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ABSTRACT

This article aims to create a new type of generalized contraction mapping to modify the
concept of an e -simulation function which is defined by Yamaod and Sintunavarat [2019,
J. Nonlinear Convex Anal.], we investigate the existence and uniqueness of a point of coin-
cidence in the mapping with respect to a wr- distance in a partially ordered b-metric space
which extends the results of Roldan Lopez de Hierro et al. [2015, J. Comput. Appl. Math.].
Furthermore, we prove the existence of Hermitian positive definite solutions of nonlinear
matrix equations with some examples and numerical experiments.

Keywords: b-metric spaces ; Coincidence point ; Extended simulation function; Matrix

equations; wi-distance

1. Introduction

Recently, there are many results of
metric spaces generalized Banach Contrac-
tion theorem. In 1996 Kada, Suzuki and
Takahashi [[12] defined the concept of w-
distance which is a generalized metric space
and also proved the generalized Caristi’s
fixed point theorem. Based on this con-
cept, several researchers have focu-sed on

w-distance and the extension of the well
known classical fixed point result (for more
details see [3, [10, 11, (18] ). On the other
hand, Czerwik [4] formally defined the idea
of b-metric spaces covering metric spaces
and gave the Banach contraction princi-
ple in complete b-metric spaces. In 2014,
Hussain, Saadati and Agrawal [§] intro-
duced the concept of wiz-distance on b-
metric spaces. Later, many authors used
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this concept for proving fixed point re-
sult and related topics (for more details see
[2,6,7,[17] ). Motivated by their results,
we modify the concept of an e g -simulation
function for extending the results of Roldan
Lopez de Hierro et al.[[L15] to the results in
the partially ordered b-metric spaces via wt-
distance. Also, we provide an example to
illustrate our results. Finally, we apply our
results to prove the existence of Hermitian
positive definite solutions for nonlinear ma-
trix equations with some examples and nu-
merical experiments.

2. Preliminaries

Now, the definitions of a b-metric
space, w-distance, wr-distance and other
basic definitions in such spaces. In this pa-
per, we denote the sets of positive integers,
non-negative real numbers and real num-
bers by N, R, and R respectively.

Definition 2.1. Let (X, <) be a partially or-
dered set. For elements x,y € X, we say
X,y are comparable with respect to < if ei-
therx < yory <x.

The subset of X x X defined by
X<={(x,y) e XxX|x=<yory<=<ux},
is denoted by X <.

Definition 2.2. Let (X, <) be a partially or-
dered setand 7, g : X — X. We say that
T is g non-decreasing with respect to ”<” if
forx,y € X, gx < gy implies Tx < Ty.

Definition 2.3. Let (X,d) be a metric
space. A function p : X X X — [0, 0) is
said to be a w-distance on X if the following
hold:

(w2) forany x € X, p(x,-) : X — [0, )
is lower semi-continuous (i.e, if x €
X and y, — y € X, then
p(x,y) < liminfyep (X, yn);

15

(w3) forany & > 0, thereis 6 > 0 such that
p(z,x) < 6 and p(z,y) < ¢ imply
d(x,y) < e.

Let X be a metric space with metric
d. A w-distance p on X is said to be sym-
metric, if p(x,y) = p(y,x) for all x,y €
X. It is obvious that every metric is a w-
distance but not conversely. Next, we re-
call some examples in [|19] for show that w-
distance is generalized of metric.

Example 2.4. Let (X, d) be a metric space.
A function p : X X X — [0,00) is a w-
distance on X if p(x, y) = c foreveryx,y €
X, where c is a positive real number. But p
is not a metric since p(x,x) = ¢ # 0 for any
x €X.

Example 2.5. Let (X, ||-|]) be a normed lin-
ear space. A function p : X X X — [0, o)
is a w-distance on X if p(x, y) = ||x]| + ||yl
foreveryx,y € X .

Definition 2.6. Let X be a nonempty set
and s > 1 be a given real number. A func-
tional D : X x X — R, is said to be a b-
metric if for all x,y,z € X the following
conditions hold:

1. D(x,y) =0ifand only ifx = y;
2. D(x,y) =d(y,x);
3. D(x,2) < s[D(x,y) +D(y,2)].

A pair (X, d) is called a b-metric space with
coefficient s.

In Definition 2.6, any metric space is
a b-metric space with s = 1 and hence the
class of b-metric spaces is larger than the
class of metric spaces. Some examples of
b-metric spaces are given by Berinde []1],
Czerwik [?], Heinonen [9]. The following
well known examples of b-metric showing
that b-metric space is real generalization of
metric space.
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Example 2.7. The set of real numbers to-
gether with the functional D : RXR — R,
defined by

D(x,y) = lx =y,

for all x,y € R, is a b-metric space with
coefficient s = 2. However, we obtain that
d is not a metric on X since the ordinary
triangle inequality is not satisfied. Indeed,

D(2,4) > D(2,3) + D(3,4).

In 2014, Hussain, Saadati and
Agrawal [8] introduced the concept of
wt-distance as follow :

Definition 2.8. Let (X, D) be a b—metric
space. A function £ : X X X — [0, o) is
said to be a wr-distance on X if the follow-
ing hold:

(wtl) forallx,y,z € X,
P(x,2) < K(P(x,y)+P(y.2);

(wr2) forany x € X,P(x,-) : X — [0, )
is K—lower semi-continuous (i.e, if
x € Xand y, — y € X, then
P(x,y) < liminf, o KP(x, y,);

(wt3) for & > 0, there is § > 0 such that
P(z,x) < 6 and P(z,y) < 6 imply
D(x,y) < e.

Example 2.9. [§] Let (X, D) be a b—metric
space. Then the metric D is a wt-distance
on X.

Example 2.10. ([8]) Let D1 = (x — y)%. A
function P : R xR — [0, o) defined by
P(x,y) = ||Ix]|? + ||y||? for every x,y € R is
a wr-distance on R.

Example 2.11. ([8]) Let D; = (x — y)2. A
function # : R X R — [0, c0) defined by
P(x,y) = |ly||? for every x,y € R is a wt-
distance on R.

16

The following two lemmas are cru-
cial for our consideration.

Lemma 2.12. (/§]) Let (X,D) be a
b—metric space with constant K > 1 and
P be a wt-distance on X. Let {x,} and
{yn} be sequences in X, whereas {a,} and
{Bn} be sequences in [0, o0) converging to
zero. Then the following conditions hold
(for x,y,z € X):

1. foranyn € N, if P(x,,y) < @, and
P(xp,2) < B then y = z. Particu-
larly, if P(x,y) = 0and P(x,z) =0,
theny = z;

2. foranyn € N, if P(xp, yn) < @, and
P(xn,z) < Bn then {y,} converges
to z;

3. for any nm € N withm > n, if
P(xXn,Xm) < ay then {x,} is Cauchy
sequence;

4. foranyn € N, P(y,x,) < a, then
{xn} is Cauchy sequence.

3. A Class of Simulation Functions

In 2015, Khojasteh et al. []13] intro-
duced the concept of a simulation function
and a Z-contraction mapping. They proved
many results for Z-contraction mappings
and established the existence result of a
unique fixed point for Z-contraction map-
pings in metric spaces. Here, we review
some basic knowledge related to our inves-
tigation from [[13].

Definition 3.1 ([[13]). A function ¢

[0, 00) X [0,00) — R is called a simulation
function if it satisfies the following condi-
tions:

(£1) £(0,0) =0;
(£2) ((t,s) <s—tforallt,s > 0;
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(£3) if {tn}, {s,} are sequences in (0, co)
such that lim ¢, = lim s,, > 0, then
n—oo

n—oo

lim sup £ (t,, s,) < 0.

n—oo

We denote the class of all simulation
functions by Z. 3

Example 3.2 ([[13]). Let (1,020,453
[0, ) X [0, 0) — R be defined by

(a) ¢1(t,s) = Y(s) — ¢(z) forall t,s €
[0, c0), where ¥, ¢ [0,00) —
[0, 00) are two continuous functions
such that ¥ (r) = ¢(¢) = 0 if and only
ift =0and ¥ (1) <t < ¢(¢) for all
t>0;

(b) &a(t,s) = s—@(s)—tforallt,s €
[0, o0), where ¢ : [0,00) — [0, o0)
is a continuous function such that

(1) =0ifand only if r = 0;

Z3(t,8) = 5 — {;((:j))t for all 1,5 €
[0, 0), where f,g [0, 00)
[0, o0) are two continuous functions
with respect to each variable such that

f(t,s) > g(t,s) forall ¢, s > 0.

(c)

—

Then {1, {2 and {3 are simulation functions.

Definition 3.3 ([[13]). Let (X, d) be a met-
ric space and { € Z. A mapping T : X —
X is said to be a Z-contraction mapping
with respect to ¢ if it satisfies

{(d(Tx,Ty),d(x,y)) =0,
forall x,y € X.

In 2015, Roldan Lépez de Hierro et
al. [[15] modified the class of simulation
functions as follows.

Definition 3.4 ([L5]). A function ¢

[0, 00) X [0, 0) — R is called a simulation
function if it satisfies the following condi-
tions:
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(E1) ¢(0,0) =0;
(Ba) £(t,5) <s—tforallt,s > 0;

(Es) if {t,}, {sn} are sequences in (0, o)
such that lim¢, = lims, > 0 and

n—oo n—oo

t, < s, forall n € N, then

lim sup (¢, s,) < 0.
n—oo

We denote the class of all modify
simulation functions by ¢.

In 2017, Roldan Lopez de Hierro and
Samet [[16] introduced the class of extended
simulation functions, which covers the class
of simulation functions.

Definition 3.5 ([L6]). A function 6
[0,00) X [0,00) — R is called an ex-
tended simulation function (for short, an e-
simulation function) if it satisfies the fol-
lowing conditions:

(81) foreverya,b >0,6(a,b) <b-a ;

(82) for any sequences {a,}, {b,} C
(0, ), we have

lim a, =

n—oo

lim b, =1 € (0, ),

b, >1 = limsup 0(a,,b,) <0;
n—oo
(83) for any sequence {a,} C (0, c0), we
have
lim a, =1 € [0, o),

n—oo

f(ay,l) 20 = [=0.

The class of all e-simulation func-
tions is denoted by ©.

Example 3.6. Let 6 : [0, 00) X [0,00) — R

be defined by
l-a ifa=0;
0(e,pB) = : ’
(@.f) {g—a/ ifa #0.

Then 6 € ©, but 0 ¢ Z see [|L6] for more
details.
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Recently, Yamaod and Sintunavarat
[20] introduced the class of simulation func-
tions in the sense of b-metric space.

Definition 3.7 ([20]). Let s be a real num-
ber such that s > 1. A function £ : [0, c0) X
[0,00) — R is said to be an s-simulation
function if it satisfies the following condi-
tions hold

(&s1) C(a,B) < B—aforalla,B > 0;
(¢s2) if {an}, {Ba} are sequences in (0, o)

such that
0< liin inf e, < (lim sup ,Bn)
D500 n—oco
< 2 (lirllal inf an) ,
and

0 < liminf B, <

n—oo

s (lim sup a/n)

n—oo

IA

52 (lim inf ﬂ,,) ,

n—oo

then

lim sup ¢ (ay, Bn) < 0.

n—oo

Most recently, Yamaod and Sintu-
navarat [21]] introduced the class of eg-
simulation functions in the sense of b-
metric space.

Definition 3.8. Let K be a be real number
such that K > 1. A function 6 : [0, o) X
[0, 00) — R is said to be an ek -simulation
function if the following conditions hold

(k1) foreverya,b > 0,0k (a,b) <b-a
(fk2) for any sequences {a,}, {bn} C

(0, 00), if there exists L € (0, co) such
that

18

0<L<liminfa, < K (limsup bn)
n—eo n—oo
< K? (lim inf an)
n—oo
< KL,
0<L<liminfb, < K (limsup an)
n—oo n—oo
< K2 (hm inf bn)
n—oo
< K3L

and b,, > L, then

limsup 0k (an, by) < 0.

n—oo

Now, we note that O is the class of all ex -
simulation functions.

4. Coincidence Point Theorems for
Simulation Function

This section provides a (g, g)p
contraction by using the concept of Simu-
lation function, and obtain the existence of
coincidence point theorems for such map-
ping in complete b—metric space via wt-
distance function. First, we modified the
concept of an e g -simulation function which
is defined by [21].

Definition 4.1. Let K be a real number such
that K > 1. A function g : [0, 00) X
[0,00) — R is said to be a modified ek -
simulation function if it satisfies the follow-
ing conditions hold

(9%1) Ok (a,b) < b—a foreverya,b > 0;

(0%2) for any sequences {a,}, {bn} C
(0,00) and a,, < b, forall n € N,
if there exists L € (0, o) such that

0<L<liminfa, < K (limsup bn)
n—00

n—oo

IN

K? (lim inf an)

n—oo

K3L,

IN
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0<L<liminf b, < K (lim sup an)
n—oeo n—oo
< K2 (liminf b,
n—oo
< K3L,

and b,, > L, then

lim sup Ok (a,, b,) < 0.

n—oo

The class of all modified eg-simulation
functions is denoted by ©% .

Proposition 4.2. [f6 : [0, c0)X[0,0) — R
satisfies (6%2), then it also satisfies (Eg).

Proof. Follow Proposition 2.5 in [21]] with
{a,}, {bn} C (0, ) such that a,, < b,, for
all n € N, we obtain the result. m]

Definition 4.3. Let (X, D) be a complete
b—metric space with constant K > 1 and $
be a wt-distance on X. Suppose that 7', g :
X — X iscalled a (fk, g)p contraction, if
there exists O € @11‘;1 such that

Ok (P(Tx,Ty),P(gx,gy)) =20 (4.1)

for all x,y € X< with gx # gy.

Theorem 4.4. Let (X, D, <) be a b—metric
space with constant K > 1 and P be a wt-
distance on X. Suppose thatT,g : X — X
is a (0, g)p contraction, and T is g non-
decreasing with T(X) C g(X) satisfying
the following conditions:

(i) (g(X),D) (or (T(X),D) ) is com-
plete,

(ii) there exists xo € X such that

(gx0,Tx0) € X<,
(iii) for every x € X with (x,Tx) € X,
inf{P(gx,gy) + P(gx,Tx} > 0,

forevery y € X with gy # Ty.

19

Thus T, g have at least a coincidence point.
Moreover, if x,yx € X are coincidence
points of T and g, and one the following
hold.

(a) if {gx,} contains a coincidence point
of T and g.

(b) the sequence {gx,} converges tou €
g(X) and any point v € X such that
gv = u is a coincidence point of T
and g.

Thus Tx, = gx% = gyx = Tys, and if g
(or T) is injective on the set of all coinci-
dence points of T and g (or, simply, it is in-
Jective), then Tand g have a unique coinci-
dence point.

Proof. Let xyp € X such that gxg # Txg
and (gxo,Txg) € X<. Since T(X) C g(X)
then there exists x; € X such that Txg =
gx1 that is (gxg,gx1) € X<. Since T is g
non-decreasing with respect to <, we get
(Txp,Tx1) € X<. Again T(X) C g(X)
then there exists xo € X such that Tx; =
gxo that is (gx1,gx2) € X<, and T is g
non-decreasing with respect to <, we get
(Tx1,Tx2) € X<. Continuing of this pro-
cess, we obtain the sequences {x,, } such that
Tx, = gxu+ and

(Txna Txm) € XS?
for any n, m € N. If {x,,} contains a coinci-
dence point of T and g, that is
8Xny = 8Xny+1 = Txy,, for some ng € N,
the proof is finished. Suppose that gx,, =
gxpy1 # T'x, for all n € N. First, we will
show that

lim P(gxn, gxn+1) = 0. 4.2)
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By (4.1) and (6%,), we observe that

0 < Ok(P(Txpn,Txps1), P(8Xns8Xn+1))
= Ok (P(gXn+1,8Xn+2), P(8%n, 8Xn+1))
< P(8Xn, 8Xn+1) — P(8Xn+1, 8Xn+2)

4.3)
for all n € N. It follow that

p(gxn+1a g-xn+2) < P(g-xn’ gxn+1) (44)

for all n € N. This mean that the se-
quence {P(gxy, gxn+1)} 1s a decreasing se-
quence which converges to some real num-
berr > 0. Suppose that r > 0. Putting a,, =
P(gXn+1, 8%ns2) and b, = P(gxn, &Xni1),
then a,, < b,, for all n € N and

liminf a, = limsupa,
n—oo n—oo
= r
= liminf b,
n—oo
= limsup b,.
n—oo
Hence,
0<r<liminfa, < K (lim sup bn)
n—co Nn—sco
< K? (lim inf an)
n—oo
< K3r,
and
0<r<liminf b, < K (lim sup an)
n—oo Nn—oco
< K? (lim inf bn)
n—oo
< K3r,

By (té?lz‘g2 with L = r, we get

o
A

limsup Ok (an, bn)

n—oo

< 0,

lim sup O (P (gxn+1, 8xn+2), P(8Xn, 8Xn+1))
n—oo
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which is a contradiction and thus r =
0. That is (#.2) hold. Next, we will prove
that

lim P(gxn, gxm) =0. 4.5)

m
Suppose to the contrary that there is € > 0
and two subsequence {x,, } and {x,, } of
{x,} such that for each k € N, nj is the
smallest number such that

P(8Xni» 8Xmy-1) < € < P(8%Xny> 8Xmy.)
4.6)
and k < nx < my. By (wrl), we have

& S P(gxnk’ gxmk)
< K[P(gXni» 8Xmy-1) + P(8Xmy—1, 8%m,.) ]
< Ke+KP(8Xmp-1,8%my)-

Using (#.2), we get

e < limsup P(gxn;.8%m,) < Ke. (4.7)

k—o0

Similarly, we obtain

€< lilrcn inf P(gxn,,8%m,) < Ke. (4.8)

By the same method as (4.3) and (B.4) , we
obtain

P(8Xny> 8Xmy) < P(8Xnp—158%Xmy—1)-
4.9)
From (4.6), (1.9) and (wr1), we obtain

e < P(gxn 8%my)
< P(gXn-1,8Xmy-1)
< K[P(gxni-1,8%n) + P (8Xnys 8Xmy—1)]
< KP(gXn-1,8%n,) + Ke.

By using (#.2) and above inequality, we
have

e < limsup P(gxn;-1,8%m,-1) < Ke.
k—o0
(4.10)
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Similarly, we obtain

€< lilrcn inf P(gxn, -1, 8Xm,-1) < Ke.
(4.11)
From (.§) and (#.10), we have

e < lillcrnian(gxnk,gxmk)

k—o0

< K (lim sup P(8xn, -1, gxmk—l))

< K? (liin inf?’(gxnk,gxmk))
< K3 (4.12)
Also, from (#.7) and (§.11]), we obtain

e < liminfP(gxn, -1, 8%m;-1)
n—oo

< K (lim sup P (gxn, , g'x"’lk))

n—oo
< K? (lim inf P(gxn, -1, gxmk—l))
n—oo

< K3e. (4.13)

It follows from (6, g)» contractive condi-

tion, (4.12), (4.13) and (9%2) with L = &

that

0 < 1iinsupHK(P(gxnk_l,gxmk_O,
p(xnk—l,xmk—l))
= limsup Ok (P (xXn. Xmy)s
k—o0
P(xnk—l’xmk—l))
< 0,

which is a contradiction. Therefore (#.9)
hold, and {gx,} is a b-Cauchy sequence in
X. Next, we show that 7', g have at least
a coincidence point. Since (g(X), D) is a
complete, there exists u € g(X) such that
lim gx,, = u.
n—oo
Since for each n > 0, we have gx,41 =
Tx, € T(X) C g(X), then

Iim Tx, = u.
n—oo

21

Now foe every € > 0, from the fact
that {gx, } is a b-Cauchy sequence there ex-
its N. € N such that

P(8XN.>8Xn) < % forall n> N,

Using (wr2), we have

Pgxn.,u) < KlminfP(gxn,,gx,)
n—o0o
K- -&=e
(4.14)
Setting € = % and N, = nj, by () we
obtain that

lim P (gxy,,u) = 0.
]4)00 ;

Let v be a point of X such that gv = u. Next,
we examine that v is a coincidence point of
T and g. Suppose that gv # Tv, then by
assumption (iii) we get

0 < inf{P(gx,gv)+P(gx,Tx) : x € X}
< Inf{P(gxn;,gv) + P (gxn;, Txn;)}
S inf{P(gxnj’ gV) +P(gxnj,gxnj+1)}

— 0 as j—> oo :n; €N,

which is a contradiction and then gv = Tv.
For the final statement, let x,,y, € X
are coincidence points of 7 and g, that is
8Xx = Txy and gy, = T'y,. We now prove
that gx, = gy«. Suppose on the contrary,
that is gx, # gy«. Then by (wt3) we get
P(gxx, V) > 0, and also P (Txy, Tyx) >
0. From (6%,), we have

0 < Ok(P(Txp;Tys), P(gxxr&Vx))
< P(8xx8Yx) = P(Txs, Tys),

it follow that

P(8Xx,8Vx) = P(Txx, Tys) < P(gXx, V%)
(4.15)
which is a contradiction and hence Tx, =
8X4 = gy = T'x,. Further, if g is injective
on the set of all coincidence points of 7 and
g then x, = y, and the proof is complete.
O
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Theorem 4.5. Let (X, D, <) be a b—metric
space with constant K > 1 and P be a
wt-distance on X. Suppose that T,g
X — Xisa (0k, g)p contraction and non-
decreasing with T(X) C g(X) satisfying
the following conditions:

(i) (X, D) is complete,

(ii) there exists xo € X such that

(g]C(], TXO) € XS?

(iti) T and g are continuous and compati-

ble.

ThenT, g have at least a coincidence point.
Moreover, if x., v« € X are coincidence
points of T and g, and one of the following
hold.

(a) if {gxn} contains a coincidence point
of T and g,

(b) the sequence {gx,} converges to a
coincidence point of T and g.

Then Txy = gxx = gyx = Ty« and if
g(orT) is injective on the set of all coin-
cidence points of T and g(or, simply, it is
injective), then T and g have a unique coin-
cidence point.

Proof. From Theorem §.4, we have gx,, =
gxn+1 # Tx, foralln € N, and {gx,} is a
b-Cauchy sequence in X. Since (X, D) is
complete, then there exists u € X such that
{gx,} converges to u. That is

= lim gx, = u.
n—oo

lim Tx,
n—o0o

By the continuity of 7 and g, we obtain that

T(gx,) » Tu and g(Tx,) — gu.
(4.16)
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Thus, we have

D(gu,Tu) <
< KD(gu,gTx,)
+K%D(gTx,, Tgxp)
+K2D(Tgx,,Tu).

(4.17)
Taking as n — oo in (§.17), and by using the
compatibility of 7" and g, we get gu = Tu.
The final part follow from Theoremf.4. O

Theorem 4.6. Let (X, D, <) be a b—metric
space with constant K > 1 and P be a
wt-distance on X. Suppose that T,g
X — Xisa (0k, g)p contraction and non-
decreasing with T(X) C g(X) satisfying
the following conditions:

(i) (X, D) is complete,

(ii) there exists xo € X such that

(gx0,Txp) € X<,

(iii) T and g are continuous and commut-
ing.

ThenT, g have at least a coincidence point.
Moreover, if x.,yx € X are coincidence
points of T and g, and one of the following
hold.

(a) if {gx,} contains a coincidence point
of T and g

(b) the sequence {gx,} converges to a
coincidence point of T and g.

Then Txy = gxx = g¥x = Tyx, and if g
(or T) is injective on the set of all coinci-
dence points of T and g (or, simply, it is in-
Jective), then Tand g have a unique coinci-
dence point.

Proof. From the fact that, if 7 and g are
commuting then T and g are compatible.
Then we obtain the result. O

K(D(gl/t, ngn) + D(ngn, Tu))
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5. Consequences
Section 5 give the consequences of
the main results from Theorem §.4 - The-

orem [4.4.

Letting # = D in Theorem §.4, we
have the interesting result as follows:

Corollary5.1. Let (X, D, <) be a b—metric
space with constant K > 1. LetT,g : X —
X such that

HK(D(TX’Ty)9D(gx’gy)) 2 O’ (51)

forall x,y € X< withgx # gy, and T is g
non-decreasing with T(X) C g(X) satisfy-
ing the following conditions:

(i) (g(X),D) (or (T(X),D) ) is com-
plete,

(ii) there exists xo € X such that

(gx0,Txo) € X<.

ThenT, g have at least a coincidence point.
Moreover, if x4, v« € X are coincidence
points of T and g, and one the following
hold.

(a) if {gxn} contains a coincidence point
of T and g

(b) the sequence {gx,} converges to u €
g(X) and any point v € X such that
gv = u is a coincidence point of T
and g.

Then Txy = gxx = gyx = Ty and if
g (orT) is injective on the set of all coin-
cidence points of T and 0g (or, simply, it is
injective), then Tand g have a unique coin-
cidence point.

Taking K = 1 in Theorem §.4, we
hence obtain the following theorem:

23

Corollary 5.2. Let (X,d, <) be a metric
space and p be a w-distance on X. Let
T,g: X — X such that

Ok (p(Tx,Ty),p(gx,gy)) 20, (5.2)

forall x,y € X< withgx # gy, and T is g
non-decreasing with T(X) C g(X) satisfy-
ing the three conditions as follows

(i) (g(X),D) (or (T(X),D) ) is com-
plete,

(ii) there exists xo € X such that

(gx09 TxO) € XS&

(iii) for every x € X such that (x,Tx) €
X<,

inf{p(gx., gy) + p(gx,Tx} > 0,
forevery y € X with gy # Ty.

ThenT, g have at least a coincidence point.
Moreover, if x4, yx € X are coincidence
points of T and g, and satisfy at least one
of the following conditions.

(a) if {gx,} contains a coincidence point
of T and g,

(b) the sequence {gx,} converges to u €
g(X) and any point v € X such that
gv = u is a coincidence point of T
and g.

Then Tx, = gxe = g¥x = Tys, and if
g(orT) is injective on the set of all coin-
cidence points of T and g(or, simply, it is
injective), then Tand g have a unique coin-
cidence point.

Letting p = d in Corollary 5.2, and
by Proposition §.2, we get the following re-
sult.
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Corollary 5.3. (/ll5]) Let (X, d) be a met-
ric space. LetT,g : X — X be mapping
such that

0(d(Tx,Ty),d(gx,gy)) =0, (5.3)

forallx,y € X with gx # gy, and T(X) C
g(X) satisfying the two conditions as fol-
lows:

(i) (g(X),d) (or (T(X),d) ) is com-
plete,

(ii) there exists xo € X such that

(gx07 TxO) € X57

ThenT, g have at least a coincidence point.
Moreover, if xi,yx € X are coincidence
points of T and g, and one the following
statements hold.

(a) if {gx,} contains a coincidence point
of T and g,

(b) the sequence {gx,} converges to u €
g(X) and any point v € X such that
gv = u is a coincidence point of T
and g.

Then Tx, = gxe = g¥x = Tys, and if
g(orT) is injective on the set of all coin-
cidence points of T and g(or, simply, it is
injective), then Tand g have a unique coin-
cidence point.

Remark 5.4. .

(1) The statement in Corollary [5.3 is
some part of The statement in Theo-
rem 4.8 in [\15]. However, by com-
bine The statement in Theorem
TheoremH. 3 and Theorem we 0b-
tain all the statement of Theorem 4.8
in [|15].

By applying Example 3.3 and the re-
lations of the classes Z, E, ©, Ok

)
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and @AK’I (see also [21] ) with our re-
sult, we obtain many famous result
in wt-distance, w-distance, b-metric
spaces and metric spaces.

6. Numerical Examples

This section provides a few exam-
ples to supports our main results. First,
give an examples to satisfies modified ek -
simulation function.

Example 6.1. Let X = [0, o0). Define 0k :
[0, 00) X [0, 00) — R by

2(8 - a), if B < «,
Ok (a,B) =

B —4da - %, otherwise,
We will show that 6 is in @} . Leta, 8 >

0. If B < a, then

Ok (a.B) =2(B-a) <B-a.

Suppose that @ < 8, we have

HK(a/,ﬂ)=ﬁ—4a/—%<,8—a/.

Thus, (0%1) is satisfied.  Furthermore,
corresding to (9}‘{’12), we suppose that
{an},{Bn} < (0,00) are two sequences
with with @, < 8,,, foralln e Nyand L > 0
such that

L <liminfe, < 2 (hm sup ﬁn)

n—eo n—oo
< 4 (lim inf a/n)
n—oo
< 8L,
L <liminf B, < 2 (lim sup a/n)
n—eo n—oo
< 4 (lim inf /3,,)
n—oo
< 8L



T. Puttasontiphot, S. Sanhan, and C. Mongkolkeha* | Science & Technology Asia | Vol.29 No.4 October - December 2024

and B, > L.
We then obtain

lim sup Ok (@, Bn)

n—oo

1
= limsup (ﬂn —4ay, — —)

n—oo 2

< 2limsup B, — 4liminf @, — =
n—oo n—oo 2

< 4liminf a, — 4liminf a, — =
n—oo n—oo 2

3 1

2

< 0.

It yields that (QAK’IQ) holds. Therefore, 6k €
©¥ . Next, we will prove that 6 is not an
e-simulation function. Let {a,} C (0, )
and L > 0. Now we assume

lim @, =L and O(a,,L) = 0.

n—oo

We thus obtain
1
0<68(ay,L)=L-4a, — 5

As n — oo in above inequality, we have

- _ (6L + 1)‘

- 2
This follows that (63) is not satisfied and so
Ok is not an e-simulation function. Further-
more, if we take @, =1l and 5, =1 — % for
all n € N, then we have

lim sup Ok (@, Bn)

n—00 n—00

n—oo

Thus, O0x 1is also not an eg-
simulation function in sense of Yamaod
and Sintunavarat [21]]. Therefore the result
of Roldan Lopez de Hierro and Samet [[16]
and Yamaod and Sintunavarat [21] are not
applicable in this example.

2
limsup (-—) = 0.
n

1
limsup 2(1 - --1)
n

25

Next, we consider an instance to sup-
port Theorem 4.4

Example 6.2. Let X = {0} U {2 : n €
N} with < is the usual ordering, and D =
(x — y)? for all x,y € X, and consider the
wt—distance P on X defined by P (x,y) =|
y |? for every x,y € X. Define mapping
T,g: X — X given by

2
X . 1
Z, 1fx€{2—n:n€N},

Tx =
0, otherwise,
and
o 5 ifxe{& :neN},
0, otherwise.

Now, we consider the modified eg-
simulation function define by

1
Ok (a, B) =/3'—4a—§ forall a, 8 > 0.

By similarly as an Example .1, we can see
that 6 € @1}‘;’ . We next prove that T and g

satisfies inequality (.1)).

Casel: For x,y € {%
x #y, we have

n € N} with

Ok (P(Tx,Ty),P(gx,gy))

x2 y2 Xy
2
Yoy
= k(-3
2
_ oYt
T2 4(4) 2
Yy 2
> D) y
> 0.
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CaselIl: Forx =0andy € {2 : n e N},

we have

Ok (P(Tx,Ty),P(gx,gy))

y? y
0k (P(0,2),P(0,2))

= Olg3)

2
Yt
2 4(4) 2

Yy 2
B y
0.

Case III: Forx =0 =y is obvious.

Therefore, (#.1)) is satisfied. Also, 7 and g
satisfies assumption (iii) of Theorem §.4.
Indeed for any n € N with y := 2%, we get
8(y) = 8(5) = gor # g = 5 =T0),
and for every x € X with (x,Tx) € X<, we
have

inf {P(gx,gy) + P(gx,Tx)}

2
inf {P(5.2)+P(5. )}

2
inf {+ =}

22m+2

> 0.

The rest is obvious. Thus all hypothesis of
Theorem §.4 are satisfied. Consequently, in
this case 0 is a coincidence point of 7 and

8.

7. An Application to Matrix Equa-
tion

In this section, we apply our result
to prove the existence of Hermitian positive

: for some m € N}

26

definite solutions for nonlinear matrix equa-
tions. First, we denote

* the set of all n X n complex matrices
by M(n),

* the family of all n X n Hermitian ma-
trices H(n) (i.e. H(n) € M(n)),

* the set of all n X n positive defi3nite
matrices P(n) (i.e. P(n) € H(n)),

* the set of all n X n positive semi-
definite matrices P(n)* (ie.
P(n)* € H(n)).

Forany X € P(n) and X € P(n)*, we write

X > 0and X > 0, respectively.

Furthermore, X —Y > Oand X - Y > 0
mean that

X > Y and X > Y, respectively.

Also, for any X,Y € H(n), there is
a greatest lower bound and a least upper
bound (see [[14]). Now, we denote || - || is
the spectral norm of a matrix A, that is,

Al = vA*(A*A),

where A* is the conjugate transpose of A
and A*(A*A) is the largest eigenvalue of the
matrix A*A. The Ky Fan norm is defined by

1ALl =) si(A),
i=1

where s;(A) foreachi = 1,2,--- ,m is the
singular values of A € M (n). Also, we have

Al = tr((A*A)Y/?),
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which is 7 (A) (trace norm) for (Hermitian)
nonnegative matrices. Define b-metric on
H(n) as follows:

D(X.,Y) = (||IX=Y||;)", forall X,Y € H(n),

7.1
where A > 1 and the notion || - ||;» denote
the trace norm, thatis || - ||;» = || - ||1. Then

(H(n),D) is a complete b-metric space.
Moreover, H(n) is a partially ordered set
with partial order <, where X < Y
Y > X. Now we consider the following ma-
trix equation, defined

X =0+ AiG(X)A;.

k=1

(7.2)

We now assume that G is an order-
preserving and continuous mapping from
H(n) to P(n) and let F : H(n) — H(n)
be the mapping defined by

F(X)=Q+ ) AIG(X)A,  (13)
k=1

for all X € H(n), where Q is in [ P(n)
and A; is an arbitrary n X n matrix for each
i=1,2,3,---,m.

It this section, we next prove some
results.

Theorem 7.1. Consider the matrix equa-
tion 7.J). Let F : H(n) — H(n) be an
order-preserving mapping and Q € P(n)
be defined by (7.3). Suppose that there is a
positive number u and A > 1 and the fol-
lowing hold:

(i) Xty A A7 < H
2o AiG(Q)A; > 0;

(ii) forall X,Y € H(n) such that X <Y,
(I6(X) = g(Nl)!

1 11
< @(||X—Y||1) e

I, and

27

Then we have the following a statements :

(1) The matrix equation (IL2) has a
solution.

(2) Moreover, for any Xg € H(n)
such that Xo < Q + XL, AiG(X0)A,, the
iteration { X, } defined by

Xy =0+ ) AIG(XaDAi,  (74)
i=1

converges to a solution of the matrix equa-
tion in the sense of the trace norm

Il Mler

Proof. Consider wr—distance = D, and
let D : H(n)xH(n) — [0, o) be defined as
in (7.1)). Let X,Y € H(n) such that X < Y.
Then we have

(IF(X) = F()[I)*

= (tr(F(X) - F(Y)))*
= [ 346 -6mal’

= | > 1r(AAN(G(X) -gm)"!

1=

L A N
= [Z‘I"((Z(AiA:)] (Q(X)—Q(Y)))]
-1

i=

m Zi Pl
< I Zanl] (e -6mi)
[ .gl(AiA?) 1 1
i= A
< T(Z(HX—YHQ - g)

! X -Y||)A !
< — — R
< 4(II Il1) 3

it follow that
Pl Pl 1
(IIX=Y[l1) =4(IF(X)=-F(Y)|l1) —520-

Now, we take Ok (@, 8) = B —4a — % for all
a, B > 0. Then
Ok (P(F(X),F(Y)),P(X.,Y))

0k (D(F(X),F(Y)),D(X,Y))
ok (IF(X) = F(D )Y (IX =YD
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(I1IX =Yl = 4(I1F(X) = F(Y)[l1)"
1

2
> 0.

and hence F satisfies the (0k,g)p con-
tractive condition with g := [,. Since
Yo ATG(Q)A; > 0, we have

F(Q) =0+ ) AIG(Q)A; = 0.
i=1

This mean that the condition (ii) of Theo-
rem @ 1s satisfied. Since G is continuous,
then F is also continuous. Furthermore, F
and [, := g are compatible. Hence the con-
dition (iii). of Theorem §.3 hold. There-
fore all the hypothesis of Theorem [&.3 is
satisfied. By Theorem [., the solution of
the matrix equation (7.2) exists. This com-
pletes the proof. O

Theorem 7.2. Consider the matrix equa-
tions . Let F : H(n) — H(n) be an
order-preserving mapping and Q € P(n)
be defined by ({7.3). Suppose that there is a
positive number u and the following hold:

(i) S AAT <
S0 AIG(Q)A; > 0;

(ii) forall X,Y € H(n) such that X <Y,
(llg(X) - Q(Y))Ih)t
1 UxX-Y)
Sy In (1 + ge(nx—ynll)" )
Then we have the following:
(1) The matrix equation (L2) has a
solution.
(2) In addition, for any Xy € H(n)

such that Xo < Q + XL AiG(X0)A,, the
iteration { X, } defined by

u I, and

Xy =0+ ) AG(XuDAi, (1.5
i=1

converges to a solution of the matrix equa-
tion in the sense of the trace norm.
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Proof. Putting wr—distance £ = D, and let
D : H(n) x H(n) — [0, o) be defined as
in (7.1). Consider be defined as Example
B.2(a), that is Ok (a, B) = ¥(s) — ¢(¢) for
all 5,1 € [0, o) with ¢ (r) = In(1+ 557) and
¢(t) = t forall t € [0,00). By applying
the relation of various kinds of simulation
(see [21]), we get Ok € OF. According
to the proof of Theorem [7.1], It follows all
the hypothesis of Theorem B.5 hold. Thus
the conclusions of this theorem follow from
Theorem §.3. The proof is completed. O

Theorem 7.3. Consider the matrix equa-
tions (7.3). Let F : H(n) — H(n) be an
order-preserving mapping and Q € P(n)
be defined by (7.3). Suppose that there is a
positive number u and the following state-
ments hold:

(l) 2:11 A,A;k <
2o A[G(Q)A; > 0;

(ii) forall X,Y € H(n) such that X <Y,

u I, and

I6(X)-6(NIh)* < f—l(IIX—YIh)A

for some k € [0,1). Then we have the fol-
lowing statements:

(1) The matrix equation (L2A) has a
solution.

(2) Furthermore, for any Xo € H(n)
such that Xo < Q + 3L, AG(X0)A,, the
iteration {X,, } defined by

Xy =0+ ) AG(Xp-D)Ai,  (7.6)

i=1
converges to a solution of the matrix equa-

tion (I[L2) in the sense of the trace norm

Il Mler
Proof. Consider wt—distance # = D, and

let D : H(n) X H(n) — [0, o) be defined
as in (7.1)). Consider g € G)ZI‘(’I defined by
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Ok (t,s) = ks—t, forallt,s € [0, o), where
k € [0,1). In the same line of Theorem 7.3,
we obtain so the conclusions of this theo-
rem. o

8. Numerical Experiments

We now provide a few instances to
support the results in the section i and sec-
tion ] with the numerical method to ap-
proximate a solution of the matrix equation

@2

Example 8.1. Let X c H(4) Hermitian
matrices defined by

@ a b oc O<ac<l,
X= a a a b 0< 1, ¢,
b a a a
0<c<1
c b a a
and let
0.2 0.02 0.03 0.01
| 0.02 0.2 0.02 0.03
Q= 0.03 0.02 0.2 0.02 |
0.01 0.03 0.02 0.2
0.02 -0.021 0.35 0.12
Ay = 0.1 0.6 0 0.25
0.06 0.1 0.07 0 ’
0.17 0.06 0.01 0.022
0.05 0.1 0.02 -0.24
Ay = 0.01 0.11 04 0
0.12 0.01 0.1 0.02 |’
0.18 0.3 -0.08 0.26
0.41 0.01 0.40 -0.02
As = 0.07 0.12 0.25 0.51
0.18 -0.23 0.14 0.05
0.06 0.15 0.04 0.06

Then Q € P(4) C Xand A; € M(4)
for eachi = 1, 2, 3. Further,

29

3
D AA; =
i=1

1.3573
0.0050
0.4097
0.4223

0.0050
1.3655
0.2008
0.0765

0.4097
0.2008
0.4435
0.1253

0.4223
0.0765
0.1253 |’
0.3464

and hence

3
D AA; < 135731y < V24,
i=1

and

3
> AiG()A; =
k=0

0.0179
0.0056
0.0202
0.0118

0.0056
0.0441
0.0094
0.0197

0.0202
0.0094
0.0445
0.0209

0.0118
0.0197
0.0209
0.0291

> 0.

where G(X) =
equation (7.2) w1th G(X) =

—X Consider the matrix

1
3\EX’ that is,

X = 0+ A*(N )A1
+A*(3\—fX)A2
+A*(—X)A3

8.1

Consider wt—distance # = D, and let
D : H(n) x H(n) — [0,00) be defined
as in (Z.1)). Letting 6x € 9% defined by
Ok (t,s) =¥ (s) — ¢(¢r) forall s,¢ € [0, 00)
with (1) = 57 and ¢(r) = ¢ forall ¢ €
[0,0). Let X, Y € X be such that X < Y.
Then we have
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(IIF(X) = F(Y)|[1)*
= (r(F(X) = F()))!
- [gl tr(A7(G(X) - G(V)A;]"

= [ i@ -6’
= [t E ] @ -so)|*
< I @anl] 6o -gmin)*

1
< (@*(ﬁnx -v|y)*

1 1 Y_y
= —@'(gﬂ - ||1)
1 Pl
Sy (X =Yl1)",

it follow that
Ok (P(F(X), F(y)),P(x,y))
= 0k (D(F(X),F(y)),D(X, X))
= Ox(IF(X)-FMIDL X =YI)Y
v(IX =YIID)Y - ¢(IF(X) = F(Y) 1))

1
= g (X =Y = (IF(X) = F)l)*
> 0.

Thus, F satisfies the (fk, g)p contractive
condition with g := I,,. Similar to the proof
of Theorem [7.3, notice that, all hypotheses
of Theorem [.3 are satisfied. Next, we ap-
proximate a solution of the equation 8.1 by
considering the iteration {X,} defined by

X, = Q+Aan_lA1+A;Xn_1A2+A§Xn_1A3,

(8.2)
where Xy = Q, and the error E,, := (|| X,, —
X,—1/l1)%, with A = 1.5. Finally, a solution
of the equation (5.1) can be approximated
at iteration number of 9.

X: = X9

0.0288 0.0472
0.2336  0.0258
0.0472 0.0258 0.2331 0.0321 |’
0.0194 0.0457 0.0321 0.2263

with Eg = 1.5865x10'2 (see in Fig. [I)).

0.2199
0.0288

0.0194
0.0457

30

value of (||X_n - X_{n-1}||_{tr})"\lamda
n w S~ (&) o ~ © ©

S}

0 10 20 30 40 50 60
number of iteration

Fig. 1. The error of iteration process (B.2) for
the Equation ([7.2).

9. Conclusion

A conclusion may review the main
points of the paper, do not replicate the
abstract as the conclusion. A conclusion
might elaborate on the importance of the
work or suggest applications and exten-
sions.
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