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ABSTRACT 
 Regression models are frequently used to explain a response variable using 

independent variables in statistics. However, it is common to encounter situations in which the 
number of independent variables exceeds the number of observations and predictors are 
correlated. In this instance, a large number of predictors are statistically insignificant, also 
known as sparse data. Standard statistical methods do not always apply to such data. 
Problematic aspects include interpretation, estimation inefficiency, and computation. The 
penalized regression method, which consists of Ridge, least absolute shrinkage and selection 
operator (LASSO), elastic net (Enet), adaptive LASSO (ALASSO), and adaptive elastic net 
(AEnet), is frequently employed during the estimation and variable selection phases. The 
purpose of this paper was to assess the prediction and variable selection performances of 
Ridge, Enet, LASSO, ALASSO, and AEnet methods in multiple linear regression with normal 
or positively skewed error terms, sparse data, and correlated independent variables. In 
addition, Poisson and logistic regression models are studied. The adaptive weights are created 
using the remaining three estimators: Ridge, Enet, and LASSO. The results indicate that the 
Ridge estimator is a viable initial adaptive weight estimator for ALASSO and AEnet. In terms 
of prediction, AEnet and ALASSO typically outperform the competition. Given the 
objectives, different tactics are necessary to achieve the lowest false positive rate (FPR) and 
false negative rate (FNR). Enet or AEnet is essential to attain the lowest FPR, while LASSO 
or ALASSO will yield the lowest FNR.  
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1. Introduction  
A generalized linear model (GLM) is 

a statistical model that can be used to 
analyze a wide variety of data types, such as 
count, categorical, and binary data, which is 
not limited to whether the data must be 
continuous or normal distributed. GLM 
enables the fitting of regression models for 
univariate response data that follow a very 
general distribution known as the 
exponential family, which has the general 
form: 

 

 
 
where  is called the canonical parameter 
and represents the location, while the 
dispersion parameter, , represents the 
scale and defines various members of the 
family by specifying the function [1]. 
Currently, the expansion of data is in two 
dimensions: the number of independent 
variables (p) and the number of observations 
(n). When p exceeds n, as in bioinformatics, 
genetics, or geography, statistical analysis 
becomes more challenging. Many 
traditional statistical methods are ineffective 
with these types of data, and high-
dimensional data can result in highly 
correlated independent variables or a 
problem known as multicollinearity [2]. 
Maximum likelihood (ML) and ordinary 
least squares (OLS) estimations, for 
example, become unreliable or impossible 
to compute directly due to high 
dimensionality and collinearity problems 
[3]. 

Data reduction is one method for 
dealing with high-dimensional data and 
correlated independent variables. As a 
result, selecting variables is critical for 
detecting significant predictors. In such 
cases, penalized estimation methods, such 
as shrinking estimators towards the zeroes 
vector [3]  or performing variable selection 
and coefficient estimation simultaneously, 

are often beneficial, as they sacrifice a little 
bias to reduce the variance of the predicted 
values and may improve overall prediction 
accuracy, resulting in an easily interpretable 
model [4]. The estimated coefficients are 
derived by minimizing the objective 
function:  

, 

or , 

 

where  is a loglikelihood function and 
 is the penalty function. 
Hoerl and Kennard [5] proposed a 

new multi-collinearity method, namely, 
Ridge regression. Ridge regression reduces 
coefficients and is more stable than OLS. It 
does not set coefficients to zero or produce a 
clear model. Tibshirani [4] proposed the 
least absolute shrinkage operator estimator 
(LASSO). Some coefficients are shrunk, 
and others are reset. LASSO is popular for 
high-dimensional data, but it has some flaws 
[2]. When the number of independent 
variables is much larger than the number of 
observations  and a grouped 
variables situation,  LASSO is not the ideal 
method, because it can only select at most  
variables out of  candidates. To overcome 
these limitations,  Zou and Hastie [6] 
proposed the elastic net (Enet),  which is 
particularly useful when . Following 
that, Zou [7] introduced an adaptive LASSO 
(ALASSO), in which adaptive weights are 
utilized to penalize distinct coefficients in 
the penalty function and enjoy the oracle 
property -- consistency in variable selection 
and asymptotic normality [8]. 

In addition, Zou and Zhang [9] 
proposed the adaptive elastic net (AEnet) 
that combines the elastic net and the 
ALASSO, which both have the oracle 
property. From the foregoing, it can be 
noted that the ALASSO and AEnet 
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regression methods have adaptive weight in 
the penalty function. Many previous studies 
have constructed the adaptive weights 
differently. For example, Choosawat, 
Reangsephet et al. [10], Sarakor and 
Kulvanich [11], Lisawadi et al. [12], 
Neammai and Lisawadi [13] used Ridge 
estimator, Rungsaranon and Araveeporn 
[14] used LASSO and elastic net estimator, 
and Porndumnernsawat and Hirunkasi [15] 
used  to construct the adaptive 
weights. Jiratchayut and Bumrungsup [8] 
studied the performance of two AEnet 
estimation methods where the adaptive 
weights are constructed using elastic net and 
OLS estimators, and they found that the two 
adaptive weights perform differently.  

Consequently, the purpose of this 
paper is to compare the efficacy of 
penalized regression estimators such as 
Ridge, LASSO, elastic net (Enet), adaptive 
LASSO (ALASSO), and adaptive elastic net 
(AEnet) regression methods in many 
situations. The adaptive weights required for 
ALASSO and AEnet are determined using 
three estimators: the Ridge, LASSO, and 
Enet estimators. The GLMs and multiple 
linear regression models are of interest for 
high-dimensional sparse data with 
correlated independent variables. The 
constant, Toeplitz, and Hub Toeplitz 
correlation structures are used to determine 
correlation among many independent 
variables. These situations have not been 
studied in the literature we reviewed. 

 
2. Materials and Methods  

There are three components in GLMs: 
(i) random component which is the 
distribution of dependent variable  

: a member of an exponential 
family, such as normal, binomial, Poisson, 
gamma, or inverse-Gaussian distributions, 
(ii) systematic component which is a linear 
function of regressors  

, and (iii) link function, 

, which transforms the expectation of 
the dependent variable, , to the 
linear predictors: . 

Table 1. Some common link functions for 
the GLM. 

 
The maximum likelihood (ML) 

method is the theoretical foundation for 
parameter estimation in GLMs. In high-
dimensional data, however, ML estimation 
becomes inaccurate or difficult to directly 
compute, and when the independent 
variables are highly correlated, it leads to 
instability and excessive variance. 
 
2.1 Estimation strategies 
 In this paper, we examine the 
penalized regression method (PR), which 
simultaneously estimates regression 
coefficients and selects variables. The PR is 
always employed with sparse, independent, 
and high-dimensional data, and it can 
connect the penalty function, , to the 
residual sum of squares (RSS) or log-
likelihood function to provide a more 
accurate estimation of the prediction error 
by preventing overfitting [2]. The objective 
function,  of PR, is defined as Eq. 
(2.1), which is equivalent to Eq. (2.2): 
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where  is a loglikelihood function and 
 is a tuning parameter, which controls the 

strength of the penalty and shrinks the 
coefficients  towards zero vector [16]. The 
estimators of the vector  are obtained by 
minimizing Eq. (2.1) or (2.2), and the 
results are the following: 
 

 

or  
 (2.3) 

 
It reduces to the OLS and ML estimators 
when , respectively. 
  
 2.1.1 Ridge Estimator 
 Hoerl and Kennard [5]  proposed 
Ridge regression as a new technique for 
dealing with multicollinearity. Ridge 
regression is biased but has a lower variance 
than the OLS estimator. The Ridge penalty 
function is given as follows: 
 

        (2.4) 
 

where  is the tuning parameter. In 
practice, the value of   is determined by 
using 5-fold cross-validation. 
  
 2.1.2 LASSO 
 The least absolute shrinkage and 
selection operator estimator ( LASSO)  was 
first proposed by Tibshirani [4]. It shrinks 
some coefficients and sets others to zero and 
hence tries to retain the good features of 
both subset selection and Ridge regression 
[4]. Conversely, LASSO shrinkage produces 
biased estimates for large coefficients and 
thus could be suboptimal in terms of 
estimation risk [9]. The penalty function of 
LASSO is defined as follows: 
 

 (2.5) 

where  is a tuning parameter. 
 
 2.1.3 Elastic net Estimator 
 When the number of predictors 
exceeds the number of observations, an Enet 
is extremely useful. It simultaneously 
performs automatic variable selection and 
continuous shrinkage and can select groups 
of correlated variables [6]. The penalty 
function of an elastic net is defined as 
follows: 
 

 (2.6) 
 

where  and  are tuning parameters. As 
a result,  the elastic net method includes the 
LASSO and Ridge regression, i.e., each of 
them is a special case where  
or  [3]. 
 
 2.1.4 Adaptive LASSO Estimator 
 Zou [7] proposed adaptive LASSO 
(ALASSO),  where adaptive weights are 
used for penalizing different coefficients in 
the penalty. The adaptive LASSO enjoys 
oracle properties; namely,  it performs as 
well as if the true underlying model were 
given in advance. The basic idea behind 
ALASSO is assigning a higher weight to the 
small coefficients and lower weight to the 
larger coefficients [17]. This does not imply 
that LASSO will perform better in 
forecasting than ALASSO, but the latter 
will be superior in variable selection. The 
penalty function of ALASSO is defined as 
follows: 

 (2.7) 
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positive constant and is usually set to equal 
one and  is an initial estimator. 
 2.1.5 Adaptive elastic net Estimator 
 Adaptive elastic net (AEnet) was first 
proposed by Zou and Zhang [9]. It can be 
viewed as a combination of the Enet and 
ALASSO. The penalty functionmof 
ALASSO is defined as follows: 
 

 (2.8) 

 
where  is the tuning 

parameter and  is the adaptive 

weight based on the initial estimator. 
  
2.2 Simulation study  
 To conduct ALASSO and AEnet 
regression methods, adaptive weights are 
first needed. Weights can be constructed 
using three estimators: Ridge, LASSO, and 
Enet. There is no weight for the ridge and 
Enet methods. Then, the efficiency of 
regression coefficient estimation and 
variable selection by penalized regression 
were evaluated using Monte Carlo 
simulations with 1,000 replications. 
 A distribution of independent 
variables does not affect parameter 
estimation as these variables are not random 
variables. Without loss of generality, 
predictors are generated by the multivariate 
normal distribution with zero mean and 
covariance . We consider  with 
three different correlation structures, 
namely, constant,  Toeplitz, and Hub 
Toeplitz, respectively. They are as follows: 
 

 (2.9) 
  

 (2.10) 
  
and  (2.11) 

where  and  is 
pairwise correlation. 
 Let the number of independent 
variables (p) be , and the 
sample size  be 50 and 100. The 
pairwise correlation is set to  and 

. The true parameter vector is 
specified as  

 or called sparse data, 

i.e., too many non-significant predictors. 
The models of interest in this paper are:  
 (1) multiple linear regression model 
following the form: 
 

 (2.12) 
 
where  is a  of 

dependent variable,   is a 
 vector of unknow parameters,   for 

 is a  vector of 

independent variable ,and  
is a  vector of random errors. The 
random errors  were generated from 
normal and positively skew distributions: (i) 
standard normal distribution or , (ii) 

,   
corresponding to coefficient of skewness 
(sk) which is equal to  and 30, 
respectively, (iii) ,  where 

 
corresponding to coefficients of skewness 
equal to , respectively, and (iv) 
Weibull(1, ), where  
0.39 corresponding to coefficient of 
skewness which equals  and 10, 
respectively. 
 (2) logistic regression model follows 
the form: 
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 (2.13) 

  
 (3) Poisson regression model with 
mean parameter  which can be defined as 

.                (2.14) 
  
2.3 Performance criteria 
 Two criteria are employed in this 
paper. The prediction accuracy is evaluated 
by the mean of prediction mean square 
errors (mPMSE) defined as: 

 

 
 

(2.15) 

where the number of replicates equals 1,000 
in the Monte Carlo simulation. The variable 
selection performance is accessed using the 
false positive rate (FPR) and false negative 
rate (FNR). The FNR is the proportion of 
variables excluded from a model, although 
their coefficients are not zero; the FPR is the 
proportion of variables included in a model, 
but the true coefficients are zero. The 
formulas are the following: 
 

 (2.16) 

and 

 (2.17) 

 

Even though there are three criteria, the 
mPMSE is used as the main one to decide 
which method is the best because regression 
analysis is often interested in making 
predictions.  
 
3. Results and Discussion 
 It should be noted that FPR and FNR 
results were not presented in detail, but 
rather as an overall picture, and that the 
Ridge regression method does not involve 
variable selection. 
 First, the efficiency of ALASSO and 
AEnet methods was studied in multiple 
linear models with normal and positively 
skewed distributions: gamma, log-normal, 
Weibull error terms, Poisson, and logistic 
regression models. For overall prediction, 
both the ALASSO and AEnet give the 
lowest mPMSE when the adaptive weight 
was constructed by the Ridge estimator. All 
mPMSE values for a different configuration 
of n and p are represented graphically in 
Figs. 1. and 2. 
 While Ridge estimators produce the 
best result, the adaptive weight from the 
Enet estimator is the second-best, followed 
by the LASSO estimator. Only the example 
of a logistic regression model with constant 
correlation structures will be discussed here; 
other models with varying correlations will 
not be given because the general 
conclusions will be the same. 
 The effectiveness of penalized 
regression coefficient estimation using five 
distinct methods will be presented here. It is 
noted that the Ridge estimation was used to 
determine the adaptive weight on the 
ALASSO and AEnet. The results will be 
divided into three parts based on the models. 
 

 

( ) ( )
( )

exp
1 .

1 expiP y p= = =
+

T
i

i T
i

x β
x

x β

iµ

( )expiµ = T
ix β

1000

1

1000
2

1
1

PMSE
mPMSE

1,000

ˆ( )
       ,

1,000

j
j

j

n
i ii jj
y y n

=

=
=

=

é ù-ë û
=

å

å å

{ }
{ }

ˆ0, , ; 0, 0
ˆ0, , ; 0

= … = ¹
=

= … ¹

j j

j

j p
FPR

j p

b b

b

{ }
{ }

ˆ0, , ; 0, 0
.

ˆ0, , ; 0

= … ¹ =
=

= … =

j j

j

j p
FNR

j p

b b

b



A. Sripanich et al. | Science & Technology Asia |Vol.28 No.2 April – June 2023 

37 

 
Fig. 1. mPMSE obtained from ALASSO with three different adaptive weights for constant r = 0.5 
(left) and r = 0.9 (right). 
 

 

 

Fig. 2.  mPMSE obtained from AEnet estimator with different adaptive weights for constant r = 0.5 
(left) and r = 0.9 (right). 
 
3.1 Linear regression model 
 The AEnet gives the lowest mPMSE 
among all others in the multiple linear 
regression model with normal error terms in 
all correlation structures. Generally, 

ALASSO outperforms LASSO and Ridge in 
terms of prediction. While ALASSO 
outperforms Enet in most cases, Enet is 
better at making predictions than LASSO. 
The result is summarized in Table 2. 

Table 2. Summary of the results of the best prediction accuracy and variable selection 
performance in multiple linear, Poisson, and logistic regression models 
 

Model Distribution 
of errors 

Level of 
skewness 

Coefficient 
of skewness 

Prediction criterion Variable selection 
mPMSE FPR FNR 

Correlation 
structure 

Correlation 
structure 

Correlation 
structure 

C T HT C T HT C T HT 

Multiple 
linear  

regression 

Normal  0 AEnet Enet/AEnet ALASSO 

Gamma 

Low 0.5 
AEnet AEnet LASSO 1 

Moderate 4 
Enet 5 LASSO/Enet/ 

ALASSO/AEnet ALASSO High 30 

Log- 
normal 

Low 1 LASSO/Enet/ 
ALASSO/AEnet Enet ALASSO 

Moderate 2 
AEnet LASSO 5 AEnet High 30 

Weibull 

Low 0.2 LASSO/Enet/ 
ALASSO/AEnet Enet ALASSO 

Moderate 1 
AEnet LASSO 5 AEnet High 10 

Poisson 
 

AEnet Enet/AEnet LASSO 
Logistic AEnet Enet/AEnet LASSO 

Note: C = constant, T = toeplitz, HT = hub toeplitz 
 
For fixed n and r = 0.9 with a constant and 
Hub Toeplitz correlation structure, the 
performance of Ridge, ALASSO, and 
AEnet increases (mPMSEs decrease) as p 
increases. Furthermore, the ALASSO and 

the AEnet have higher prediction 
performance when n is much larger than p. 
All results are illustrated in Figs. 2 and 3. 
 For the multiple linear regression 
model with positive skew distribution error 
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terms, the following are the main outcomes:
 I. In a multiple linear regression 
model with a gamma error term, the AEnet 
gives the lowest mPMSE at low to moderate 
skewness. In terms of mPMSE, ALASSO 
often outperforms Enet, LASSO, and Ridge. 
Except for the Hub Toeplitz correlation, the 
performance of LASSO, Enet, and 
ALASSO increases as p increases for fixed 
r and n with a moderate to high level of 
skewness.  
 II. At low levels of skewness, 
LASSO, Enet, ALASSO, and AEnet all do 
about the same in the multiple linear 
regression model with log-normal error 
components. For levels of moderate to high 
skewness, AEnet frequently provided the 
lowest mPMSE. ALASSO often 
outperforms Enet, LASSO, and Ridge. 
Ridge fared better than LASSO and Enet at 
moderate to high skewness levels.                                                                                                                           

III. When a multiple linear regression 
model with a Weibull error term is 
considered, LASSO, Enet, ALASSO, and 
AEnet provide comparable prediction 
performance at the low level. At moderate 
to high levels of skewness, it is found that 
AEnet often gives the lowest mPMSE. In 
details, ALASSO outperforms Enet, 
LASSO, and Ridge, respectively. At 
moderate to high levels of skewness, Ridge 
outperforms LASSO and Enet.  From Figs. 
3–5, the performance of LASSO, ALASSO, 
Enet, and AEnet is improved when n 
increases. 
 

3.2 Poisson regression model 
 Figs. 3–5 show that the AEnet 
appears to have the lowest mPMSE among 
all the five methods considered. It is 
discovered that the ALASSO outperforms 
the LASSO and Ridge in prediction. Except 
for the Hub Toeplitz correlation, the 
prediction performance of all estimators 
improves as r increases or the correlation 
becomes stronger for fixed n and p. 
Considering incorrect variable selection, it 
is found that AEnet and Enet give the lowest 
FPR. In terms of FNR, LASSO gives the 
lowest, whereas AEnet gives the highest. 
The results of mPMSE for fixed r and n are 
like those of the multiple linear regression 
model with a normal error term. The 
conclusions are summarized in Table. 2. 
  
3.3 Logistic regression model 
 The results of prediction performance 
shown in Figs. 6-8 are similar to those from 
the Poisson regression model in terms of the 
lowest mPMSE. When r and n are kept the 
same, ALASSO and AEnet estimators do a 
better job of predicting as p increases. The 
ALASSO and AEnet tend to make better 
predictions when n is very large than when 
n is close to p. Overall, for fixed r and n or 
fixed r and p, the results of prediction 
performance are similar to those of the 
multiple linear with normal error term and 
Poisson regression models. ----- 
 
--------------

  
 

Fig. 3. Comparisons of mPMSEs for the constant correlation structure in Poisson regression models. 
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Fig. 4. Comparisons of mPMSEs for the Toeplitz correlation structure in Poisson regression models. 

 
Fig. 5. Comparisons of mPMSE for the Hub Toeplitz correlation structure in Poisson regression 
models. 

  

Fig. 6. Comparisons of mPMSEs for the constant correlation structure in logistic regression models. 

  

Fig. 7. Comparisons of mPMSEs for the Toeplitz correlation structure in logistic regression models. 
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Fig. 8. Comparisons of mPMSEs for the Hub Toeplitz correlation structure in logistic regression 
models. 

 
4. Real Data Application  
 For the real data sets, it is noted that 
the Ridge estimator was used to find 
adaptive weights for ALASSO and AEnet. 
  
4.1 Multiple linear regression model 
 The data in this example are: 
 I. Individuals from a genetically 
homogeneous sample who produced 
riboflavin in Bacillus subtilis were the 
dependent variable, and measures of 
riboflavin logarithm production rate were 
the independent variables [18]. The 
Kolmogorov-Smirnov test was used to 
examine residuals for normality, and it was 
found that they were not. According to 
Table 4, the AEnet had better prediction 
performance than the others. 
 II. From 123 patients in the 
CHEMORES cohort who underwent 
complete surgical resection, a genomic 
collection of lung cancer was obtained [19]. 
The dependent variable was the time of 
disease-free survival, and the independent 
variables were 940 quantitative variables. 
After being checked for normality, the 
Kolmogorov-Smirnov test residuals were 
found to be so. Table 5 shows that the 
AEnet estimator outperformed the others in 
terms of prediction accuracy. 
  
4.2 Poisson regression model 
 In this case, the data came from the 
dataset for the Software Engineering 
Teamwork Assessment in an Educational 
Setting [20]. The dependent variable, which 
was based on 74 observations of the teams’ 

teamwork, was a count of the number of 
students who learned about software 
engineering teamwork. It had 81 
independent variables, such as the number 
of women who attended, how long the 
meetings lasted, and how long they lasted 
on average. Table 6 demonstrates that, in 
terms of prediction, AEnet performs better 
than the others. 
 
Table 4. Comparison of mPMSEs among 
the five methods using a multiple linear 
regression model with non-normal residuals. 
Ridge LASSO Enet ALASSO AEnet 
0.0623 0.0946 0.0616 0.0522 0.0510 
 
Table 5. Comparison of mPMSEs among 
the five methods using a multiple linear 
regression model with normal residuals. 
Ridge LASSO Enet ALASSO AEnet 
3.7908 4.2756 3.8133 3.5719 3.0859 
 
Table 6. Comparison of mPMSEs among 
the five methods using a Poisson regression. 
Ridge LASSO Enet ALASSO AEnet 
0.3478 0.1205 0.1165 0.1138 0.1105 
 
Table 7. Comparison of mPMSEs among 
the five methods using a logistic regression. 
Ridge LASSO Enet ALASSO AEnet 
0.0154 0.0095 0.0085 0.0097 0.0083 
 
  
4.3 Logistic regression model 

The data in this example were gene 
expression measurements of 72 leukemia 
patients, 47 with acute lymphoblastic 
leukemia (ALL), and 25 with acute myeloid 
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leukemia (AML) [21]. The dependent 
variable is a binary variable with only two 
possible values, and the independent 
variable is one of 3571 quantitative 
variables. In terms of making predictions, 
Table 7 shows that the AEnet did the best, 
followed by the Enet, LASSO, ALASSO, 
and Ridge estimators.  

 
5. Conclusion 

Using the Ridge estimator to construct 
the adaptive weights produces the most 
accurate predictions for ALASSO and 
AEnet. In terms of prediction accuracy, 
from simulation studies, AEnet tends to 
outperform the other four approaches in 
multiple linear with normal error terms, 
Poisson, and logistic regression models. In 
certain instances, particularly for regression 
models with non-normal errors, LASSO, 
ALASSO, Enet, and AEnet all give 
comparable prediction accuracy. However, 
correlation structures have a limited effect 
on the mPMSE.  

Different strategies are required to 
obtain the lowest false positive rate (FPR) 
and false negative rate (FNR) given the 
objective. Enet or AEnet is required to 
obtain the lowest FPR, while LASSO or 
ALASSO will produce the lowest FNR. 
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