.4349∗∗∗ 0.1318 623.1923
15 - 19 6.6542∗∗∗ 0.1318 776.0681
10 - 14 6.4725∗∗∗ 0.1318 647.1245
5 - 9 6.2548∗∗∗ 0.1318 520.5059
0 - 4 5.6300∗∗∗ 0.1320 278.6474
Accident Types
Pedestrians (baseline)
Bicycles 0.9517∗∗∗ 0.0524 2.5901
Motorcycles 2.8748∗∗∗ 0.0520 17.7214
Buses -2.5028∗∗∗ 0.0552 0.0819
Cars 0.1914∗∗∗ 0.0527 1.2109
AIC 11363.52
Log Lik -5654.76
Note: *** 𝑝< 0.001, ** 𝑝 < 0.01, and SE is standard error.

The results from the analysis are dis-

played in Table 4, and the NB regression
model is obtained, as displayed in the fol-
lowing equation.

ln(𝜇𝑖) = 0.7115 + (0.3379) (Male)

+
21∑
𝑗=2

𝛽2 𝑗Age Ranges 𝑗

+
5∑
𝑗=2

𝛽3 𝑗Accident Types 𝑗 . (3.1)
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Fig. 2. Box plot of actual and predicted values
for the number of road accident injuries in 2022.

To predict the number of RAIs in
2022, we used Eq. (3.1) derived from the
NB regression model with the relevant in-
dependent variables, as shown in Table 4,
for this prediction.

A comparison of the data in Fig. 2
reveals that the actual and predicted val-
ues for the number of RAIs differ and that
the RMSE, which measures the average
difference between the two values, equals
3,567.29 (as shown in Table 5). This differ-
ence can be attributed to the dispersion of
the data as well as outliers in the actual val-
ues, which can range anywhere from 0 to
36,804 in 2022, leading to greater predic-
tion errors.

When comparing the actual and pre-
dicted values, segmented by accident types,
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Fig. 3. Actual and predicted values for the num-
ber of road accident injuries by the accident
types: (a) pedestrians, (b) bicycles, (c) motor-
cycles, (d) buses, and (e) cars.

as shown in Fig. 3 and indicated by the
RMSEs in Table 5, it is obvious that this
model is accurate in its prediction of the
number of RAIs involving accident types
such as buses (RMSE = 47.08), pedestri-

Table 5. RMSEs based on accident types.

Accident Types RMSE
Pedestrians 637.55
Bicycles 1,642.71
Motorcycles 7,750.32
Buses 47.08
Cars 673.14

Overall 3,567.29

ans (RMSE = 637.55), and cars (RMSE =
673.14). Nonetheless, there are large differ-
ences between the two values; the RMSE
for motorcycle accidents is notably high
at 7,750.32, followed by bicycle accidents
(RMSE = 1,642.71).

4. Conclusions
In this article, the POI, NB, ZIP,

ZINB, and CMP regressionmodels were in-
vestigated for the number of RAIs that were
treated in outpatient departments in Thai-
land between 2018 and 2022.

According to the results, the NB re-
gression model is best suited for predicting
the number of RAIs in this study because
this count variable displays overdispersion
but does not contain excessive zeros. In ad-
dition, we came to the conclusion that the
number of RAIs is significantly influenced
both by demographic factors (such as gen-
der and age ranges) as well as the different
accident types.

When using the NB regression model
to predict the number of RAIs in 2022, it is
clear that the model is more accurate at pre-
dicting accidents involving buses, pedestri-
ans, and cars than accidents involving mo-
torcycles and bicycles. In addition, the
number of injuries sustained in all cate-
gories of road accidents in 2022 has de-
creased compared to the period from 2018
to 2021. Consequently, this is one of the
reasons for the discrepancy when using the
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NB regression model trained on data from
those years to predict the test dataset in
2022. However, as it uses a few indepen-
dent variables, this model can still be used
as a preliminary tool for predicting the num-
ber of RAIs.
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