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ABSTRACT
This article aims to create a new type of generalized contractionmapping to modify the

concept of an 𝑒𝐾 -simulation function which is defined by Yamaod and Sintunavarat [2019,
J. Nonlinear Convex Anal.], we investigate the existence and uniqueness of a point of coin-
cidence in the mapping with respect to a 𝑤𝑡- distance in a partially ordered 𝑏-metric space
which extends the results of Roldán López de Hierro et al. [2015, J. Comput. Appl. Math.].
Furthermore, we prove the existence of Hermitian positive definite solutions of nonlinear
matrix equations with some examples and numerical experiments.

Keywords: 𝑏-metric spaces ; Coincidence point ; Extended simulation function; Matrix
equations; 𝑤𝑡-distance

1. Introduction
Recently, there are many results of

metric spaces generalized Banach Contrac-
tion theorem. In 1996 Kada, Suzuki and
Takahashi [12] defined the concept of 𝑤-
distance which is a generalizedmetric space
and also proved the generalized Caristi’s
fixed point theorem. Based on this con-
cept, several researchers have focu-sed on

𝑤-distance and the extension of the well
known classical fixed point result (for more
details see [3, 10, 11, 18] ). On the other
hand, Czerwik [4] formally defined the idea
of 𝑏-metric spaces covering metric spaces
and gave the Banach contraction princi-
ple in complete 𝑏-metric spaces. In 2014,
Hussain, Saadati and Agrawal [8] intro-
duced the concept of 𝑤𝑡-distance on 𝑏-
metric spaces. Later, many authors used
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this concept for proving fixed point re-
sult and related topics (for more details see
[2, 6, 7, 17] ). Motivated by their results,
we modify the concept of an 𝑒𝐾 -simulation
function for extending the results of Roldán
López de Hierro et al.[15] to the results in
the partially ordered 𝑏-metric spaces via𝑤𝑡-
distance. Also, we provide an example to
illustrate our results. Finally, we apply our
results to prove the existence of Hermitian
positive definite solutions for nonlinear ma-
trix equations with some examples and nu-
merical experiments.

2. Preliminaries
Now, the definitions of a 𝑏-metric

space, 𝑤-distance, 𝑤𝑡-distance and other
basic definitions in such spaces. In this pa-
per, we denote the sets of positive integers,
non-negative real numbers and real num-
bers by N, R+ and R respectively.

Definition 2.1. Let (𝑋, ⪯) be a partially or-
dered set. For elements 𝑥, 𝑦 ∈ 𝑋 , we say
𝑥, 𝑦 are comparable with respect to ⪯ if ei-
ther 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥.

The subset of 𝑋 × 𝑋 defined by

𝑋⪯ = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥},

is denoted by 𝑋⪯.

Definition 2.2. Let (𝑋, ⪯) be a partially or-
dered set and 𝑇, 𝑔 : 𝑋 → 𝑋 . We say that
𝑇 is 𝑔 non-decreasing with respect to ”⪯” if
for 𝑥, 𝑦 ∈ 𝑋 , 𝑔𝑥 ⪯ 𝑔𝑦 implies 𝑇𝑥 ⪯ 𝑇𝑦.

Definition 2.3. Let (𝑋, 𝑑) be a metric
space. A function 𝑝 : 𝑋 × 𝑋 → [0,∞) is
said to be a 𝑤-distance on 𝑋 if the following
hold:

(𝑤2) for any 𝑥 ∈ 𝑋, 𝑝(𝑥, ·) : 𝑋 → [0,∞)
is lower semi-continuous (i.e, if 𝑥 ∈
𝑋 and 𝑦𝑛 → 𝑦 ∈ 𝑋 , then
𝑝(𝑥, 𝑦) ≤ lim inf𝑛→∞𝑝(𝑥, 𝑦𝑛);

(𝑤3) for any 𝜀 > 0, there is 𝛿 > 0 such that
𝑝(𝑧, 𝑥) ≤ 𝛿 and 𝑝(𝑧, 𝑦) ≤ 𝛿 imply
𝑑 (𝑥, 𝑦) ≤ 𝜀.

Let 𝑋 be a metric space with metric
𝑑. A 𝑤-distance 𝑝 on 𝑋 is said to be sym-
metric, if 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) for all 𝑥, 𝑦 ∈
𝑋 . It is obvious that every metric is a 𝑤-
distance but not conversely. Next, we re-
call some examples in [19] for show that 𝑤-
distance is generalized of metric.

Example 2.4. Let (𝑋, 𝑑) be a metric space.
A function 𝑝 : 𝑋 × 𝑋 → [0,∞) is a 𝑤-
distance on 𝑋 if 𝑝(𝑥, 𝑦) = 𝑐 for every 𝑥, 𝑦 ∈
𝑋 , where 𝑐 is a positive real number. But 𝑝
is not a metric since 𝑝(𝑥, 𝑥) = 𝑐 ≠ 0 for any
𝑥 ∈ 𝑋 .

Example 2.5. Let (𝑋, ∥ ·∥) be a normed lin-
ear space. A function 𝑝 : 𝑋 × 𝑋 → [0,∞)
is a 𝑤-distance on 𝑋 if 𝑝(𝑥, 𝑦) = ∥𝑥∥ + ∥𝑦∥
for every 𝑥, 𝑦 ∈ 𝑋 .

Definition 2.6. Let 𝑋 be a nonempty set
and 𝑠 ≥ 1 be a given real number. A func-
tional 𝐷 : 𝑋 × 𝑋 → R+ is said to be a 𝑏-
metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the following
conditions hold:

1. 𝐷 (𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;

2. 𝐷 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥);

3. 𝐷 (𝑥, 𝑧) ≤ 𝑠[𝐷 (𝑥, 𝑦) + 𝐷 (𝑦, 𝑧)].

A pair (𝑋, 𝑑) is called a 𝑏-metric space with
coefficient 𝑠.

In Definition 2.6, any metric space is
a 𝑏-metric space with 𝑠 = 1 and hence the
class of 𝑏-metric spaces is larger than the
class of metric spaces. Some examples of
𝑏-metric spaces are given by Berinde [1],
Czerwik [?], Heinonen [9]. The following
well known examples of 𝑏-metric showing
that 𝑏-metric space is real generalization of
metric space.
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Example 2.7. The set of real numbers to-
gether with the functional 𝐷 : R×R→ R+,
defined by

𝐷 (𝑥, 𝑦) := |𝑥 − 𝑦 |2,

for all 𝑥, 𝑦 ∈ R, is a 𝑏-metric space with
coefficient 𝑠 = 2. However, we obtain that
𝑑 is not a metric on 𝑋 since the ordinary
triangle inequality is not satisfied. Indeed,

𝐷 (2, 4) > 𝐷 (2, 3) + 𝐷 (3, 4).

In 2014, Hussain, Saadati and
Agrawal [8] introduced the concept of
𝑤𝑡-distance as follow :

Definition 2.8. Let (𝑋, 𝐷) be a 𝑏−metric
space. A function P : 𝑋 × 𝑋 → [0,∞) is
said to be a 𝑤𝑡-distance on 𝑋 if the follow-
ing hold:

(𝑤𝑡1) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 ,
P(𝑥, 𝑧) ≤ 𝐾 (P(𝑥, 𝑦) + P(𝑦, 𝑧)) ;

(𝑤𝑡2) for any 𝑥 ∈ 𝑋,P(𝑥, ·) : 𝑋 → [0,∞)
is 𝐾−lower semi-continuous (i.e, if
𝑥 ∈ 𝑋 and 𝑦𝑛 → 𝑦 ∈ 𝑋 , then
P(𝑥, 𝑦) ≤ lim inf𝑛→∞𝐾P(𝑥, 𝑦𝑛);

(𝑤𝑡3) for 𝜀 > 0, there is 𝛿 > 0 such that
P(𝑧, 𝑥) ≤ 𝛿 and P(𝑧, 𝑦) ≤ 𝛿 imply
𝐷 (𝑥, 𝑦) ≤ 𝜀.

Example 2.9. [8] Let (𝑋, 𝐷) be a 𝑏−metric
space. Then the metric 𝐷 is a 𝑤𝑡-distance
on 𝑋 .

Example 2.10. ([8]) Let 𝐷1 = (𝑥 − 𝑦)2. A
function P : R × R → [0,∞) defined by
P(𝑥, 𝑦) = ∥𝑥∥2 + ∥𝑦∥2 for every 𝑥, 𝑦 ∈ R is
a 𝑤𝑡-distance on R.

Example 2.11. ([8]) Let 𝐷1 = (𝑥 − 𝑦)2. A
function P : R × R → [0,∞) defined by
P(𝑥, 𝑦) = ∥𝑦∥2 for every 𝑥, 𝑦 ∈ R is a 𝑤𝑡-
distance on R.

The following two lemmas are cru-
cial for our consideration.

Lemma 2.12. ([8]) Let (𝑋, 𝐷) be a
𝑏−metric space with constant 𝐾 ≥ 1 and
P be a 𝑤𝑡-distance on 𝑋 . Let {𝑥𝑛} and
{𝑦𝑛} be sequences in 𝑋 , whereas {𝛼𝑛} and
{𝛽𝑛} be sequences in [0,∞) converging to
zero. Then the following conditions hold
(for 𝑥, 𝑦, 𝑧 ∈ 𝑋):

1. for any 𝑛 ∈ 𝑁 , if P(𝑥𝑛, 𝑦) ≤ 𝛼𝑛 and
P(𝑥𝑛, 𝑧) ≤ 𝛽𝑛 then 𝑦 = 𝑧. Particu-
larly, if P(𝑥, 𝑦) = 0 and P(𝑥, 𝑧) = 0,
then 𝑦 = 𝑧;

2. for any 𝑛 ∈ 𝑁 , if P(𝑥𝑛, 𝑦𝑛) ≤ 𝛼𝑛 and
P(𝑥𝑛, 𝑧) ≤ 𝛽𝑛 then {𝑦𝑛} converges
to 𝑧;

3. for any 𝑛, 𝑚 ∈ 𝑁 with 𝑚 > 𝑛, if
P(𝑥𝑛, 𝑥𝑚) ≤ 𝛼𝑛 then {𝑥𝑛} is Cauchy
sequence;

4. for any 𝑛 ∈ 𝑁 , P(𝑦, 𝑥𝑛) ≤ 𝛼𝑛 then
{𝑥𝑛} is Cauchy sequence.

3. A Class of Simulation Functions
In 2015, Khojasteh et al. [13] intro-

duced the concept of a simulation function
and aZ-contraction mapping. They proved
many results for Z-contraction mappings
and established the existence result of a
unique fixed point for Z-contraction map-
pings in metric spaces. Here, we review
some basic knowledge related to our inves-
tigation from [13].

Definition 3.1 ([13]). A function 𝜁 :
[0,∞) × [0,∞) → R is called a simulation
function if it satisfies the following condi-
tions:

(𝜁1) 𝜁 (0, 0) = 0;

(𝜁2) 𝜁 (𝑡, 𝑠) < 𝑠 − 𝑡 for all 𝑡, 𝑠 > 0;
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(𝜁3) if {𝑡𝑛}, {𝑠𝑛} are sequences in (0,∞)
such that lim

𝑛→∞
𝑡𝑛 = lim

𝑛→∞
𝑠𝑛 > 0, then

lim sup
𝑛→∞

𝜁 (𝑡𝑛, 𝑠𝑛) < 0.

We denote the class of all simulation
functions byZ. 3

Example 3.2 ([13]). Let 𝜁1, 𝜁2, 𝜁3 :
[0,∞) × [0,∞) → R be defined by

(𝑎) 𝜁1(𝑡, 𝑠) = 𝜓(𝑠) − 𝜙(𝑡) for all 𝑡, 𝑠 ∈
[0,∞), where 𝜓, 𝜙 : [0,∞) →
[0,∞) are two continuous functions
such that 𝜓(𝑡) = 𝜙(𝑡) = 0 if and only
if 𝑡 = 0 and 𝜓(𝑡) < 𝑡 ≤ 𝜙(𝑡) for all
𝑡 > 0;

(𝑏) 𝜁2(𝑡, 𝑠) = 𝑠 − 𝜑(𝑠) − 𝑡 for all 𝑡, 𝑠 ∈
[0,∞), where 𝜑 : [0,∞) → [0,∞)
is a continuous function such that
𝜑(𝑡) = 0 if and only if 𝑡 = 0;

(𝑐) 𝜁3(𝑡, 𝑠) = 𝑠 − 𝑓 (𝑡 ,𝑠)
𝑔 (𝑡 ,𝑠) 𝑡 for all 𝑡, 𝑠 ∈

[0,∞), where 𝑓 , 𝑔 : [0,∞) →
[0,∞) are two continuous functions
with respect to each variable such that
𝑓 (𝑡, 𝑠) > 𝑔(𝑡, 𝑠) for all 𝑡, 𝑠 > 0.

Then 𝜁1, 𝜁2 and 𝜁3 are simulation functions.

Definition 3.3 ([13]). Let (𝑋, 𝑑) be a met-
ric space and 𝜁 ∈ Z. A mapping 𝑇 : 𝑋 →
𝑋 is said to be a Z-contraction mapping
with respect to 𝜁 if it satisfies

𝜁 (𝑑 (𝑇𝑥, 𝑇𝑦), 𝑑 (𝑥, 𝑦)) ≥ 0,

for all 𝑥, 𝑦 ∈ 𝑋 .

In 2015, Roldán López de Hierro et
al. [15] modified the class of simulation
functions as follows.

Definition 3.4 ([15]). A function 𝜁 :
[0,∞) × [0,∞) → R is called a simulation
function if it satisfies the following condi-
tions:

(Ξ1) 𝜁 (0, 0) = 0;

(Ξ2) 𝜁 (𝑡, 𝑠) < 𝑠 − 𝑡 for all 𝑡, 𝑠 > 0;

(Ξ3) if {𝑡𝑛}, {𝑠𝑛} are sequences in (0,∞)
such that lim

𝑛→∞
𝑡𝑛 = lim

𝑛→∞
𝑠𝑛 > 0 and

𝑡𝑛 < 𝑠𝑛 for all 𝑛 ∈ N, then

lim sup
𝑛→∞

𝜁 (𝑡𝑛, 𝑠𝑛) < 0.

We denote the class of all modify
simulation functions by 𝜁 .

In 2017, Roldán López de Hierro and
Samet [16] introduced the class of extended
simulation functions, which covers the class
of simulation functions.

Definition 3.5 ([16]). A function 𝜃 :
[0,∞) × [0,∞) → R is called an ex-
tended simulation function (for short, an 𝑒-
simulation function) if it satisfies the fol-
lowing conditions:

(𝜃1) for every 𝑎, 𝑏 > 0, 𝜃 (𝑎, 𝑏) < 𝑏 − 𝑎 ;

(𝜃2) for any sequences {𝑎𝑛}, {𝑏𝑛} ⊂
(0,∞), we have

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑏𝑛 = 𝑙 ∈ (0,∞),

𝑏𝑛 > 𝑙 ⇒ lim sup
𝑛→∞

𝜃 (𝑎𝑛, 𝑏𝑛) < 0;

(𝜃3) for any sequence {𝑎𝑛} ⊂ (0,∞), we
have

lim
𝑛→∞

𝑎𝑛 = 𝑙 ∈ [0,∞),

𝜃 (𝑎𝑛, 𝑙) ≥ 0 ⇒ 𝑙 = 0.

The class of all 𝑒-simulation func-
tions is denoted by Θ.

Example 3.6. Let 𝜃 : [0,∞) × [0,∞) → R
be defined by

𝜃 (𝛼, 𝛽) =
{
1 − 𝛼 if 𝛼 = 0;
𝛽
2 − 𝛼 if 𝛼 ≠ 0.

Then 𝜃 ∈ Θ, but 𝜃 ∉ Z see [16] for more
details.
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Recently, Yamaod and Sintunavarat
[20] introduced the class of simulation func-
tions in the sense of 𝑏-metric space.

Definition 3.7 ([20]). Let 𝑠 be a real num-
ber such that 𝑠 ≥ 1. A function 𝜁 : [0,∞) ×
[0,∞) → R is said to be an 𝑠-simulation
function if it satisfies the following condi-
tions hold

(𝜁𝑠1) 𝜁 (𝛼, 𝛽) < 𝛽 − 𝛼 for all 𝛼, 𝛽 > 0;

(𝜁𝑠2) if {𝛼𝑛}, {𝛽𝑛} are sequences in (0,∞)
such that

0 < lim inf
𝑛→∞

𝛼𝑛 ≤
(
lim sup
𝑛→∞

𝛽𝑛

)
≤ 𝑠2

(
lim inf
𝑛→∞

𝛼𝑛

)
,

and

0 < lim inf
𝑛→∞

𝛽𝑛 ≤ 𝑠

(
lim sup
𝑛→∞

𝛼𝑛

)
≤ 𝑠2

(
lim inf
𝑛→∞

𝛽𝑛

)
,

then

lim sup
𝑛→∞

𝜁 (𝛼𝑛, 𝛽𝑛) < 0.

Most recently, Yamaod and Sintu-
navarat [21] introduced the class of 𝑒𝐾 -
simulation functions in the sense of 𝑏-
metric space.

Definition 3.8. Let 𝐾 be a be real number
such that 𝐾 ≥ 1 . A function 𝜃𝐾 : [0,∞) ×
[0,∞) → R is said to be an 𝑒𝐾 -simulation
function if the following conditions hold

(𝜃𝐾1) for every 𝑎, 𝑏 > 0, 𝜃𝐾 (𝑎, 𝑏) < 𝑏− 𝑎
;

(𝜃𝐾2) for any sequences {𝑎𝑛}, {𝑏𝑛} ⊂
(0,∞), if there exists 𝐿 ∈ (0,∞) such
that

0 < 𝐿 ≤ lim inf
𝑛→∞

𝑎𝑛 ≤ 𝐾

(
lim sup
𝑛→∞

𝑏𝑛

)
≤ 𝐾2

(
lim inf
𝑛→∞

𝑎𝑛

)
≤ 𝐾3𝐿,

0 < 𝐿 ≤ lim inf
𝑛→∞

𝑏𝑛 ≤ 𝐾

(
lim sup
𝑛→∞

𝑎𝑛

)
≤ 𝐾2

(
lim inf
𝑛→∞

𝑏𝑛

)
≤ 𝐾3𝐿

and 𝑏𝑛 > 𝐿, then

lim sup
𝑛→∞

𝜃𝐾 (𝑎𝑛, 𝑏𝑛) < 0.

Now, we note thatΘ𝐾 is the class of all 𝑒𝐾 -
simulation functions.

4. Coincidence Point Theorems for
Simulation Function

This section provides a (𝜃𝐾 , 𝑔)P
contraction by using the concept of Simu-
lation function, and obtain the existence of
coincidence point theorems for such map-
ping in complete 𝑏−metric space via wt-
distance function. First, we modified the
concept of an 𝑒𝐾 -simulation functionwhich
is defined by [21].

Definition 4.1. Let𝐾 be a real number such
that 𝐾 ≥ 1 . A function 𝜃𝐾 : [0,∞) ×
[0,∞) → R is said to be a modified 𝑒𝐾 -
simulation function if it satisfies the follow-
ing conditions hold

(𝜃𝑀𝐾1) 𝜃𝐾 (𝑎, 𝑏) < 𝑏−𝑎 for every 𝑎, 𝑏 > 0;

(𝜃𝑀𝐾2) for any sequences {𝑎𝑛}, {𝑏𝑛} ⊂
(0,∞) and 𝑎𝑛 < 𝑏𝑛 for all 𝑛 ∈ N,
if there exists 𝐿 ∈ (0,∞) such that

0 < 𝐿 ≤ lim inf
𝑛→∞

𝑎𝑛 ≤ 𝐾

(
lim sup
𝑛→∞

𝑏𝑛

)
≤ 𝐾2

(
lim inf
𝑛→∞

𝑎𝑛

)
≤ 𝐾3𝐿,
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0 < 𝐿 ≤ lim inf
𝑛→∞

𝑏𝑛 ≤ 𝐾

(
lim sup
𝑛→∞

𝑎𝑛

)
≤ 𝐾2

(
lim inf
𝑛→∞

𝑏𝑛

)
≤ 𝐾3𝐿,

and 𝑏𝑛 > 𝐿, then

lim sup
𝑛→∞

𝜃𝐾 (𝑎𝑛, 𝑏𝑛) < 0.

The class of all modified 𝑒𝐾 -simulation
functions is denoted by Θ𝑀𝐾 .

Proposition 4.2. If 𝜃 : [0,∞)×[0,∞) → R
satisfies (𝜃𝑀𝐾2), then it also satisfies (Ξ3).

Proof. Follow Proposition 2.5 in [21] with
{𝑎𝑛}, {𝑏𝑛} ⊂ (0,∞) such that 𝑎𝑛 < 𝑏𝑛 for
all 𝑛 ∈ N, we obtain the result. □

Definition 4.3. Let (𝑋, 𝐷) be a complete
𝑏−metric space with constant 𝐾 ≥ 1 and P
be a 𝑤𝑡-distance on 𝑋 . Suppose that 𝑇, 𝑔 :
𝑋 → 𝑋 is called a (𝜃𝐾 , 𝑔)P contraction, if
there exists 𝜃𝐾 ∈ Θ𝑀𝐾 such that

𝜃𝐾 (P(𝑇𝑥, 𝑇𝑦),P(𝑔𝑥, 𝑔𝑦)) ≥ 0 (4.1)

for all 𝑥, 𝑦 ∈ 𝑋⪯ with 𝑔𝑥 ≠ 𝑔𝑦.

Theorem 4.4. Let (𝑋, 𝐷, ⪯) be a 𝑏−metric
space with constant 𝐾 ≥ 1 and P be a 𝑤𝑡-
distance on 𝑋 . Suppose that 𝑇, 𝑔 : 𝑋 → 𝑋
is a (𝜃𝐾 , 𝑔)P contraction, and 𝑇 is 𝑔 non-
decreasing with 𝑇 (𝑋) ⊆ 𝑔(𝑋) satisfying
the following conditions:

(i) (𝑔(𝑋), 𝐷) (or (𝑇 (𝑋), 𝐷) ) is com-
plete,

(ii) there exists 𝑥0 ∈ 𝑋 such that
(𝑔𝑥0, 𝑇𝑥0) ∈ 𝑋⪯,

(iii) for every 𝑥 ∈ 𝑋 with (𝑥, 𝑇𝑥) ∈ 𝑋⪯,

inf{P(𝑔𝑥, 𝑔𝑦) + P(𝑔𝑥, 𝑇𝑥} > 0,

for every 𝑦 ∈ 𝑋 with 𝑔𝑦 ≠ 𝑇𝑦.

Thus 𝑇 , 𝑔 have at least a coincidence point.
Moreover, if 𝑥★, 𝑦★ ∈ 𝑋 are coincidence
points of 𝑇 and 𝑔, and one the following
hold.

(a) if {𝑔𝑥𝑛} contains a coincidence point
of 𝑇 and 𝑔.

(b) the sequence {𝑔𝑥𝑛} converges to 𝑢 ∈
𝑔(𝑋) and any point 𝑣 ∈ 𝑋 such that
𝑔𝑣 = 𝑢 is a coincidence point of 𝑇
and 𝑔.

Thus 𝑇𝑥★ = 𝑔𝑥★ = 𝑔𝑦★ = 𝑇𝑦★, and if 𝑔
(or 𝑇) is injective on the set of all coinci-
dence points of 𝑇 and 𝑔 (or, simply, it is in-
jective), then 𝑇and 𝑔 have a unique coinci-
dence point.

Proof. Let 𝑥0 ∈ 𝑋 such that 𝑔𝑥0 ≠ 𝑇𝑥0
and (𝑔𝑥0, 𝑇𝑥0) ∈ 𝑋⪯ . Since 𝑇 (𝑋) ⊆ 𝑔(𝑋)
then there exists 𝑥1 ∈ 𝑋 such that 𝑇𝑥0 =
𝑔𝑥1 that is (𝑔𝑥0, 𝑔𝑥1) ∈ 𝑋⪯ . Since 𝑇 is 𝑔
non-decreasing with respect to ⪯, we get
(𝑇𝑥0, 𝑇𝑥1) ∈ 𝑋⪯ . Again 𝑇 (𝑋) ⊆ 𝑔(𝑋)
then there exists 𝑥2 ∈ 𝑋 such that 𝑇𝑥1 =
𝑔𝑥2 that is (𝑔𝑥1, 𝑔𝑥2) ∈ 𝑋⪯, and 𝑇 is 𝑔
non-decreasing with respect to ⪯, we get
(𝑇𝑥1, 𝑇𝑥2) ∈ 𝑋⪯ . Continuing of this pro-
cess, we obtain the sequences {𝑥𝑛} such that
𝑇𝑥𝑛 = 𝑔𝑥𝑛+1 and

(𝑇𝑥𝑛, 𝑇𝑥𝑚) ∈ 𝑋⪯,

for any 𝑛, 𝑚 ∈ N. If {𝑥𝑛} contains a coinci-
dence point of 𝑇 and 𝑔, that is

𝑔𝑥𝑛0 = 𝑔𝑥𝑛0+1 = 𝑇𝑥𝑛0 for some 𝑛0 ∈ N,
the proof is finished. Suppose that 𝑔𝑥𝑛 =
𝑔𝑥𝑛+1 ≠ 𝑇𝑥𝑛 for all 𝑛 ∈ N. First, we will
show that

lim
𝑛→∞

P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) = 0. (4.2)
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By (4.1) and (𝜃𝑀𝐾1), we observe that

0 ≤ 𝜃𝐾 (P(𝑇𝑥𝑛, 𝑇𝑥𝑛+1),P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1))
= 𝜃𝐾 (P(𝑔𝑥𝑛+1, 𝑔𝑥𝑛+2),P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1))
< P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) − P(𝑔𝑥𝑛+1, 𝑔𝑥𝑛+2)

(4.3)
for all 𝑛 ∈ N. It follow that

P(𝑔𝑥𝑛+1, 𝑔𝑥𝑛+2) < P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) (4.4)

for all 𝑛 ∈ N. This mean that the se-
quence {P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1)} is a decreasing se-
quence which converges to some real num-
ber 𝑟 ≥ 0. Suppose that 𝑟 > 0. Putting 𝑎𝑛 =
P(𝑔𝑥𝑛+1, 𝑔𝑥𝑛+2) and 𝑏𝑛 = P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1),
then 𝑎𝑛 < 𝑏𝑛 for all 𝑛 ∈ N and

lim inf
𝑛→∞

𝑎𝑛 = lim sup
𝑛→∞

𝑎𝑛

= 𝑟

= lim inf
𝑛→∞

𝑏𝑛

= lim sup
𝑛→∞

𝑏𝑛.

Hence,

0 < 𝑟 ≤ lim inf
𝑛→∞

𝑎𝑛 ≤ 𝐾

(
lim sup
𝑛→∞

𝑏𝑛

)
≤ 𝐾2

(
lim inf
𝑛→∞

𝑎𝑛

)
≤ 𝐾3𝑟,

and

0 < 𝑟 ≤ lim inf
𝑛→∞

𝑏𝑛 ≤ 𝐾

(
lim sup
𝑛→∞

𝑎𝑛

)
≤ 𝐾2

(
lim inf
𝑛→∞

𝑏𝑛

)
≤ 𝐾3𝑟,

By (𝜃𝑀𝐾2) with 𝐿 = 𝑟 , we get

0 ≤ lim sup
𝑛→∞

𝜃𝐾 (P(𝑔𝑥𝑛+1, 𝑔𝑥𝑛+2),P(𝑔𝑥𝑛, 𝑔𝑥𝑛+1))

= lim sup
𝑛→∞

𝜃𝐾 (𝑎𝑛, 𝑏𝑛)

< 0,

which is a contradiction and thus 𝑟 =
0. That is (4.2) hold. Next, we will prove
that

lim
𝑚,𝑛→∞

P(𝑔𝑥𝑛, 𝑔𝑥𝑚) = 0. (4.5)

Suppose to the contrary that there is 𝜀 > 0
and two subsequence {𝑥𝑛𝑘 } and {𝑥𝑚𝑘 } of
{𝑥𝑛} such that for each 𝑘 ∈ N, 𝑛𝑘 is the
smallest number such that

P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘−1) < 𝜀 ≤ P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 )
(4.6)

and 𝑘 ≤ 𝑛𝑘 < 𝑚𝑘 . By (𝑤𝑡1), we have

𝜀 ≤ P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 )
≤ 𝐾 [P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘−1) + P(𝑔𝑥𝑚𝑘−1, 𝑔𝑥𝑚𝑘 )]
< 𝐾𝜀 + 𝐾P(𝑔𝑥𝑚𝑘−1, 𝑔𝑥𝑚𝑘 ).

Using (4.2), we get

𝜀 ≤ lim sup
𝑘→∞

P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 ) ≤ 𝐾𝜀. (4.7)

Similarly, we obtain

𝜀 ≤ lim inf
𝑘→∞

P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 ) ≤ 𝐾𝜀. (4.8)

By the same method as (4.3) and (4.4) , we
obtain

P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 ) ≤ P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1).
(4.9)

From (4.6), (4.9) and (𝑤𝑡1), we obtain

𝜀 ≤ P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 )
< P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1)
≤ 𝐾 [P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑛𝑘 ) + P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘−1)]
≤ 𝐾P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑛𝑘 ) + 𝐾𝜀.

By using (4.2) and above inequality, we
have

𝜀 ≤ lim sup
𝑘→∞

P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1) ≤ 𝐾𝜀.

(4.10)
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Similarly, we obtain

𝜀 ≤ lim inf
𝑘→∞

P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1) ≤ 𝐾𝜀.

(4.11)
From (4.8) and (4.10), we have

𝜀 < lim inf
𝑘→∞

P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 )

≤ 𝐾

(
lim sup
𝑘→∞

P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1)
)

≤ 𝐾2

(
lim inf
𝑘→∞

P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 )
)

≤ 𝐾3𝜀 (4.12)

Also, from (4.7) and (4.11), we obtain

𝜀 < lim inf
𝑛→∞

P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1)

≤ 𝐾

(
lim sup
𝑛→∞

P(𝑔𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘 )
)

≤ 𝐾2
(
lim inf
𝑛→∞

P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1)
)

≤ 𝐾3𝜀. (4.13)

It follows from (𝜃𝐾 , 𝑔)P contractive condi-
tion, (4.12), (4.13) and (𝜃𝑀𝐾2) with 𝐿 = 𝜀
that

0 ≤ lim sup
𝑘→∞

𝜃𝐾 (P(𝑔𝑥𝑛𝑘−1, 𝑔𝑥𝑚𝑘−1),

P(𝑥𝑛𝑘−1, 𝑥𝑚𝑘−1))
= lim sup

𝑘→∞
𝜃𝐾 (P(𝑥𝑛𝑘 , 𝑥𝑚𝑘 ),

P(𝑥𝑛𝑘−1, 𝑥𝑚𝑘−1))
< 0,

which is a contradiction. Therefore (4.5)
hold, and {𝑔𝑥𝑛} is a 𝑏-Cauchy sequence in
𝑋 . Next, we show that 𝑇 , 𝑔 have at least
a coincidence point. Since (𝑔(𝑋), 𝐷) is a
complete, there exists 𝑢 ∈ 𝑔(𝑋) such that

lim
𝑛→∞

𝑔𝑥𝑛 = 𝑢.

Since for each 𝑛 ≥ 0, we have 𝑔𝑥𝑛+1 =
𝑇𝑥𝑛 ∈ 𝑇 (𝑋) ⊆ 𝑔(𝑋), then

lim
𝑛→∞

𝑇𝑥𝑛 = 𝑢.

Now foe every 𝜖 > 0, from the fact
that {𝑔𝑥𝑛} is a 𝑏-Cauchy sequence there ex-
its 𝑁𝜖 ∈ N such that

P(𝑔𝑥𝑁𝜖 , 𝑔𝑥𝑛) <
𝜖

𝐾
for all 𝑛 > 𝑁𝜖

Using (𝑤𝑡2), we have

P(𝑔𝑥𝑁𝜖 , 𝑢) ≤ 𝐾lim inf
𝑛→∞

P(𝑔𝑥𝑁𝜖 , 𝑔𝑥𝑛)
< 𝐾 · 𝜖𝐾 = 𝜖 .

(4.14)
Setting 𝜖 = 1

𝑗 and 𝑁𝜖 = 𝑛 𝑗 , by (4.14) we
obtain that

lim
𝑗→∞

P(𝑔𝑥𝑛 𝑗 , 𝑢) = 0.

Let 𝑣 be a point of 𝑋 such that 𝑔𝑣 = 𝑢. Next,
we examine that 𝑣 is a coincidence point of
𝑇 and 𝑔. Suppose that 𝑔𝑣 ≠ 𝑇𝑣, then by
assumption (𝑖𝑖𝑖) we get

0 < inf{P(𝑔𝑥, 𝑔𝑣) + P(𝑔𝑥, 𝑇𝑥) : 𝑥 ∈ 𝑋}
≤ inf{P(𝑔𝑥𝑛 𝑗 , 𝑔𝑣) + P(𝑔𝑥𝑛 𝑗 , 𝑇𝑥𝑛 𝑗 )}
≤ inf{P(𝑔𝑥𝑛 𝑗 , 𝑔𝑣) + P(𝑔𝑥𝑛 𝑗 , 𝑔𝑥𝑛 𝑗+1)}
→ 0 as 𝑗 → ∞ : 𝑛 𝑗 ∈ N,

which is a contradiction and then 𝑔𝑣 = 𝑇𝑣.
For the final statement, let 𝑥★, 𝑦★ ∈ 𝑋
are coincidence points of 𝑇 and 𝑔, that is
𝑔𝑥★ = 𝑇𝑥★ and 𝑔𝑦★ = 𝑇𝑦★. We now prove
that 𝑔𝑥★ = 𝑔𝑦★. Suppose on the contrary,
that is 𝑔𝑥★ ≠ 𝑔𝑦★. Then by (𝑤𝑡3) we get
P(𝑔𝑥★, 𝑔𝑦★) > 0, and also P(𝑇𝑥★, 𝑇 𝑦★) >
0. From (𝜃𝑀𝐾1), we have

0 ≤ 𝜃𝐾 (P(𝑇𝑥★, 𝑇 𝑦★),P(𝑔𝑥★, 𝑔𝑦★))
< P(𝑔𝑥★, 𝑔𝑦★) − P(𝑇𝑥★, 𝑇 𝑦★),

it follow that

P(𝑔𝑥★, 𝑔𝑦★) = P(𝑇𝑥★, 𝑇 𝑦★) < P(𝑔𝑥★, 𝑔𝑦★)
(4.15)

which is a contradiction and hence 𝑇𝑥★ =
𝑔𝑥★ = 𝑔𝑦★ = 𝑇𝑥★. Further, if 𝑔 is injective
on the set of all coincidence points of 𝑇 and
𝑔 then 𝑥★ = 𝑦★ and the proof is complete.

□
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Theorem 4.5. Let (𝑋, 𝐷, ⪯) be a 𝑏−metric
space with constant 𝐾 ≥ 1 and P be a
𝑤𝑡-distance on 𝑋 . Suppose that 𝑇, 𝑔 :
𝑋 → 𝑋 is a (𝜃𝐾 , 𝑔)P contraction and non-
decreasing with 𝑇 (𝑋) ⊆ 𝑔(𝑋) satisfying
the following conditions:

(i) (𝑋, 𝐷) is complete,

(ii) there exists 𝑥0 ∈ 𝑋 such that
(𝑔𝑥0, 𝑇𝑥0) ∈ 𝑋⪯,

(iii) 𝑇 and 𝑔 are continuous and compati-
ble.

Then 𝑇 , 𝑔 have at least a coincidence point.
Moreover, if 𝑥★, 𝑦★ ∈ 𝑋 are coincidence
points of 𝑇 and 𝑔, and one of the following
hold.

(a) if {𝑔𝑥𝑛} contains a coincidence point
of 𝑇 and 𝑔,

(b) the sequence {𝑔𝑥𝑛} converges to a
coincidence point of 𝑇 and 𝑔.

Then 𝑇𝑥★ = 𝑔𝑥★ = 𝑔𝑦★ = 𝑇𝑦★, and if
𝑔(𝑜𝑟𝑇) is injective on the set of all coin-
cidence points of 𝑇 and 𝑔(or, simply, it is
injective), then 𝑇 and 𝑔 have a unique coin-
cidence point.

Proof. From Theorem 4.4, we have 𝑔𝑥𝑛 =
𝑔𝑥𝑛+1 ≠ 𝑇𝑥𝑛 for all 𝑛 ∈ N, and {𝑔𝑥𝑛} is a
𝑏-Cauchy sequence in 𝑋 . Since (𝑋, 𝐷) is
complete, then there exists 𝑢 ∈ 𝑋 such that
{𝑔𝑥𝑛} converges to 𝑢. That is

lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛 = 𝑢.

By the continuity of 𝑇 and 𝑔, we obtain that

𝑇 (𝑔𝑥𝑛) → 𝑇𝑢 and 𝑔(𝑇𝑥𝑛) → 𝑔𝑢.
(4.16)

Thus, we have

𝐷 (𝑔𝑢, 𝑇𝑢) ≤ 𝐾 (𝐷 (𝑔𝑢, 𝑔𝑇𝑥𝑛) + 𝐷 (𝑔𝑇𝑥𝑛, 𝑇𝑢))
≤ 𝐾𝐷 (𝑔𝑢, 𝑔𝑇𝑥𝑛)

+𝐾2𝐷 (𝑔𝑇𝑥𝑛, 𝑇𝑔𝑥𝑛)
+𝐾2𝐷 (𝑇𝑔𝑥𝑛, 𝑇𝑢).

(4.17)
Taking as 𝑛→ ∞ in (4.17), and by using the
compatibility of 𝑇 and 𝑔, we get 𝑔𝑢 = 𝑇𝑢.
The final part follow fromTheorem 4.4. □

Theorem 4.6. Let (𝑋, 𝐷, ⪯) be a 𝑏−metric
space with constant 𝐾 ≥ 1 and P be a
𝑤𝑡-distance on 𝑋 . Suppose that 𝑇, 𝑔 :
𝑋 → 𝑋 is a (𝜃𝐾 , 𝑔)P contraction and non-
decreasing with 𝑇 (𝑋) ⊆ 𝑔(𝑋) satisfying
the following conditions:

(i) (𝑋, 𝐷) is complete,

(ii) there exists 𝑥0 ∈ 𝑋 such that
(𝑔𝑥0, 𝑇𝑥0) ∈ 𝑋⪯,

(iii) 𝑇 and 𝑔 are continuous and commut-
ing.

Then 𝑇 , 𝑔 have at least a coincidence point.
Moreover, if 𝑥★, 𝑦★ ∈ 𝑋 are coincidence
points of 𝑇 and 𝑔, and one of the following
hold.

(a) if {𝑔𝑥𝑛} contains a coincidence point
of 𝑇 and 𝑔

(b) the sequence {𝑔𝑥𝑛} converges to a
coincidence point of 𝑇 and 𝑔.

Then 𝑇𝑥★ = 𝑔𝑥★ = 𝑔𝑦★ = 𝑇𝑦★, and if 𝑔
(or 𝑇) is injective on the set of all coinci-
dence points of 𝑇 and 𝑔 (or, simply, it is in-
jective), then 𝑇and 𝑔 have a unique coinci-
dence point.

Proof. From the fact that, if 𝑇 and 𝑔 are
commuting then 𝑇 and 𝑔 are compatible.
Then we obtain the result. □
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5. Consequences
Section 5 give the consequences of

the main results from Theorem 4.4 - The-
orem 4.6.

Letting P = 𝐷 in Theorem 4.4, we
have the interesting result as follows:

Corollary 5.1. Let (𝑋, 𝐷, ⪯) be a 𝑏−metric
space with constant 𝐾 ≥ 1. Let 𝑇, 𝑔 : 𝑋 →
𝑋 such that

𝜃𝐾 (𝐷 (𝑇𝑥, 𝑇𝑦), 𝐷 (𝑔𝑥, 𝑔𝑦)) ≥ 0, (5.1)

for all 𝑥, 𝑦 ∈ 𝑋⪯ with 𝑔𝑥 ≠ 𝑔𝑦, and 𝑇 is 𝑔
non-decreasing with 𝑇 (𝑋) ⊆ 𝑔(𝑋) satisfy-
ing the following conditions:

(i) (𝑔(𝑋), 𝐷) (or (𝑇 (𝑋), 𝐷) ) is com-
plete,

(ii) there exists 𝑥0 ∈ 𝑋 such that
(𝑔𝑥0, 𝑇𝑥0) ∈ 𝑋⪯ .

Then 𝑇 , 𝑔 have at least a coincidence point.
Moreover, if 𝑥★, 𝑦★ ∈ 𝑋 are coincidence
points of 𝑇 and 𝑔, and one the following
hold.

(a) if {𝑔𝑥𝑛} contains a coincidence point
of 𝑇 and 𝑔

(b) the sequence {𝑔𝑥𝑛} converges to 𝑢 ∈
𝑔(𝑋) and any point 𝑣 ∈ 𝑋 such that
𝑔𝑣 = 𝑢 is a coincidence point of 𝑇
and 𝑔.

Then 𝑇𝑥★ = 𝑔𝑥★ = 𝑔𝑦★ = 𝑇𝑦★, and if
𝑔 (𝑜𝑟𝑇) is injective on the set of all coin-
cidence points of 𝑇 and 0𝑔 (or, simply, it is
injective), then 𝑇and 𝑔 have a unique coin-
cidence point.

Taking 𝐾 = 1 in Theorem 4.4, we
hence obtain the following theorem:

Corollary 5.2. Let (𝑋, 𝑑, ⪯) be a metric
space and 𝑝 be a 𝑤-distance on 𝑋 . Let
𝑇, 𝑔 : 𝑋 → 𝑋 such that

𝜃𝐾 (𝑝(𝑇𝑥, 𝑇𝑦), 𝑝(𝑔𝑥, 𝑔𝑦)) ≥ 0, (5.2)

for all 𝑥, 𝑦 ∈ 𝑋⪯ with 𝑔𝑥 ≠ 𝑔𝑦, and 𝑇 is 𝑔
non-decreasing with 𝑇 (𝑋) ⊆ 𝑔(𝑋) satisfy-
ing the three conditions as follows

(i) (𝑔(𝑋), 𝐷) (or (𝑇 (𝑋), 𝐷) ) is com-
plete,

(ii) there exists 𝑥0 ∈ 𝑋 such that
(𝑔𝑥0, 𝑇𝑥0) ∈ 𝑋⪯,

(iii) for every 𝑥 ∈ 𝑋 such that (𝑥, 𝑇𝑥) ∈
𝑋⪯,

inf{𝑝(𝑔𝑥, 𝑔𝑦) + 𝑝(𝑔𝑥, 𝑇𝑥} > 0,

for every 𝑦 ∈ 𝑋 with 𝑔𝑦 ≠ 𝑇𝑦.

Then 𝑇 , 𝑔 have at least a coincidence point.
Moreover, if 𝑥★, 𝑦★ ∈ 𝑋 are coincidence
points of 𝑇 and 𝑔, and satisfy at least one
of the following conditions.

(a) if {𝑔𝑥𝑛} contains a coincidence point
of 𝑇 and 𝑔,

(b) the sequence {𝑔𝑥𝑛} converges to 𝑢 ∈
𝑔(𝑋) and any point 𝑣 ∈ 𝑋 such that
𝑔𝑣 = 𝑢 is a coincidence point of 𝑇
and 𝑔.

Then 𝑇𝑥★ = 𝑔𝑥★ = 𝑔𝑦★ = 𝑇𝑦★, and if
𝑔(𝑜𝑟𝑇) is injective on the set of all coin-
cidence points of 𝑇 and 𝑔(or, simply, it is
injective), then 𝑇and 𝑔 have a unique coin-
cidence point.

Letting 𝑝 = 𝑑 in Corollary 5.2, and
by Proposition 4.2, we get the following re-
sult.
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Corollary 5.3. ([15]) Let (𝑋, 𝑑) be a met-
ric space. Let 𝑇, 𝑔 : 𝑋 → 𝑋 be mapping
such that

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦), 𝑑 (𝑔𝑥, 𝑔𝑦)) ≥ 0, (5.3)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑔𝑥 ≠ 𝑔𝑦, and 𝑇 (𝑋) ⊆
𝑔(𝑋) satisfying the two conditions as fol-
lows:

(i) (𝑔(𝑋), 𝑑) (or (𝑇 (𝑋), 𝑑) ) is com-
plete,

(ii) there exists 𝑥0 ∈ 𝑋 such that
(𝑔𝑥0, 𝑇𝑥0) ∈ 𝑋⪯,

Then 𝑇 , 𝑔 have at least a coincidence point.
Moreover, if 𝑥★, 𝑦★ ∈ 𝑋 are coincidence
points of 𝑇 and 𝑔, and one the following
statements hold.

(a) if {𝑔𝑥𝑛} contains a coincidence point
of 𝑇 and 𝑔,

(b) the sequence {𝑔𝑥𝑛} converges to 𝑢 ∈
𝑔(𝑋) and any point 𝑣 ∈ 𝑋 such that
𝑔𝑣 = 𝑢 is a coincidence point of 𝑇
and 𝑔.

Then 𝑇𝑥★ = 𝑔𝑥★ = 𝑔𝑦★ = 𝑇𝑦★, and if
𝑔(𝑜𝑟𝑇) is injective on the set of all coin-
cidence points of 𝑇 and 𝑔(or, simply, it is
injective), then 𝑇and 𝑔 have a unique coin-
cidence point.

Remark 5.4. .

(1) The statement in Corollary 5.3 is
some part of The statement in Theo-
rem 4.8 in [15]. However, by com-
bine The statement in Theorem 4.4,
Theorem 4.5 and Theorem 4.6, we ob-
tain all the statement of Theorem 4.8
in [15].

(2) By applying Example 3.2 and the re-
lations of the classes Z, Ξ, Θ, Θ𝐾

and Θ𝑀𝐾 (see also [21] ) with our re-
sult, we obtain many famous result
in 𝑤𝑡-distance, 𝑤-distance, 𝑏-metric
spaces and metric spaces.

6. Numerical Examples
This section provides a few exam-

ples to supports our main results. First,
give an examples to satisfies modified 𝑒𝐾 -
simulation function.

Example 6.1. Let 𝑋 = [0,∞). Define 𝜃𝐾 :
[0,∞) × [0,∞) → R by

𝜃𝐾 (𝛼, 𝛽) =


2(𝛽 − 𝛼), if 𝛽 < 𝛼,

𝛽 − 4𝛼 − 1
2 , otherwise,

We will show that 𝜃𝐾 is in Θ𝑀𝐾 . Let 𝛼, 𝛽 >
0. If 𝛽 < 𝛼, then

𝜃𝐾 (𝛼, 𝛽) = 2(𝛽 − 𝛼) < 𝛽 − 𝛼.

Suppose that 𝛼 < 𝛽, we have

𝜃𝐾 (𝛼, 𝛽) = 𝛽 − 4𝛼 − 1

2
< 𝛽 − 𝛼.

Thus, (𝜃𝑀𝐾1) is satisfied. Furthermore,
corresding to (𝜃𝑀𝐾2), we suppose that
{𝛼𝑛}, {𝛽𝑛} ⊂ (0,∞) are two sequences
with with 𝛼𝑛 < 𝛽𝑛, for all 𝑛 ∈ N, and 𝐿 > 0
such that

𝐿 ≤ lim inf
𝑛→∞

𝛼𝑛 ≤ 2

(
lim sup
𝑛→∞

𝛽𝑛

)
≤ 4

(
lim inf
𝑛→∞

𝛼𝑛

)
≤ 8𝐿,

𝐿 ≤ lim inf
𝑛→∞

𝛽𝑛 ≤ 2

(
lim sup
𝑛→∞

𝛼𝑛

)
≤ 4

(
lim inf
𝑛→∞

𝛽𝑛

)
≤ 8𝐿

24



T. Puttasontiphot, S. Sanhan, and C. Mongkolkeha* | Science & Technology Asia | Vol.29 No.4 October - December 2024

and 𝛽𝑛 > 𝐿.
We then obtain

lim sup
𝑛→∞

𝜃𝐾 (𝛼𝑛, 𝛽𝑛)

= lim sup
𝑛→∞

(
𝛽𝑛 − 4𝛼𝑛 −

1

2

)
≤ 2lim sup

𝑛→∞
𝛽𝑛 − 4lim inf

𝑛→∞
𝛼𝑛 −

1

2

≤ 4lim inf
𝑛→∞

𝛼𝑛 − 4lim inf
𝑛→∞

𝛼𝑛 −
1

2

= −1
2

< 0.

It yields that (𝜃𝑀𝐾2) holds. Therefore, 𝜃𝐾 ∈
Θ𝑀𝐾 . Next, we will prove that 𝜃𝐾 is not an
𝑒-simulation function. Let {𝛼𝑛} ⊂ (0,∞)
and 𝐿 ≥ 0. Now we assume

lim
𝑛→∞

𝛼𝑛 = 𝐿 and 𝜃 (𝛼𝑛, 𝐿) ≥ 0.

We thus obtain

0 ≤ 𝜃 (𝛼𝑛, 𝐿) = 𝐿 − 4𝛼𝑛 −
1

2
.

As 𝑛→ ∞ in above inequality, we have

𝐿 ≤ − (6𝐿 + 1)
2

.

This follows that (𝜃3) is not satisfied and so
𝜃𝐾 is not an 𝑒-simulation function. Further-
more, if we take 𝛼𝑛 = 1 and 𝛽𝑛 = 1 − 1

𝑛 for
all 𝑛 ∈ N, then we have

lim sup
𝑛→∞

𝜃𝐾 (𝛼𝑛, 𝛽𝑛) = lim sup
𝑛→∞

2(1 − 1

𝑛
− 1)

= lim sup
𝑛→∞

(−2

𝑛
) = 0.

Thus, 𝜃𝐾 is also not an 𝑒𝐾 -
simulation function in sense of Yamaod
and Sintunavarat [21]. Therefore the result
of Roldán López de Hierro and Samet [16]
and Yamaod and Sintunavarat [21] are not
applicable in this example.

Next, we consider an instance to sup-
port Theorem 4.4

Example 6.2. Let 𝑋 = {0} ∪ { 1𝑛 : 𝑛 ∈
N} with ⪯ is the usual ordering, and 𝐷 =
(𝑥 − 𝑦)2 for all 𝑥, 𝑦 ∈ 𝑋 , and consider the
𝑤𝑡−distance P on 𝑋 defined by P(𝑥, 𝑦) =|
𝑦 |2 for every 𝑥, 𝑦 ∈ 𝑋 . Define mapping
𝑇, 𝑔 : 𝑋 → 𝑋 given by

𝑇𝑥 =


𝑥2

4
, if 𝑥 ∈ { 1

2𝑛 : 𝑛 ∈ N},

0, otherwise,

and

𝑔𝑥 =


𝑥

2
, if 𝑥 ∈ { 1

2𝑛 : 𝑛 ∈ N},

0, otherwise.

Now, we consider the modified 𝑒𝐾 -
simulation function define by

𝜃𝐾 (𝛼, 𝛽) = 𝛽−4𝛼−
1

2
for all 𝛼, 𝛽 > 0.

By similarly as an Example 6.1, we can see
that 𝜃𝐾 ∈ Θ𝑀𝐾 . We next prove that 𝑇 and 𝑔
satisfies inequality (4.1).

Case I: For 𝑥, 𝑦 ∈ { 1𝑛 : 𝑛 ∈ N} with
𝑥 ≠ 𝑦, we have

𝜃𝐾 (P(𝑇𝑥, 𝑇𝑦),P(𝑔𝑥, 𝑔𝑦))

= 𝜃𝐾
(
P( 𝑥

2

4
,
𝑦2

4
),P( 𝑥

2
,
𝑦

2
)
)

= 𝜃𝐾
( 𝑦2
4
,
𝑦

2

)
=

𝑦

2
− 4

( 𝑦2
4

)
− 1

2

>
𝑦

2
− 𝑦2

≥ 0.
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Case II: For 𝑥 = 0 and 𝑦 ∈ { 1𝑛 : 𝑛 ∈ N},
we have

𝜃𝐾 (P(𝑇𝑥, 𝑇𝑦),P(𝑔𝑥, 𝑔𝑦))

= 𝜃𝐾
(
P(0, 𝑦

2

4
),P(0, 𝑦

2
)
)

= 𝜃𝐾
( 𝑦2
4
,
𝑦

2

)
=

𝑦

2
− 4

( 𝑦2
4

)
− 1

2

>
𝑦

2
− 𝑦2

≥ 0.

Case III: For 𝑥 = 0 = 𝑦 is obvious.

Therefore, (4.1) is satisfied. Also, 𝑇 and 𝑔
satisfies assumption (𝑖𝑖𝑖) of Theorem 4.4.
Indeed for any 𝑛 ∈ N with 𝑦 := 1

2𝑛 , we get
𝑔(𝑦) = 𝑔

(
1
2𝑛
)
= 1

2𝑛+1 ≠ 1
22𝑛+2 = 𝑥2

4 = 𝑇 (𝑦),
and for every 𝑥 ∈ 𝑋 with (𝑥, 𝑇𝑥) ∈ 𝑋⪯, we
have

inf
{
P(𝑔𝑥, 𝑔𝑦) + P(𝑔𝑥, 𝑇𝑥)

}
= inf

{
P( 𝑥

2
,
𝑦

2
) + P( 𝑥

2
,
𝑥2

4
)
}

= inf
{ 𝑦
2
+ 𝑥

2

4

}
= inf

{ 1

2𝑛+1
+ 1

22𝑚+2 : for some 𝑚 ∈ N
}

≥ 1

2𝑛+1
> 0.

The rest is obvious. Thus all hypothesis of
Theorem 4.4 are satisfied. Consequently, in
this case 0 is a coincidence point of 𝑇 and
𝑔.

7. An Application to Matrix Equa-
tion

In this section, we apply our result
to prove the existence of Hermitian positive

definite solutions for nonlinearmatrix equa-
tions. First, we denote

• the set of all 𝑛 × 𝑛 complex matrices
by 𝑀 (𝑛),

• the family of all 𝑛 × 𝑛 Hermitian ma-
trices 𝐻 (𝑛) (i.e. 𝐻 (𝑛) ⊆ 𝑀 (𝑛)),

• the set of all 𝑛 × 𝑛 positive defi3nite
matrices 𝑃(𝑛) (i.e. 𝑃(𝑛) ⊆ 𝐻 (𝑛)),

• the set of all 𝑛 × 𝑛 positive semi-
definite matrices 𝑃(𝑛)+ (i.e.
𝑃(𝑛)+ ⊆ 𝐻 (𝑛)).

For any 𝑋 ∈ 𝑃(𝑛) and 𝑋 ∈ 𝑃(𝑛)+, we write

𝑋 ≻ 0 and 𝑋 ⪰ 0, respectively.

Furthermore, 𝑋 − 𝑌 ⪰ 0 and 𝑋 − 𝑌 ≻ 0
mean that

𝑋 ⪰ 𝑌 and 𝑋 ≻ 𝑌 , respectively.

Also, for any 𝑋,𝑌 ∈ 𝐻 (𝑛), there is
a greatest lower bound and a least upper
bound (see [14]). Now, we denote ∥ · ∥ is
the spectral norm of a matrix 𝐴, that is,

∥𝐴∥ =
√
𝜆+(𝐴∗𝐴),

where 𝐴∗ is the conjugate transpose of 𝐴
and 𝜆+(𝐴∗𝐴) is the largest eigenvalue of the
matrix 𝐴∗𝐴. The Ky Fan norm is defined by

∥𝐴∥1 =
𝑚∑
𝑖=1

𝑠𝑖 (𝐴),

where 𝑠𝑖 (𝐴) for each 𝑖 = 1, 2, · · · , 𝑚 is the
singular values of 𝐴 ∈ 𝑀 (𝑛).Also, we have

∥𝐴∥1 = 𝑡𝑟 ((𝐴∗𝐴)1/2),
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which is 𝑡𝑟 (𝐴) (trace norm) for (Hermitian)
nonnegative matrices. Define 𝑏-metric on
𝐻 (𝑛) as follows:

𝐷 (𝑋,𝑌 ) = (∥𝑋−𝑌 ∥𝑡𝑟 )𝜆, for all 𝑋,𝑌 ∈ 𝐻 (𝑛),
(7.1)

where 𝜆 ≥ 1 and the notion ∥ · ∥𝑡𝑟 denote
the trace norm, that is ∥ · ∥𝑡𝑟 = ∥ · ∥1. Then
(𝐻 (𝑛), 𝐷) is a complete 𝑏-metric space.
Moreover, 𝐻 (𝑛) is a partially ordered set
with partial order ⪯, where 𝑋 ⪯ 𝑌 ⇐⇒
𝑌 ⪰ 𝑋. Nowwe consider the following ma-
trix equation, defined

𝑋 = 𝑄 +
𝑚∑
𝑘=1

𝐴∗
𝑖G(𝑋)𝐴𝑖 . (7.2)

We now assume that G is an order-
preserving and continuous mapping from
𝐻 (𝑛) to 𝑃(𝑛) and let 𝐹 : 𝐻 (𝑛) → 𝐻 (𝑛)
be the mapping defined by

𝐹 (𝑋) = 𝑄 +
𝑚∑
𝑘=1

𝐴∗
𝑖G(𝑋)𝐴𝑖 , (7.3)

for all 𝑋 ∈ 𝐻 (𝑛), where 𝑄 is in � 𝑃(𝑛)
and 𝐴𝑖 is an arbitrary 𝑛 × 𝑛 matrix for each
𝑖 = 1, 2, 3, · · · , 𝑚.

It this section, we next prove some
results.

Theorem 7.1. Consider the matrix equa-
tion (7.2). Let 𝐹 : 𝐻 (𝑛) → 𝐻 (𝑛) be an
order-preserving mapping and 𝑄 ∈ 𝑃(𝑛)
be defined by (7.3). Suppose that there is a
positive number 𝜇 and 𝜆 ≥ 1 and the fol-
lowing hold:

(i)
∑𝑚
𝑖=1 𝐴𝑖𝐴

∗
𝑖 < 𝜇 · 𝐼𝑛 and∑𝑚

𝑘=0 𝐴
∗
𝑖G(𝑄)𝐴𝑖 ≻ 0;

(ii) for all 𝑋,𝑌 ∈ 𝐻 (𝑛) such that 𝑋 ⪯ 𝑌 ,
(∥G(𝑋) − G(𝑌 ))∥1)𝜆

≤ 1
4𝜇 (∥𝑋 − 𝑌 ∥1)𝜆 − 1

8𝜇 .

Then we have the following a statements :
(1) The matrix equation (7.2) has a

solution.
(2) Moreover, for any 𝑋0 ∈ 𝐻 (𝑛)

such that 𝑋0 ⪯ 𝑄 + ∑𝑛
𝑖=1 𝐴

∗
𝑖G(𝑋0)𝐴𝑖 , the

iteration {𝑋𝑛} defined by

𝑋𝑛 = 𝑄 +
𝑛∑
𝑖=1

𝐴∗
𝑖G(𝑋𝑛−1)𝐴𝑖 , (7.4)

converges to a solution of the matrix equa-
tion (7.2) in the sense of the trace norm
∥ · ∥𝑡𝑟 .

Proof. Consider 𝑤𝑡−distance P = 𝐷, and
let 𝐷 : 𝐻 (𝑛)×𝐻 (𝑛) → [0,∞) be defined as
in (7.1). Let 𝑋,𝑌 ∈ 𝐻 (𝑛) such that 𝑋 ⪯ 𝑌 .
Then we have
(∥𝐹 (𝑋) − 𝐹 (𝑌 )∥1)𝜆

= (𝑡𝑟 (𝐹 (𝑋) − 𝐹 (𝑌 )))𝜆

=
[ 𝑚∑
𝑖=1
𝑡𝑟 (𝐴∗

𝑖 (G(𝑋) − G(𝑌 ))𝐴𝑖
]𝜆

=
[ 𝑚∑
𝑖=1
𝑡𝑟 (𝐴𝑖𝐴∗

𝑖 (G(𝑋) − G(𝑌 ))
]𝜆

=
[
𝑡𝑟
( ( 𝑚∑
𝑖=1

(𝐴𝑖𝐴∗
𝑖

) ]𝜆
(G(𝑋) − G(𝑌 ))

) ]𝜆
≤

[

 𝑚∑
𝑖=1

(𝐴𝑖𝐴∗
𝑖 )


]𝜆 (G(𝑋) − G(𝑌 )∥1

)𝜆
≤



 𝑚∑
𝑖=1

(𝐴𝑖𝐴∗
𝑖 )




𝜇

(
1

4
(∥𝑋 − 𝑌 ∥1)𝜆 −

1

8

)
≤

1

4
(∥𝑋 − 𝑌 ∥1)𝜆 −

1

8
,

it follow that

(∥𝑋−𝑌 ∥1)𝜆−4(∥𝐹 (𝑋)−𝐹 (𝑌 )∥1)𝜆−
1

2
≥ 0.

Now, we take 𝜃𝐾 (𝛼, 𝛽) = 𝛽− 4𝛼− 1
2 for all

𝛼, 𝛽 ≥ 0. Then
𝜃𝐾 (P(𝐹 (𝑋), 𝐹 (𝑌 )),P(𝑋,𝑌 ))

= 𝜃𝐾 (𝐷 (𝐹 (𝑋), 𝐹 (𝑌 )), 𝐷 (𝑋,𝑌 ))
= 𝜃𝐾 (∥𝐹 (𝑋) − 𝐹 (𝑌 )∥1)𝜆, (∥𝑋 − 𝑌 ∥1)𝜆)
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= (∥𝑋 − 𝑌 ∥1)𝜆 − 4(∥𝐹 (𝑋) − 𝐹 (𝑌 )∥1)𝜆

−
1

2
≥ 0.

and hence 𝐹 satisfies the (𝜃𝐾 , 𝑔)P con-
tractive condition with 𝑔 := 𝐼𝑛. Since∑𝑚
𝑘=0 𝐴

∗
𝑖G(𝑄)𝐴𝑖 ≻ 0, we have

𝐹 (𝑄) = 𝑄 +
𝑚∑
𝑖=1

𝐴∗
𝑖G(𝑄)𝐴𝑖 ⪰ 𝑄.

This mean that the condition (𝑖𝑖) of Theo-
rem 4.5 is satisfied. Since G is continuous,
then 𝐹 is also continuous. Furthermore, 𝐹
and 𝐼𝑛 := 𝑔 are compatible. Hence the con-
dition (𝑖𝑖𝑖). of Theorem 4.5 hold. There-
fore all the hypothesis of Theorem 4.5 is
satisfied. By Theorem 4.5, the solution of
the matrix equation (7.2) exists. This com-
pletes the proof. □

Theorem 7.2. Consider the matrix equa-
tions (7.2) . Let 𝐹 : 𝐻 (𝑛) → 𝐻 (𝑛) be an
order-preserving mapping and 𝑄 ∈ 𝑃(𝑛)
be defined by (7.3). Suppose that there is a
positive number 𝜇 and the following hold:

(i)
∑𝑚
𝑖=1 𝐴𝑖𝐴

∗
𝑖 < 𝜇 · 𝐼𝑛 and∑𝑚

𝑘=0 𝐴
∗
𝑖G(𝑄)𝐴𝑖 ≻ 0;

(ii) for all 𝑋,𝑌 ∈ 𝐻 (𝑛) such that 𝑋 ⪯ 𝑌 ,
(∥G(𝑋) − G(𝑌 ))∥1)𝜆

≤ 1
𝜇 ln

(
1 + ( ∥𝑋−𝑌 ∥1)𝜆

2𝑒 (∥𝑋−𝑌 ∥1 )𝜆

)
.

Then we have the following:
(1) The matrix equation (7.2) has a

solution.
(2) In addition, for any 𝑋0 ∈ 𝐻 (𝑛)

such that 𝑋0 ⪯ 𝑄 + ∑𝑛
𝑖=1 𝐴

∗
𝑖G(𝑋0)𝐴𝑖 , the

iteration {𝑋𝑛} defined by

𝑋𝑛 = 𝑄 +
𝑛∑
𝑖=1

𝐴∗
𝑖G(𝑋𝑛−1)𝐴𝑖 , (7.5)

converges to a solution of the matrix equa-
tion (7.2) in the sense of the trace norm.

Proof. Putting 𝑤𝑡−distance P = 𝐷, and let
𝐷 : 𝐻 (𝑛) × 𝐻 (𝑛) → [0,∞) be defined as
in (7.1). Consider be defined as Example
3.2(a), that is 𝜃𝐾 (𝛼, 𝛽) = 𝜓(𝑠) − 𝜙(𝑡) for
all 𝑠, 𝑡 ∈ [0,∞) with 𝜓(𝑡) = ln(1+ 𝑡

2𝑒𝑡 ) and
𝜙(𝑡) = 𝑡 for all 𝑡 ∈ [0,∞). By applying
the relation of various kinds of simulation
(see [21]), we get 𝜃𝐾 ∈ Θ𝑀𝐾 . According
to the proof of Theorem 7.1, It follows all
the hypothesis of Theorem 4.5 hold. Thus
the conclusions of this theorem follow from
Theorem 4.5. The proof is completed. □

Theorem 7.3. Consider the matrix equa-
tions (7.2). Let 𝐹 : 𝐻 (𝑛) → 𝐻 (𝑛) be an
order-preserving mapping and 𝑄 ∈ 𝑃(𝑛)
be defined by (7.3). Suppose that there is a
positive number 𝜇 and the following state-
ments hold:

(i)
∑𝑚
𝑖=1 𝐴𝑖𝐴

∗
𝑖 < 𝜇 · 𝐼𝑛 and∑𝑚

𝑘=0 𝐴
∗
𝑖G(𝑄)𝐴𝑖 ≻ 0;

(ii) for all 𝑋,𝑌 ∈ 𝐻 (𝑛) such that 𝑋 ⪯ 𝑌 ,

(∥G(𝑋)−G(𝑌 ))∥1)𝜆 ≤ 𝑘

𝜇
(∥𝑋−𝑌 ∥1)𝜆

for some 𝑘 ∈ [0, 1). Then we have the fol-
lowing statements:

(1) The matrix equation (7.2) has a
solution.

(2) Furthermore, for any 𝑋0 ∈ 𝐻 (𝑛)
such that 𝑋0 ⪯ 𝑄 + ∑𝑛

𝑖=1 𝐴
∗
𝑖G(𝑋0)𝐴𝑖 , the

iteration {𝑋𝑛} defined by

𝑋𝑛 = 𝑄 +
𝑛∑
𝑖=1

𝐴∗
𝑖G(𝑋𝑛−1)𝐴𝑖 , (7.6)

converges to a solution of the matrix equa-
tion (7.2) in the sense of the trace norm
∥ · ∥𝑡𝑟 .

Proof. Consider 𝑤𝑡−distance P = 𝐷, and
let 𝐷 : 𝐻 (𝑛) × 𝐻 (𝑛) → [0,∞) be defined
as in (7.1). Consider 𝜃𝐾 ∈ Θ𝑀𝐾 defined by
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𝜃𝐾 (𝑡, 𝑠) = 𝑘𝑠−𝑡, for all 𝑡, 𝑠 ∈ [0,∞), where
𝑘 ∈ [0, 1). In the same line of Theorem 7.3,
we obtain so the conclusions of this theo-
rem. □

8. Numerical Experiments
We now provide a few instances to

support the results in the section 4 and sec-
tion 7 with the numerical method to ap-
proximate a solution of the matrix equation
(7.2).

Example 8.1. Let X ⊂ 𝐻 (4) Hermitian
matrices defined by

X =


©­­­«
𝑎 𝑎 𝑏 𝑐
𝑎 𝑎 𝑎 𝑏
𝑏 𝑎 𝑎 𝑎
𝑐 𝑏 𝑎 𝑎

ª®®®¬ :

0 < 𝑎 ≤ 1,
0 ≤ 𝑏 ≤ 1,
0 ≤ 𝑐 ≤ 1

 ,
and let

𝑄 =
©­­­«

0.2 0.02 0.03 0.01
0.02 0.2 0.02 0.03
0.03 0.02 0.2 0.02
0.01 0.03 0.02 0.2

ª®®®¬ ,

𝐴1 =
©­­­«
0.02 −0.021 0.35 0.12
0.1 0.6 0 0.25
0.06 0.1 0.07 0
0.17 0.06 0.01 0.022

ª®®®¬ ,

𝐴2 =
©­­­«
0.05 0.1 0.02 −0.24
0.01 0.11 0.4 0
0.12 0.01 0.1 0.02
0.18 0.3 −0.08 0.26

ª®®®¬ ,

𝐴3 =
©­­­«
0.41 0.01 0.40 −0.02
0.07 0.12 0.25 0.51
0.18 −0.23 0.14 0.05
0.06 0.15 0.04 0.06

ª®®®¬ .
Then 𝑄 ∈ 𝑃(4) ⊆ X and 𝐴𝑖 ∈ 𝑀 (4)

for each 𝑖 = 1, 2, 3. Further,

3∑
𝑖=1

𝐴𝑖𝐴
∗
𝑖 =

©­­­«
1.3573 0.0050 0.4097 0.4223
0.0050 1.3655 0.2008 0.0765
0.4097 0.2008 0.4435 0.1253
0.4223 0.0765 0.1253 0.3464

ª®®®¬ ,
and hence

3∑
𝑖=1

𝐴𝑖𝐴
∗
𝑖 < 1.3573 · 𝐼4 <

√
2 · 𝐼4,

and
3∑
𝑘=0

𝐴∗
𝑖G(𝑄)𝐴𝑖 =

©­­­«
0.0179 0.0056 0.0202 0.0118
0.0056 0.0441 0.0094 0.0197
0.0202 0.0094 0.0445 0.0209
0.0118 0.0197 0.0209 0.0291

ª®®®¬ ≻ 0.

where G(𝑋) = 1
3
√
2
𝑋 . Consider the matrix

equation (7.2) with G(𝑋) = 1
3
√
2
𝑋 , that is,

𝑋 = 𝑄 + 𝐴∗
1

(
1

3
√
2
𝑋
)
𝐴1

+𝐴∗
2

(
1

3
√
2
𝑋
)
𝐴2

+𝐴∗
3

(
1

3
√
2
𝑋
)
𝐴3.

(8.1)

Consider 𝑤𝑡−distance P = 𝐷, and let
𝐷 : 𝐻 (𝑛) × 𝐻 (𝑛) → [0,∞) be defined
as in (7.1). Letting 𝜃𝐾 ∈ Θ𝑀𝐾 defined by
𝜃𝐾 (𝑡, 𝑠) = 𝜓(𝑠) − 𝜙(𝑡) for all 𝑠, 𝑡 ∈ [0,∞)
with 𝜓(𝑡) = 𝑡

3𝜆
and 𝜙(𝑡) = 𝑡 for all 𝑡 ∈

[0,∞). Let 𝑋,𝑌 ∈ X be such that 𝑋 ⪯ 𝑌 .
Then we have
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(∥𝐹 (𝑋) − 𝐹 (𝑌 )∥1)𝜆

= (𝑡𝑟 (𝐹 (𝑋) − 𝐹 (𝑌 )))𝜆

=
[ 𝑚∑
𝑖=1
𝑡𝑟 (𝐴∗

𝑖 (G(𝑋) − G(𝑌 ))𝐴𝑖
]𝜆

=
[ 𝑚∑
𝑖=1
𝑡𝑟 (𝐴𝑖𝐴∗

𝑖 (G(𝑋) − G(𝑌 ))
]𝜆

=
[
𝑡𝑟
( ( 𝑚∑
𝑖=1

(𝐴𝑖𝐴∗
𝑖

) ]𝜆
(G(𝑋) − G(𝑌 ))

) ]𝜆
≤

[

 𝑚∑
𝑖=1

(𝐴𝑖𝐴∗
𝑖 )


∥]𝜆 (G(𝑋) − G(𝑌 )∥1

)𝜆
< (

√
2)𝜆

( 1

3
√
2
∥𝑋 − 𝑌 ∥1

)𝜆
=

1
√
2
·
(
1

3
∥𝑋 − 𝑌 ∥1

)
≤

1

3𝜆
· (∥𝑋 − 𝑌 ∥1)𝜆,

it follow that
𝜃𝐾 (P(𝐹 (𝑋), 𝐹 (𝑦)),P(𝑥, 𝑦))

= 𝜃𝐾 (𝐷 (𝐹 (𝑋), 𝐹 (𝑦)), 𝐷 (𝑋, 𝑋))
= 𝜃𝐾 (∥𝐹 (𝑋) − 𝐹 (𝑌 )∥1)𝜆, (∥𝑋 − 𝑌 ∥1)𝜆)
= 𝜓(∥𝑋 − 𝑌 ∥1)𝜆) − 𝜙(∥𝐹 (𝑋) − 𝐹 (𝑌 )∥1)𝜆)

=
1

3𝜆
· (∥𝑋 − 𝑌 ∥1)𝜆 − (∥𝐹 (𝑋) − 𝐹 (𝑌 )∥1)𝜆

≥ 0.

Thus, 𝐹 satisfies the (𝜃𝐾 , 𝑔)P contractive
condition with 𝑔 := 𝐼𝑛. Similar to the proof
of Theorem 7.3, notice that, all hypotheses
of Theorem 4.5 are satisfied. Next, we ap-
proximate a solution of the equation 8.1 by
considering the iteration {𝑋𝑛} defined by

𝑋𝑛 = 𝑄+𝐴∗
1𝑋𝑛−1𝐴1+𝐴∗

2𝑋𝑛−1𝐴2+𝐴∗
3𝑋𝑛−1𝐴3,

(8.2)
where 𝑋0 = 𝑄, and the error 𝐸𝑛 := (∥𝑋𝑛 −
𝑋𝑛−1∥1)𝜆, with 𝜆 = 1.5. Finally, a solution
of the equation (5.1) can be approximated
at iteration number of 9.

𝑋∗ ≈ 𝑋9

=
©­­­«
0.2199 0.0288 0.0472 0.0194
0.0288 0.2336 0.0258 0.0457
0.0472 0.0258 0.2331 0.0321
0.0194 0.0457 0.0321 0.2263

ª®®®¬ ,
with 𝐸9 = 1.5865𝑥1012 (see in Fig. 1).
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Fig. 1. The error of iteration process (8.2) for
the Equation (7.2).

9. Conclusion
A conclusion may review the main

points of the paper, do not replicate the
abstract as the conclusion. A conclusion
might elaborate on the importance of the
work or suggest applications and exten-
sions.
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