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ABSTRACT

Regression models are frequently used to explain a response variable using
independent variables in statistics. However, it is common to encounter situations in which the
number of independent variables exceeds the number of observations and predictors are
correlated. In this instance, a large number of predictors are statistically insignificant, also
known as sparse data. Standard statistical methods do not always apply to such data.
Problematic aspects include interpretation, estimation inefficiency, and computation. The
penalized regression method, which consists of Ridge, least absolute shrinkage and selection
operator (LASSO), elastic net (Enet), adaptive LASSO (ALASSO), and adaptive elastic net
(AEnet), is frequently employed during the estimation and variable selection phases. The
purpose of this paper was to assess the prediction and variable selection performances of
Ridge, Enet, LASSO, ALASSO, and AEnet methods in multiple linear regression with normal
or positively skewed error terms, sparse data, and correlated independent variables. In
addition, Poisson and logistic regression models are studied. The adaptive weights are created
using the remaining three estimators: Ridge, Enet, and LASSO. The results indicate that the
Ridge estimator is a viable initial adaptive weight estimator for ALASSO and AEnet. In terms
of prediction, AEnet and ALASSO typically outperform the competition. Given the
objectives, different tactics are necessary to achieve the lowest false positive rate (FPR) and
false negative rate (FNR). Enet or AEnet is essential to attain the lowest FPR, while LASSO
or ALASSO will yield the lowest FNR.
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1. Introduction

A generalized linear model (GLM) is
a statistical model that can be used to
analyze a wide variety of data types, such as
count, categorical, and binary data, which is
not limited to whether the data must be
continuous or normal distributed. GLM
enables the fitting of regression models for
univariate response data that follow a very
general  distribution known as the
exponential family, which has the general
form:

£ (+10.6)=exp[ (y0-b(0))/a(¢) +e(1.6)].

where @ is called the canonical parameter
and represents the location, while the
dispersion parameter, ¢, represents the

scale and defines various members of the
family by specifying the function [1].
Currently, the expansion of data is in two
dimensions: the number of independent
variables (p) and the number of observations
(n). When p exceeds n, as in bioinformatics,
genetics, or geography, statistical analysis
becomes  more  challenging. = Many
traditional statistical methods are ineffective
with these types of data, and high-
dimensional data can result in highly
correlated independent variables or a
problem known as multicollinearity [2].
Maximum likelihood (ML) and ordinary
least squares (OLS) estimations, for
example, become unreliable or impossible
to compute directly due to high
dimensionality and collinearity problems
[3].

Data reduction is one method for
dealing with high-dimensional data and
correlated independent variables. As a
result, selecting variables is critical for
detecting significant predictors. In such
cases, penalized estimation methods, such
as shrinking estimators towards the zeroes
vector [3] or performing variable selection
and coefficient estimation simultaneously,
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are often beneficial, as they sacrifice a little
bias to reduce the variance of the predicted
values and may improve overall prediction
accuracy, resulting in an easily interpretable
model [4]. The estimated coefficients are
derived by minimizing the objective
function:

n

p= arg;nin{Z[yi —Zplﬂ/xjj +P, (B)}’

i=1

or p= argmin{—l(B)Jrﬂ (B)} ,

B

where I(B) is a loglikelihood function and

P, (B) is the penalty function.

Hoerl and Kennard [5] proposed a
new multi-collinearity method, namely,
Ridge regression. Ridge regression reduces
coefficients and is more stable than OLS. It
does not set coefficients to zero or produce a
clear model. Tibshirani [4] proposed the
least absolute shrinkage operator estimator
(LASSO). Some coefficients are shrunk,
and others are reset. LASSO is popular for
high-dimensional data, but it has some flaws
[2]. When the number of independent
variables is much larger than the number of

observations (p>>n) and a grouped

variables situation, LASSO is not the ideal
method, because it can only select at most #
variables out of p candidates. To overcome

these limitations, Zou and Hastie [6]
proposed the elastic net (Enet), which is
particularly useful when p >>n. Following

that, Zou [7] introduced an adaptive LASSO
(ALASSO), in which adaptive weights are
utilized to penalize distinct coefficients in
the penalty function and enjoy the oracle
property -- consistency in variable selection
and asymptotic normality [8].

In addition, Zou and Zhang [9]
proposed the adaptive elastic net (AEnet)
that combines the elastic net and the
ALASSO, which both have the oracle
property. From the foregoing, it can be
noted that the ALASSO and AEnet
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regression methods have adaptive weight in
the penalty function. Many previous studies
have constructed the adaptive weights

differently. For example, Choosawat,
Reangsephet et al. [10], Sarakor and
Kulvanich [11], Lisawadi et al. [12],

Neammai and Lisawadi [13] used Ridge
estimator, Rungsaranon and Araveeporn
[14] used LASSO and elastic net estimator,
and Porndumnernsawat and Hirunkasi [15]
used X'Y/n to construct the adaptive

weights. Jiratchayut and Bumrungsup [8]
studied the performance of two AEnet
estimation methods where the adaptive
weights are constructed using elastic net and
OLS estimators, and they found that the two
adaptive weights perform differently.
Consequently, the purpose of this
paper is to compare the efficacy of
penalized regression estimators such as
Ridge, LASSO, elastic net (Enet), adaptive
LASSO (ALASSO), and adaptive elastic net
(AEnet) regression methods in many
situations. The adaptive weights required for
ALASSO and AEnet are determined using
three estimators: the Ridge, LASSO, and
Enet estimators. The GLMs and multiple
linear regression models are of interest for

high-dimensional  sparse  data  with
correlated independent variables. The
constant, Toeplitz, and Hub Toeplitz

correlation structures are used to determine
correlation among many independent
variables. These situations have not been
studied in the literature we reviewed.

2. Materials and Methods

There are three components in GLMs:
(i) random component which 1is the
distribution of dependent variable Y,i=
L,2,...,n: a member of an exponential

family, such as normal, binomial, Poisson,
gamma, or inverse-Gaussian distributions,
(i1) systematic component which is a linear

function of regressors n=X"B= Sx, +
Byx;; +...+ B,x,, , and (iii) link function,
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g(-), which transforms the expectation of

the dependent variable, 1, = E(Y;), to the
= XZTB .

linear predictors: g ()

Table 1. Some common link functions for
the GLM.

Distribution  Link function
normal 1, = g, (identity link)
binomial = ln(ﬂ-" / (1 —7 ))

(logistic link)
Poisson 17, =In(4,) (log link)
exponential 77, =1/, (reciprocal link)
gamma n, =1/, (reciprocal link)

The maximum likelihood (ML)

method is the theoretical foundation for
parameter estimation in GLMs. In high-
dimensional data, however, ML estimation
becomes inaccurate or difficult to directly
compute, and when the independent
variables are highly correlated, it leads to
instability and excessive variance.

2.1 Estimation strategies

In this paper, we examine the
penalized regression method (PR), which
simultaneously estimates regression
coefficients and selects variables. The PR is
always employed with sparse, independent,
and high-dimensional data, and it can

connect the penalty function, lP(B) , to the
residual sum of squares (RSS) or log-
likelihood function to provide a more
accurate estimation of the prediction error
by preventing overfitting [2]. The objective
function, g(p) of PR, is defined as Eq.

(2.1), which is equivalent to Eq. (2.2):

g(ﬂ){(x—ﬁﬂ,x,} +2P(B). QD)

g(B)=~1(B)+2P(B), (2.2)
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where / (B) is a loglikelihood function and

A is a tuning parameter, which controls the
strength of the penalty and shrinks the
coefficients B towards zero vector [16]. The
estimators of the vector B are obtained by
minimizing Eq. (2.1) or (2.2), and the
results are the following:

fs=arg;mn{i(y,.—iﬂjx,fm(m}

i=1 =1
or

ﬁ :argmin{—l(ﬁ)"‘/lp(ﬁ)}'

; (2.3)
It reduces to the OLS and ML estimators
when A =0, respectively.

2.1.1 Ridge Estimator

Hoerl and Kennard [5] proposed
Ridge regression as a new technique for
dealing with multicollinearity. Ridge
regression is biased but has a lower variance
than the OLS estimator. The Ridge penalty
function is given as follows:

YR

where A>0 is the tuning parameter. In
practice, the value of A is determined by
using 5-fold cross-validation.

(2.4)

2.1.2 LASSO

The least absolute shrinkage and
selection operator estimator ( LASSO) was
first proposed by Tibshirani [4]. It shrinks
some coefficients and sets others to zero and
hence tries to retain the good features of
both subset selection and Ridge regression
[4]. Conversely, LASSO shrinkage produces
biased estimates for large coefficients and
thus could be suboptimal in terms of
estimation risk [9]. The penalty function of
LASSO is defined as follows:
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awF%2ML 2.5)

where A 2>0 is a tuning parameter.

2.1.3 Elastic net Estimator

When the number of predictors
exceeds the number of observations, an Enet
is extremely useful. It simultaneously
performs automatic variable selection and
continuous shrinkage and can select groups
of correlated variables [6]. The penalty
function of an elastic net is defined as
follows:

OEESIIEES YT

where A, and A, are tuning parameters. As

a result, the elastic net method includes the
LASSO and Ridge regression, i.e., each of
them is a special case where 4, =4,4, =0

or 4, =0,4, =4 [3].

2.1.4 Adaptive LASSO Estimator

Zou [7] proposed adaptive LASSO
(ALASSO), where adaptive weights are
used for penalizing different coefficients in
the penalty. The adaptive LASSO enjoys
oracle properties; namely, it performs as
well as if the true underlying model were
given in advance. The basic idea behind
ALASSO is assigning a higher weight to the
small coefficients and lower weight to the
larger coefficients [17]. This does not imply
that LASSO will perform better in
forecasting than ALASSO, but the latter
will be superior in variable selection. The
penalty function of ALASSO is defined as
follows:

fxm=ﬂiwf 2.7

B,

where 4>0 is a tuning parameter and

- A7 . :
w; =‘ ﬂ/‘ is the adaptive weight based on

the initial estimator ,Bj, where y is a
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positive constant and is usually set to equal
one and ,3/. is an initial estimator.

2.1.5 Adaptive elastic net Estimator

Adaptive elastic net (AEnet) was first
proposed by Zou and Zhang [9]. It can be
viewed as a combination of the Enet and
ALASSO. The penalty functionmof
ALASSO is defined as follows:

PA(B):AZWJ

P
=l

ﬂ,-I%iﬂf, (2.8)

where 4,20,7=1,2,..,p is the tuning
A=Y
B

weight based on the initial estimator.

parameter and W, =

is the adaptive

2.2 Simulation study

To conduct ALASSO and AEnet
regression methods, adaptive weights are
first needed. Weights can be constructed
using three estimators: Ridge, LASSO, and
Enet. There is no weight for the ridge and
Enet methods. Then, the efficiency of
regression  coefficient estimation and
variable selection by penalized regression
were evaluated using Monte Carlo
simulations with 1,000 replications.

A distribution of independent
variables does mnot affect parameter
estimation as these variables are not random
variables. Without loss of generality,
predictors are generated by the multivariate
normal distribution with zero mean and

covariance >, . We consider > = with
three  different correlation  structures,
namely, constant,  Toeplitz, and Hub

Toeplitz, respectively. They are as follows:

z/,k:p91SkﬂjSpa (29)
=0 (2.10)
and o, =1, ;= o — 7 (i-2), (2.11)
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where 7, =( 0 — Puin )/(P—2) and p is
pairwise correlation.

Let the number of independent
variables (p) be 200,500,1000, and the

sample size (n) be 50 and 100. The
pairwise correlation is set to p=0.5 and
p=09.
specified as

The true parameter vector is

f—ﬁ%
p=(1,-0.5,-0.5,0.1,0.1,0.1,0.05,...,0.05,
0.01,...,0.01,0,...,0) or called sparse data,

5 p-15
ie., too many non-significant predictors.
The models of interest in this paper are:

(1) multiple linear regression model
following the form:

y=X"B+e, (2.12)

where y:(y],yz,...,yn)r is a nxl of

dependent variable, P =(ﬂ1,ﬂ2,...,ﬁp )T is a

px1 vector of unknow parameters, X for

i=12,....n is a nxp vector of
. . T
independent variable ,and £=(¢,,¢,,...,€, )
is a nxl vector of random errors. The
random errors €& were generated from
normal and positively skew distributions: (i)

standard normal distribution or N (0,1) , (1)
Gamma(a,1), a=16,4,0.25,0.016, 0.004
corresponding to coefficient of skewness
(sk) which is equal to 0.5,1,4,5, and 30,
respectively, (iii) Lognormal(O,a), where
0 =0.3143,0.5514,0.9202,1.4733

corresponding to coefficients of skewness
equal to ,1,2,5,30respectively, and (iv)
Weibull(1,4), where A= 2.88,1.5,0.5999,

0.39 corresponding to coefficient of
skewness which equals 0.2,1,5, and 10,
respectively.

(2) logistic regression model follows
the form:
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xp(x1B)
1+exp(xiT|3)‘

P(y=1x)=r, (2.13)

(3) Poisson regression model with
mean parameter g which can be defined as

U= exp(xiTB) i (2.14)

2.3 Performance criteria

Two criteria are employed in this
paper. The prediction accuracy is evaluated
by the mean of prediction mean square
errors (mPMSE) defined as:

1000

2 PMSE,
mPMSE, = -————
1,000
1000 n
YIXLoimgy ] @)
- J=
1,000 ’

where the number of replicates equals 1,000
in the Monte Carlo simulation. The variable
selection performance is accessed using the
false positive rate (FPR) and false negative
rate (FNR). The FNR is the proportion of
variables excluded from a model, although
their coefficients are not zero; the FPR is the
proportion of variables included in a model,
but the true coefficients are zero. The
formulas are the following:

{i=0....p:8,=0,,#0|

FPR = {ij,...,p; '3/ ¢0} (2.16)

and

FNR:{jZO’ Ll iAO’ﬂ’:O} 2.17)
J=0,....,p; B, :0}
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Even though there are three criteria, the
mPMSE is used as the main one to decide
which method is the best because regression
analysis is often interested in making
predictions.

3. Results and Discussion

It should be noted that FPR and FNR
results were not presented in detail, but
rather as an overall picture, and that the
Ridge regression method does not involve
variable selection.

First, the efficiency of ALASSO and
AEnet methods was studied in multiple
linear models with normal and positively
skewed distributions: gamma, log-normal,
Weibull error terms, Poisson, and logistic
regression models. For overall prediction,
both the ALASSO and AEnet give the
lowest mPMSE when the adaptive weight
was constructed by the Ridge estimator. All
mPMSE values for a different configuration
ofn and p are represented graphically in
Figs. 1. and 2.

While Ridge estimators produce the
best result, the adaptive weight from the
Enet estimator is the second-best, followed
by the LASSO estimator. Only the example
of a logistic regression model with constant
correlation structures will be discussed here;
other models with varying correlations will

not be given because the general
conclusions will be the same.
The effectiveness of penalized

regression coefficient estimation using five
distinct methods will be presented here. It is
noted that the Ridge estimation was used to
determine the adaptive weight on the
ALASSO and AEnet. The results will be
divided into three parts based on the models.
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Fig. 1. mPMSE obtained from ALASSO with three different adaptive weights for constant » = 0.5

(left) and » = 0.9 (right).
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Fig. 2. mPMSE obtained from AEnet estimator with different adaptive weights for constant » = 0.5

(left) and » = 0.9 (right).

3.1 Linear regression model

The AEnet gives the lowest mPMSE
among all others in the multiple linear
regression model with normal error terms in
all  correlation  structures.  Generally,

ALASSO outperforms LASSO and Ridge in
terms of prediction. While ALASSO
outperforms Enet in most cases, Enet is
better at making predictions than LASSO.
The result is summarized in Table 2.

Table 2. Summary of the results of the best prediction accuracy and variable selection
performance in multiple linear, Poisson, and logistic regression models

Prediction criterion

Variable selection

RPN . mPMSE FPR FNR
Distribution Level of Coefficient " " "
Model Correlation Correlation Correlation
of errors skewness of skewness
structure structure structure
C T HT C T HT C T HT
Normal 0 AEnet Enet/AEnet ALASSO
0.5
Low 1 AEnet AEnet LASSO
Gamma 4
Moderate 5 LASSO/Enet/ Enet ALASSO
High 30 ALASSO/AEnet
. LASSO/Enet/
Multiple Low ! ALASSO/AEnet Enet ALASSO
linear Log- 5
regression normal Moderate P AEnet bt LASSO
High 30
LASSO/Enet/
Low 0.2 ALASSO/AEnet Enet ALASSO
Weibull 1
Moderate 5 AEnet ABnet LASSO
High 10
Poisson AEnet Enet/AEnet LASSO
Logistic AEnet Enet/AEnet LASSO
Note: C = constant, T = toeplitz, HT = hub toeplitz
For fixed n and » = 0.9 with a constant and the AEnet have higher prediction

Hub Toeplitz correlation structure, the
performance of Ridge, ALASSO, and
AEnet increases (mPMSEs decrease) as p
increases. Furthermore, the ALASSO and
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performance when » is much larger than p.

All results are illustrated in Figs. 2 and 3.
For the multiple linear regression

model with positive skew distribution error
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terms, the following are the main outcomes:

. In a multiple linear regression
model with a gamma error term, the AEnet
gives the lowest mPMSE at low to moderate
skewness. In terms of mPMSE, ALASSO
often outperforms Enet, LASSO, and Ridge.
Except for the Hub Toeplitz correlation, the
performance of LASSO, Enet, and
ALASSO increases as p increases for fixed
r and n with a moderate to high level of
skewness.

II. At low levels of skewness,
LASSO, Enet, ALASSO, and AEnet all do
about the same in the multiple linear
regression model with log-normal error
components. For levels of moderate to high
skewness, AEnet frequently provided the
lowest mPMSE. ALASSO often
outperforms Enet, LASSO, and Ridge.
Ridge fared better than LASSO and Enet at
moderate to high skewness levels.

III. When a multiple linear regression
model with a Weibull error term is
considered, LASSO, Enet, ALASSO, and
AEnet provide comparable prediction
performance at the low level. At moderate
to high levels of skewness, it is found that
AEnet often gives the lowest mPMSE. In
details, ALASSO outperforms Enet,
LASSO, and Ridge, respectively. At
moderate to high levels of skewness, Ridge
outperforms LASSO and Enet. From Figs.
3-5, the performance of LASSO, ALASSO,
Enet, and AEnet is improved when n
increases.

Poisson model with
constant correlation structure (r=0.5)

/\

mPMSE

OO0
aLtolo—imiv oyt

n=50,p=200 n=50,p=500 n=50,p=1000 n=100,p=200 n=100,p=500 n=100,p=1000

AFnet ——ALASSO —=—Enet ——LASSO —=—Ridge

3.2 Poisson regression model

Figs. 3-5 show that the AEnet
appears to have the lowest mPMSE among
all the five methods considered. It is
discovered that the ALASSO outperforms
the LASSO and Ridge in prediction. Except
for the Hub Toeplitz correlation, the
prediction performance of all estimators
improves as » increases or the correlation
becomes stronger for fixed » and p.
Considering incorrect variable selection, it
is found that AEnet and Enet give the lowest
FPR. In terms of FNR, LASSO gives the
lowest, whereas AEnet gives the highest.
The results of mPMSE for fixed  and » are
like those of the multiple linear regression
model with a normal error term. The
conclusions are summarized in Table. 2.

3.3 Logistic regression model

The results of prediction performance
shown in Figs. 6-8 are similar to those from
the Poisson regression model in terms of the
lowest mPMSE. When 7 and n are kept the
same, ALASSO and AEnet estimators do a
better job of predicting as p increases. The
ALASSO and AEnet tend to make better
predictions when 7 is very large than when
n is close to p. Overall, for fixed » and n or
fixed » and p, the results of prediction
performance are similar to those of the
multiple linear with normal error term and
Poisson regression models.

Poisson model with
constant correlation structure (r=0.9)

e

n=50,p=200 n=50,p=500 n=50,p=1000 n=100,p=200 n=100,p=500 n=100,p=1000

mPMSE

OOOO i
SO oy a0

AFEnet ——ALASSO —s—Enet ——LASSO —s—Ridge

Fig. 3. Comparisons of mPMSEs for the constant correlation structure in Poisson regression models.



A. Sripanich et al. | Science & Technology Asia |Vol.28 No.2 April — June 2023

Poisson model with Poisson model with
toeplitz correlation structure (r=0.5) toeplitz correlation structure (r=0.9)
32 18
33 17
28 1.6
i
i a13
%13 E 12
215 — ERN}
18 0.9
13 0.8 .—w‘
12 0.7
I 0.6
§‘§ n=50,p=200 n=50,p=500 n=50,p=1000 n=100.p=200 n=100,p=500 n=100,p=1000
06 .
n=50.p=200  n=50.p=500  n=50p=1000 n=100p=200 n=100p=500 n=100.p=1000 AEnet ——ALASSO —e—Enet ——LASSO —e—Ridge
AEnet ——ALASSO ——Enet ——LASSO —=—Ridge

Fig. 4. Comparisons of mPMSEs for the Toeplitz correlation structure in Poisson regression models.

Poisson model with
hub toeplitz correlation structure (rmax=0.9, rmin=0.5)

e

n=50,p=200 1n=50,p=500 0=50,p-1000 n=100,p=200 n=100,p=500 n=100,p=1000
AFnet —~—ALASSO —=—Enet ——LASSO —=—Ridge

mPMSE

OOOO i
Ntlo——ivinhina e

Fig. 5. Comparisons of mPMSE for the Hub Toeplitz correlation structure in Poisson regression
models.

Logistic model with Logistic model with
constant correlation structure (r=0.5) constant correlation structure (r=0.9)

: 0.

022 022 p—

021 021

02 w 02 —

2019 .
=o. .
z
= 0. .

n=50,p=200 n=50,p=500 n=50,p=1000 n=100,p=200 n=100,p=500 n=100,p=1000 T p=S0p=200 n=50.p=500 n=50.p=1000 n=100p=200 n=100.p=500 n=100,p1000
AEnet ——ALASSO —s—Enet ——LASSO —s—Ridge AEnet ——ALASSO —s—Enet ——LASSO —s—Ridge

Fig. 6. Comparisons of mPMSEs for the constant correlation structure in logistic regression models.

Logistic model with Logistic model with
toeplitz correlation structure (1=0.5) toeplitz correlation structure (r=0.9)
023 0.23
0.22 0.22
021 ::%: 021
0.2 —_ 0.2
2 0.19 5 0.19
E 0.18 E 0.18
0.17 0.17
£ 016 .\‘\/\_\—‘ g 016
0.15 0.15
0.14 0.14
0.13 0.13
n=50,p=200 n=50,p=500 n=50,p=1000 n=100,p=200 n=100,p=500 n=100,p=1000 n=50,p=200 n=50,p=500 n=50,p=1000 n=100,p=200 n=100,p=500 n=100,p=1000
AEnet ——ALASSO —=—Enet ——LASSO -—=—Ridge AEnet ——ALASSO —=—Enet ——LASSO -—=—Ridge

Fig. 7. Comparisons of mPMSEs for the Toeplitz correlation structure in logistic regression models.
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Logistic model with
hub toeplitz correlation structure (rmax=0.9, rmin=0.5)

0.22 —_— e ~—
0.21
L, 02 .\.‘/——‘\‘
7 0.19
2018
%017
T 0.16
0.15
0.14
0.13
n=50,p=200 n=50,p=500 n=50,p=1000 n=100,p=200 n=100,p=500 n=100,p=1000
AEnet ——ALASSO —s—Enet ——LASSO —=—Ridge

Fig. 8. Comparisons of mPMSEs for the Hub Toeplitz correlation structure in logistic regression

models.

4. Real Data Application

For the real data sets, it is noted that
the Ridge estimator was used to find
adaptive weights for ALASSO and AEnet.

4.1 Multiple linear regression model

The data in this example are:

I. Individuals from a genetically
homogeneous sample who produced
riboflavin in Bacillus subtilis were the
dependent variable, and measures of
riboflavin logarithm production rate were
the independent variables [18]. The
Kolmogorov-Smirnov test was used to
examine residuals for normality, and it was
found that they were not. According to
Table 4, the AEnet had better prediction
performance than the others.

II. From 123 patients in the
CHEMORES cohort who underwent
complete surgical resection, a genomic
collection of lung cancer was obtained [19].
The dependent variable was the time of
disease-free survival, and the independent
variables were 940 quantitative variables.
After being checked for normality, the
Kolmogorov-Smirnov test residuals were
found to be so. Table 5 shows that the
AEnet estimator outperformed the others in
terms of prediction accuracy.

4.2 Poisson regression model

In this case, the data came from the
dataset for the Software Engineering
Teamwork Assessment in an Educational
Setting [20]. The dependent variable, which
was based on 74 observations of the teams’

teamwork, was a count of the number of
students who learned about software
engineering teamwork. It had 81
independent variables, such as the number
of women who attended, how long the
meetings lasted, and how long they lasted
on average. Table 6 demonstrates that, in
terms of prediction, AEnet performs better
than the others.

Table 4. Comparison of mPMSEs among
the five methods using a multiple linear
regression model with non-normal residuals.

Ridge LASSO Enet ALASSO AEnet

0.0623  0.0946 0.0616  0.0522  0.0510

Table 5. Comparison of mPMSEs among
the five methods using a multiple linear
regression model with normal residuals.

Ridge LASSO Enet ALASSO AEnet

3.7908 4.2756 3.8133  3.5719  3.0859

Table 6. Comparison of mPMSEs among
the five methods using a Poisson regression.

Ridge LASSO Enet ALASSO AEnet

0.3478 0.1205 0.1165  0.1138  0.1105

Table 7. Comparison of mPMSEs among
the five methods using a logistic regression.

Ridge LASSO Enet ALASSO AEnet

0.0154 0.0095  0.0085 0.0097 0.0083
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4.3 Logistic regression model

The data in this example were gene
expression measurements of 72 leukemia
patients, 47 with acute lymphoblastic
leukemia (ALL), and 25 with acute myeloid
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leukemia (AML) [21]. The dependent
variable is a binary variable with only two
possible values, and the independent
variable is one of 3571 quantitative
variables. In terms of making predictions,
Table 7 shows that the AEnet did the best,
followed by the Enet, LASSO, ALASSO,
and Ridge estimators.

S. Conclusion

Using the Ridge estimator to construct
the adaptive weights produces the most
accurate predictions for ALASSO and
AEnet. In terms of prediction accuracy,
from simulation studies, AEnet tends to
outperform the other four approaches in
multiple linear with normal error terms,
Poisson, and logistic regression models. In
certain instances, particularly for regression
models with non-normal errors, LASSO,
ALASSO, Enet, and AEnet all give
comparable prediction accuracy. However,
correlation structures have a limited effect
on the mPMSE.

Different strategies are required to
obtain the lowest false positive rate (FPR)
and false negative rate (FNR) given the
objective. Enet or AEnet is required to
obtain the lowest FPR, while LASSO or
ALASSO will produce the lowest FNR.
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