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ABSTRACT 
This study focuses on the forecasting of government revenue in Thailand across four primary 

sectors: the Revenue Department, Excise Department, Customs Department, and Other Agencies. 
Acknowledging the critical role of precise and efficient forecasting in policymaking, we proposed 
two models: the Whale Optimization Algorithm with Holt-Winters (WOA-HW) and the Whale 
Optimization Algorithm with Decomposition (WOA-D), comparing their performance with two 
classical models: Classical Decomposition (Classic-D) and Box-Jenkins. The model performances 
were evaluated using both a training dataset and a test dataset, with Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) serving as 
key metrics. The results demonstrate that the WOA-D model generally outperformed the other 
models during the training phase, showcasing its significant potential in time series forecasting. 
During the testing phase, the WOA-HW model exhibited commendable performance across three 
datasets: the Revenue Department, Excise Department, and Other Agencies. For the Customs 
Department dataset, the Box-Jenkins model emerged as the top performer, employing a 

 model. This study concludes by emphasizing the effectiveness of these 
models not only for forecasting government revenue but also for broader applicability in 
forecasting other time series data. 

Keywords: Decomposition; Forecasting; Government revenue; Holt-Winters; Whale optimization 
algorithm
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1. Introduction 
Government revenue in Thailand is 

derived from the tax revenues collected by the 
Revenue Department, the Excise Department, 
and the Customs Department. Additionally, 
revenue is obtained from other official entities 
such as the Treasury Department and various 
state enterprises. Each of these components 
holds significant importance in the 
management and administration of the 
country’s finances. In the fiscal year 2022, the 
Revenue Department reported a total revenue 
of approximately 2.166430 trillion baht, with 
Value-Added Tax (VAT), corporation taxes, 
and personal income taxes ranking as the 
primary sources of income. Similarly, the 
Excise Department generated a revenue of 
around 503.465 billion baht, with oil taxes, car 
taxes, and beer taxes serving as the 
predominant sources. The Customs 
Department is responsible for collecting 
import and export duties on goods transported 
to and from Thailand. Import duties stand out 
as the main income source, contributing 
approximately 108.896 billion baht in the 
fiscal year 2022. Other government agencies 
derive their primary income from two sources: 
state enterprises and other government agents. 
Together, these agencies amassed a total 
revenue of approximately 290.924 billion baht. 
Collectively, the government revenue for the 
fiscal year 2022 amounted to an impressive 
3.071272 trillion baht, underscoring its 
profound significance to the country. Given 
the critical role of accurate revenue forecasting 
in economic planning and policymaking, the 
utilization of statistical forecasting models 
becomes imperative. These models provide 
precise estimations, enabling informed 
decisions for strategic storage or investment 
plans based on the analysis and forecasted 
values [1, 2]. 

Time series analysis is a key statistical 
approach that examines data characteristics 
and patterns that change over time. It leverages 
statistical tools to explore trends, seasonality, 
patterns, and relationships between data values 
at different time intervals. Decomposition, 

proposed by Persons [3] in their 1919 article 
Indices of Business Conditions, is a renowned 
method within time series analysis. Persons 
introduced the concept of dividing a time 
series into trend, seasonal, and irregular 
components, a technique still employed by 
economists and businesses today. The 
decomposition method dissects a time series 
into three components: trend, seasonality, and 
residual. The trend reflects the long-term 
direction of the data, seasonality represents 
repeating cyclical patterns, and residual 
encapsulates random data fluctuations. By 
projecting the trend and seasonality into the 
future and adding the residual component, 
decomposition can forecast future values of a 
time series. However, this study did not take 
into account the cyclical and irregular 
components. This method has found 
successful application in various domains, 
including energy forecasting, trend prediction, 
and seasonal pattern identification. For 
instance, Mbuli et al. [4] referenced 29 studies 
that employed the decomposition method in 
power system forecasting. These studies used 
both additive and multiplicative 
decomposition models on various types of 
data, including hourly, daily, and monthly 
measurements. Of these, 15 papers solely 
utilized the multiplicative decomposition 
method, while 6 papers exclusively applied the 
additive decomposition method. Other 
research papers used the decomposition 
method as the initial forecasting technique, 
followed by further prediction methods like 
Artificial Neural Network (ANN) and 
Autoregressive Integrated Moving Average 
(ARIMA). In economic research, Koirala [5] 
examined Nepal's government revenue using 
five statistical techniques: the Holt method, 
Winters method, decomposition method, 
Seasonal Autoregressive Integrated Moving 
Average (SARIMA) method, and growth rate 
method. Similarly, Hansen and Nelson [6] 
investigated the State of Utah's revenue, using 
machine learning methods like ANN, and 
traditional time series techniques such as 
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classical decomposition, exponential 
smoothing, ARIMA, and causal models. 

The smoothing technique has found 
numerous applications in forecasting. Two 
pioneers, Brown and Holt significantly 
contributed to the development and refinement 
of exponential smoothing methods [7]. In the 
1950s, Brown introduced two models: simple 
exponential smoothing, suitable for data 
without a clear trend or seasonal pattern, and 
double exponential smoothing, appropriate for 
data with a trend but no seasonality, also 
known as Brown’s linear exponential 
smoothing [8]. Holt further developed this 
field by introducing a method to handle data 
with a trend [9, 10]. Although termed double 
exponential smoothing like Brown’s model, 
Holt’s method differed by incorporating 
parameters for both the level of the series and 
the trend. Collaborating with Winters [11], 
Holt later adapted his model to accommodate 
seasonality, leading to the Holt-Winters 
method (HW) or triple exponential smoothing. 
This extension added a third parameter for 
seasonality, enhancing its flexibility for 
various types of time series data. Numerous 
practical applications have employed these 
techniques. For instance, Frank [12] applied 
moving averages and smoothing techniques to 
forecast income from crucial sources in eight 
Florida cities. Likewise, Gianakis and Frank 
[13] emphasized the significance of 
forecasting for local governments by 
employing moving averages, smoothing 
techniques, and the Box-Jenkins method to 
inform decisions regarding budgets, staffing, 
and resource allocation based on expected 
revenues. In a more recent study, Williams 
[14] utilized various techniques, including 
exponential smoothing methods, to forecast 55 
revenue data series for 18 local governments. 

Numerous studies have explored the 
hybrid application of the HW method and 
various optimization techniques to optimize its 
smoothing parameters. Techniques include 
particle swarm optimization [15], golden 
section method [16, 17], fruit fly optimization 
[18], genetic algorithms [19], optimized 

fractional grey [20], and cuckoo algorithms 
[21]. In this study, we focus on employing an 
optimization method to identify the optimum 
parameters for the HW method, requiring 
approximately three parameters, as well as the 
decomposition method, which involves 
approximately 14 parameters related to trend 
(2 parameters) and seasonal components (12 
parameters). To estimate these parameters, we 
utilize the Whale Optimization Algorithm 
(WOA), previously applied in predicting 
housing prices in China as demonstrated by 
Liu and Wu [22]. In their study, they compared 
the modified Holt’s exponential smoothing 
method incorporating WOA (mH-WOA) with 
the Box-Jenkins ARIMA model, the gray 
model, and the backpropagation neural 
network, reporting favorable results. The mH-
WOA yielded positive outcomes for all four 
datasets analyzed in the study. In this study, we 
present a model that incorporates WOA with 
the HW method (WOA-HW) and the 
decomposition method (WOA-D) for monthly 
government revenue forecasting in Thailand. 
WOA facilitates the generation of multiple 
parameters required for both HW and 
decomposition. We compare forecasting 
results obtained from WOA-HW and WOA-D 
with those derived from the Classical 
Decomposition (Classic-D) method and the 
Box-Jenkins model. 

 

2. Research Methods 
2.1 Data preparation 
 Thailand’s government revenue is 
derived from the Revenue Department, the 
Excise Department, the Customs Department, 
and Other Agencies. Secondary data for this 
study was gathered from the Ministry of 
Finance [1]. This data, organized monthly, 
spans from October 2012 to April 2023, 
yielding a total of 127 data points. The dataset 
was subdivided into two distinct subsets for the 
purposes of this study. The first subset, known 
as the training dataset, consists of 115 data 
points from October 2012 to April 2022. This 
subset was employed to develop an 
appropriate forecasting model for each method 
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being considered. The second subset, referred 
to as the test dataset, includes 12 data points 
from May 2022 to April 2023. 
 
2.2 The components of a time series 
 Understanding the components of a time 
series is crucial for the selection of an 
appropriate forecasting model. In this study, 
statistical tests and thorough examinations of 
the time series plot are employed alongside an 
analysis of the inherent data characteristics to 
facilitate a comprehensive understanding of 
these components. 
 
 2.2.1 The Runs Test  
 The Runs Test is a statistical test used to 
assess the presence of a trend in a time series 
data. It examines whether consecutive values 
in the time series tend to be consistently 
increasing or decreasing. Deseasonalizing a 
time series using centered moving averages 
involves calculating the average of 
observations within a defined window 
centered around each data point. The time 
series data ( ) was first processed through a 
central 12-month moving average to eliminate 
seasonal influences, resulting in a 
deseasonalized dataset. Subsequently, the 
Runs test was applied to this deseasonalized 
data to further examine its characteristics. 
  
 2.2.2 The Kruskal-Wallis Test 
 The Kruskal-Wallis Test is a non-
parametric statistical test employed to assess 
the presence of significant differences between 
groups. Although it is typically applied to 
compare multiple independent groups, it can 
also be adapted to examine seasonal variation 
in time series data. To isolate the seasonal 
component, it is necessary to eliminate the 
trend by calculating , where  
represents the detrended data, obtained by 
subtracting the trend component ( ) from the 
original time series ( ). The detrended data 

 is subsequently utilized in the Kruskal-
Wallis testing. 
 
 
 
 
 

 2.2.3 Levene’s Test  
 Levene’s Test is a statistical test used to 
assess the equality of variances across 
different groups. While it is commonly used 
for comparing variances in independent 
samples, it can also be adapted to check for 
homoscedasticity in a time series context. 
 
2.3 Forecasting model  
 In conducting this study, the following 
symbols have been defined: 

 represents the time series data at time . 
 represents the forecasting data at time . 
 represents the residual, which is assumed to 

adhere to a normal distribution with constant 
variance (homoscedasticity), independence, 
and a mean of zero. 

 represents the time period, ranging from 1 to 
 or  or , depending on the case. In the 

case of model construction,  
represents the number of data points in the 
training dataset. In the case of model testing, 

 represents the number of data 
points in the test dataset. In the case of future 
forecasting,  represents the total 
number of data points. And  represents the 
time interval of a season, with a value of 12. 
  
 2.3.1 Decomposition Method 
 The Classic-D method is a time series 
forecasting technique that separates a time 
series into its different components, namely 
trend, seasonal, and residual components. Here 
are the general steps involved in the classical 
decomposition forecasting: 
Step 1: Data Preparation: Collect the 
historical time series data intended for 
forecasting. Ensure that the data is in a suitable 
format and covers a sufficient time period. 
Step 2: Visualize the Time Series: Plot the time 
series data to visualize its overall pattern, 
trends, and seasonal fluctuations. This step 
assists in understanding the characteristics of 
the data. 
Step 3: Determine the Seasonal Period: 
Identify the length of the seasonal cycle in the 
data. It could be daily, weekly, monthly, or any 
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other pattern that repeats over a fixed time 
interval. 
Step 4:  Detrend the Data:  Remove the trend 
component from the time series to isolate the 
seasonal and residual components. This can be 
done using techniques such as center the 
moving averages and subtract them from the 
original time series (for additive models). 
Step 5:  Estimate the Seasonal Component: 
Calculate the seasonal component by 
averaging the values for each season or period 
within the seasonal cycle.  Adjust the seasonal 
by subtracting the overall average from each of 
these to give you the seasonal component (for 
additive models). 
Step 6:  Remove the Seasonal Component: 
Subtract the seasonal component from the 
original time series ( for an additive model)  to 
obtain the deseasonalized time series. 
Step 7: Estimate the trend Component: 
Calculate the trend component by linear 
regression. 
Step 8: Reconstruct the Forecast: Combine the 
forecasted trend and seasonal components to 
obtain the final forecast for the original time 
series. 
Step 9: Evaluate and Refine:  Assess the 
accuracy of the forecast by comparing it with 
actual values.  If necessary, refine the 
forecasting model or methodology based on 
the evaluation results. 
 In this study, we focus solely on the 
additive decomposition based on the test 
results presented in Table 1, discussed further 
in section 3. The model represented by Eqs. 
(2.1)-(2.2), is utilized for both modeling and 
forecasting purposes. 
 

,  (2.1) 
,      (2.2) 

 

where  are the y-intercept, and the slope 
coefficient, respectively.  are the 
estimated coefficients of , respectively. 

 is seasonal component at time  
estimated seasonal component of . 
 

 2.3.2 Smoothing Method 
 The HW approach considers both 
additive and multiplicative seasonal patterns. 
In this study, our focus is exclusively on the 
additive seasonal pattern based on the findings 
presented in Table 1, which will be further 
elaborated upon in section 3. Eqs. (2.3)-(2.6) 
represent the calculations for the additive HW 
method, which captures the additive seasonal 
component. 
 

       for  , (2.3) 
 

where  ,   is the forecasted 
value at time ,  is the level of the time 
series  is the trend and  is the seasonality.  
 

,  (2.4) 
, (2.5) 

,  (2.6) 
 

where  is the smoothing parameter for level, 
 is the smoothing parameter for trend, and  

is the smoothing parameter for seasonal. 
 The parameters  and  are 
smoothing parameters that range between 0 
and 1. These parameters determine the weight 
given to the current observation and the 
previous smoothed values when updating the 
level, trend, and seasonal components. Values 
closer to 0 result in more smoothing, while 
values closer to 1 give more weight to recent 
observations. 
  
2.4 Whale Optimization Algorithm 
 The WOA method is introduced as a 
powerful optimization technique for parameter 
estimation in time series forecasting. Inspired 
by the hunting behavior of humpback whales, 
the WOA algorithm has gained recognition for 
its effectiveness in solving complex 
optimization problems across various 
domains. Mirjalili and Lewis [23] proposed the 
WOA algorithm, drawing significant interest 
as a nature-inspired optimization algorithm 
capable of tackling real-world challenges. The 
number of WOA citations has shown 
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remarkable growth, with 37 citations in 2016 
and reaching 7,410 citations by the end of 
March 2023, reflecting its popularity and 
impact in solving diverse optimization 
problems [24]. In this study, we employ the 
WOA method to estimate the parameters in the 
HW method and the decomposition technique, 
leveraging its exploration and exploitation 
capabilities. The application of the WOA 
algorithm offers a promising approach to 
enhance the accuracy and efficiency of 
forecasting models in time series analysis. We 
provide a comprehensive overview of the 
WOA method, including its formulation and 
implementation, in this section.  
 Assuming there are  whales and  
parameters, each whale's position is 
represented as . 
During the optimization search process, 
whales perform three types of movements: 
encircling prey, bubble-net attacking, and 
searching for prey. At any given time, a whale 
updates its position by performing one of these 
three actions. 
 
 2.4.1 Encircling prey 
 The encircling prey movement in the 
WOA is inspired by the hunting behavior of 
humpback whales. It involves the whales 
surrounding the target in a coordinated 
manner, maximizing the chances of capturing 
the prey. In the algorithm, this movement is 
simulated by updating the positions of the 
whales based on their current positions and the 
best solution found so far. The position update 
equation for the encircling prey movement can 
be represented as follows: 
 

 (2.7) 
 

where  is the new position of the 
whale,  is the best position found by the 
whale so far,  is the amplitude coefficient, 
and  is a randomly generated vector. This 
movement allows the whales to explore the 
search space effectively and converge towards 
promising solutions. The vectors  and  
are calculated as follows: 

  
 ;  

 

where  is linearly decreased from 2 to 0 over 
the course of iterations (in both exploitation 
and exploration phases),  is a random vector 
in [0, 1],  is a coefficient vector, and  is an 
element-by-element multiplication. 
 
 2.4.2 Bubble-net attacking 
(exploitation phase) 
 Bubble-net attacking is characterized by 
the humpback whales encircling the prey 
within a shrinking circle while following a 
spiral-shaped path. To capture this 
simultaneous behavior, a probabilistic 
approach is incorporated where there is a 50% 
chance of selecting either the shrinking 
encircling mechanism or the spiral model to 
update the positions of the whales during the 
optimization process. The mathematical model 
is defined as follows: 
 

,  
,

 (2.8) 
 

where  is a random number in [0,1], 
and indicates the distance of 

the ith whale to the prey (best solution obtained 
so far),  is a constant for defining the shape 
of the logarithmic spiral,  is a random number 
in [-1, 1]. Besides the bubble-net technique, 
humpback whales also undertake random 
searches for prey. The mathematical model for 
this search process is as follows. 
 
 2.4.3 Search for prey (Exploration 
phare) 
 This exploration mechanism allows the 
whales to venture into different areas of the 
search space, increasing the chances of 
discovering better solutions. The mathematical 
model for the exploration phase involves 
randomly updating the position of the whales 
based on the following equations: 
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, (2.9) 
 

where  is a random position vector (a 
random whale) chosen from the current 
population. This mechanism, coupled with the 
emphasis on exploration where , 

enhances the algorithm’s capability to explore 
a diverse range of solutions and prevent being 
trapped in local optima. The three movements 
are illustrated in the pseudo-code provided in 
Fig. 1., which details this procedure. 
 

 

 
Fig. 1. Pseudo-code of WOA. 

 
 In this research, all three types of whale 
movements were utilized to enhance the 
forecasting model’s performance. The 
‘Encircling prey’ movement was employed for 
its effectiveness in local search optimization, 
focusing on areas of the solution space with 
high fitness values. The Bubble-net attacking’ 
technique was incorporated due to its prowess 
in balancing exploration and exploitation, 
aiding in a more diverse search. Lastly, the 
‘Search for prey’ movement was included for 
its broad exploration capabilities, allowing the 
algorithm to scan a larger solution space 
efficiently. 
  

2.5 Hybrid the Whale Optimization 
Algorithm with Holt-Winters (WOA-HW) 
 The selection of parameters has a great 
impact on the performance of the WOA-HW 
model. In this study, WOA was used to solve 
the  and  parameters of HW. The 
computational procedure is described as 
follows: 
Step 1: Generate initialization parameters: 
The position of each whale represented the 
three parameters  within the 
bound of [0, 1]. 
Step 2: Select movement: Each whale chooses 
an action for its next move by selecting one of 
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the three movements. This selection 
determines whether the whale moves closer to 
the prey or expands its search. Refer to pseudo-
code Fig. 1. for a detailed illustration of this 
procedure. By input of whale are ,  

, , , 
and . 
Step 3: Calculate fitness: The fitness is 
computed by evaluating the Root Mean Square 
Error (RMSE) of the dataset using the position 
of each whale in HW method. Therefore, we 
could judge the best position . 
Step 4: Establish stopping criteria: The 
algorithm terminates when the fitness value 
fails to improve after a specified number of 
iterations, reaches a time limit, or reaches the 
maximum number of iterations . At this 
point, the optimal parameters are output. 
Step 5: Evaluation: Evaluate HW performance 
with the optimal parameters. We assess the 
forecast accuracy by measuring the error 
between the forecasted data and the dataset. 
 The objective function of WOA-HW 
uses the following equation: 

 

where ,  represents 

for the length of dataset;  and  refer to the 
actual value and forecasting value of WOA-
HW, respectively. 
  
2.6 Hybrid the Whale Optimization 
Algorithm with Decomposition (WOA-D) 
 The selection of parameters has a great 
impact on the performance of the WOA-D 
model. In this study, WOA was used to solve 
the  
and  parameters of decomposition. The 
computational procedure is described as 
follows: 
Step 1: Set Constraint upper bound and lower 
bound of parameters: Calculate the trend 

component by linear regression to get and 
. Set the constraint upper bound and lower 

bound of parameters of and  using the 
following equations: 
Constraint upper bound  
 

, . 
 

Constraint lower bound 
 

, . 
 

 These constraints apply when the 
parameter is positive. Conversely, if the 
parameter is negative, the upper and lower 
bounds should be switched. 
 Remove the trend component from the 
time series using differencing ( ). 
Set the constraint upper bound and lower 
bound of parameters of  by using 
the following equations: 
Constraint upper bound (US) is +(extreme 
value) of amplitude of .  
Constraint lower bound (LS) is -(extreme 
value) of amplitude of . 
Step 2: Generate initialization parameters: 
The position of each whale is represented by 
the 14 parameters 

 within the 
bound of [0, 1]. These parameters can be 
adjusted to the appropriate units before 
calculating the fitness, alleviating any 
concerns about their values. 
Step 3: Select movement: Each whale chooses 
an action for its next move by selecting one of 
the three movements. 
Step 4: Scaling parameters: We configure the 
whale algorithm to search for parameters 
within the boundary of [0, 1]. Therefore, it is 
necessary to adjust the units of the parameters 
before calculating the fitness value. The 
following equation is employed for this 
purpose: 
 

Original Value = Scaled Value  (Constraint 
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Constraint Lower Bound. 
 

30N =

max 1,000T = 180 sec.MaxTime = 50improveT =
3m =

*( )X
!

maxT

Objective Minimize RMSE( , , ),
0 1

Variable range 0 1 ,
0 1

a g d
a
g
d

£ £ì
ï £ £í
ï £ £î

( )2
1

1 ˆRMSE
n

t t
t
Y Y

n =

= -å n

tY t̂Y

0 1 1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,S S S S Sb b 6 7 8 9 10 11

ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,S S S S S S

12Ŝ
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If the original values are denoted as , the 
seasonal adjustment can be calculated using 
the formula: 

, then . 

(Note: Multiplicative decomposition 

, then ) 

 In this equation, the original value 
represents the parameter value based on the 
original data unit, while the scaled value is the 
value obtained by the whale algorithm within 
the range of [0, 1]. This step holds significant 
importance, especially when dealing with 
parameters of different units and a 
considerable number of parameters. 
 We will continue to refer to pseudo-
code Fig. 1. for a detailed illustration of this 
procedure. However, it is important to note 
that we have added the “Scaling parameters” 
line before the step “Calculate  
using decomposition”. The input values for the 
whale algorithm are as follows: ,

, , , 
and . 
Step 5: Calculate fitness: The fitness is 
computed by evaluating the RMSE of the 
dataset using the position of each whale in 
decomposition method. Therefore, we could 
judge the best position . 
Steps 6-7: Establish stopping criteria: and 
Evaluation: Follow the same procedure as in 
Steps 4-5 of the WOA-HW process. The 
objective function of WOA-D uses the 
following equation: 

 

where ,  represents 

the length of dataset;  and  refer to the 

actual value and forecasting value of WOA-D, 
respectively. 
  
2.7 Evaluation criteria 
 To compare the performance of the 
model more clearly, we adopt the following 
three metrics to evaluate the effect of the 
model: RMSE, Mean Absolute Error (MAE), 
and Mean Absolute Percentage Error (MAPE). 
The formulas are as follows: 
 

, 

, 

 
 

where  represents the length of the test 
dataset;  and  refer to the actual value and 
forecasting value of the test dataset, 
respectively. If  is replaced with , all three 
metrics will be adjusted to evaluate the 
performance during the training phase of the 
dataset. 
 The experiments were conducted in a 
Google Colab environment [25], which 
automatically provides access to Python 
programming capabilities. The hardware 
specifications for the Colab environment are 
equivalent to a machine with an Intel(R) 
Core(TM) i5-9400 CPU @ 2.90GHz, 16GB 
RAM, running on a Windows 11 operating 
system. 
 
3. Experiment and Discussion 
3.1 Results of time series motion 
characteristics analysis 
 The trend, seasonal, and variance 
characteristics of the data were assessed using 
the Runs test, Kruskal-Wallis test, and 
Levene’s test, respectively, as outlined in 
Table 1. Further examination of the time series 
plot and the inherent nature of the data 
enhanced the analysis. The Runs test indicated 
a trend in all four sectors of government 
income, supported by a P-value less than the 
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predetermined significance level. Similarly, 
the Kruskal-Wallis test revealed seasonal 
variations for all four sectors, also supported 
by a P-value less than the predetermined 
significance level. Additionally, we employed 
the Autocorrelation function (ACF) validation 
in the Box-Jenkins model construction 
process, which helped us identify trends and 
seasonality as detailed in Tables 2-5. In fitting 
the Box-Jenkins model, we set d = 1 for all data 
sets and D = 1 for data sets corresponding to 
the Revenue Department, Customs 
Department, and Other Agencies. Even though 
the ACF did not support that the Excise 
Department has a seasonal component, when 
considered in conjunction with the Kruskal-
Wallis test and the nature of the data, we 
decided that the Excise Department also has 
seasonality. Lastly, all four sectors exhibited 
constant variance, corroborated by a P-value 
not less than the predetermined significance 
level. Consequently, the additive decom-
position approach and the additive HW 
method were considered appropriate for this 
analysis. 
 The additive decomposition and HW 
model were selected for this study based on its 

suitability for handling linear seasonal patterns 
and consistent trend components in the time 
series data. In comparison with multiplicative 
models, additive decomposition offers greater 
simplicity and is particularly effective for data 
where variations around the trend do not 
significantly vary with the level of the time 
series. Given these strengths and the specific 
characteristics of the dataset, both the additive 
decomposition and the HW models stand out 
as highly reliable frameworks for accurate 
forecasting. These methods are well-suited to 
handle all four components of the government 
revenue data. 
 
3.2 Results of the experiment 
 In order to evaluate the performance of 
WOA-HW and WOA-D in forecasting 
government revenue, we compared these 
models with two classical forecasting models: 
Classic-D, and the Box and Jenkins model. 
These models, when applied to the same data, 
yielded different results, as shown in Tables 2-
5. Moreover, Figs. 2-5 illustrate the fitting 
curves for both the train and test datasets 
across the four government revenue sectors. 

 
Table 1. The test statistics and P-values from Runs, Kruskal-Wallis, and Levene’s tests for each 
of the four revenue sectors. 

Government 
Revenue 

Runs Test Kruskal Wallis Test Levene’s Test 
Test Statistic P-value Test Statistic P-value Test Statistic P-value 

Revenue -2.2578 0.000* 87.09 0.000* 0.15 0.701 
Excise -7.5261 0.000* 37.39 0.000* 0.34 0.562 

Customs -1.8815 0.000* 38.88 0.000* 0.22 0.643 
Other 1.8815 0.000* 44.57 0.000* 2.78 0.098 

Note: * Significant Level 0.05. 
 
Table 2. Evaluation criteria of the Revenue Department. 

Method Parameter Train Dataset Test Dataset 
MAPE RMSE MAE MAPE RMSE MAE 

WOA-HW 0.09, 0, 0.53 7.34 19,657 12,127 8.08* 22,389* 16,951* 

WOA-D 

 
141359.1, 202.1, -37785.9, -26859.5, -21172.8, -18396, 
-31731.6, -24039.6, -29764.6, 74336.5, 57410.3,  
-35741.9, 33141.7, 60603.4 

6.09* 16,383* 10,208* 9.61 29,813 20,303 

Classic-D 

 
141447, 199.3, -34434.5, -25808.6, -20902.9, -17318.7, 
-32068.4, -21981.7, -28067.9, 70216.5, 56629.8,  
-33776.8, 32937.6, 54575.7 

6.19 16,573 10,274 9.43 31,084 20,483 

Box-Jenkins  17.96 54,857 27,198 8.73 26,234 19,093 
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Note: * Minimum Value 
Table 3. Evaluation criteria of the Excise Department. 

Method Parameter Train Dataset Test Dataset 
MAPE RMSE MAE MAPE RMSE MAE 

WOA-HW 0.18, 0, 0.13 10.80* 6,765 4,327* 14.73* 5,819* 5,601* 

WOA-D 

 
35267.6, 125.1, -2380.3, -485.7, 3197.7, 3524.5,  
-243.8, 3912.5, 433, -2806.9, -2890.7, 136.7, -1597.4,  
-799.5 

13.22 6,560* 4,968 31.91 12,288 12,160 

Classic-D 

 
35235, 125.8, -1688.0, 738.5, 2280.7, 1976.8, -204.7, 
4423.2, 2664.6, -948.1, -1891.4, -3125.6, -1806.2,  
-2419.9 

12.44 6,728 4,954 32.01 12,325 12,207 

Box-Jenkins  11.45 7,252 4,521 18.04 7,141 6,750 
Note: * Minimum Value. 
 
Table 4. Evaluation criteria of the Customs Department. 

Method Parameter Train Dataset Test Dataset 
MAPE RMSE MAE MAPE RMSE MAE 

WOA-HW 0.28, 0, 0.43 6.54 719 583 13.09 2,612 1,599 

WOA-D 
 

9817.3, -13.7, 116.3, 484.1, 534.4, 191.9, -818.8, 419.4, 
-421.9, -378.6, -263.3, -89.1, 316.1, -90.5 

5.93 646* 518* 20.22 3,045 2,317 

Classic-D 
 

9806, -13.5, 147.9, 411, 550.1, 223, -795.9, 189.5,  
-436.1, -297.8, -329.4, 5.7, 322.3, 9.6 

5.92* 652 520 20.04 3,039 2,301 

Box-Jenkins  16.31 3,267 1,521 10.33* 2,388* 1,310* 
Note: * Minimum Value. 
 
Table 5. Evaluation criteria of Other Agencies. 

Method Parameter Train Dataset Test Dataset 
MAPE RMSE MAE MAPE RMSE MAE 

WOA-HW 0.03, 0, 0.41 38.79 14,198 10,019 27.46* 11,424 8,108* 

WOA-D 

 
26040.8, 33.8, 22778.3, -11072.9, 3559.4, -2935.8,  
-5429.2, -7380, 17467.3, 2661.3, -10242.6, 5652.5,  
-9046, -6012.4 

37.59* 12,560* 9,234 35.34 9,443* 8,404 

Classic-D 

 
26041, 33.8, 24847.2, -14700.6, -1988.9, -50.4, -4797,  
-7909.4, 18351.2, 1299.3, -8192.2, 9096.2, -8176.9,  
-7778.6 

37.89 12,826 9,130* 34.63 9,579 8,263 

Box-Jenkins  47.22 15,171 11,239 28.34 12,725 8,711 
Note: * Minimum Value. 
 
Table 6. Percentage change of WOA-D parameters relative to Classic-D. 

Revenue of 
Government 

              

Revenue Department 0 1 10 4 1 6 1 9 6 6 1 6 1 11 

Excise Department 0 1 41 166 40 78 19 12 84 196 53 104 12 67 

Customs Department 0 2 21 18 3 14 3 121 3 27 20 1,655 2 1,042 

Other Agencies 0 0 8 25 279 5,725 13 7 5 105 25 38 11 23 
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Fig. 2. Fitting curves of training dataset and test dataset for the Revenue Department. 
 

 
 

Fig. 3. Fitting curves of training dataset and test dataset for the Excise Department. 
 

 
 

Fig. 4.  Fitting curves of training dataset and test dataset for the Customs Department. 
 

 
 

Fig. 5.  Fitting curves of training dataset and test dataset for the Other Agencies. 
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Fig. 6. Forecast curves for the Revenue Department (a), and the Excise Department (b) 

 

 
 

Fig. 7.  Forecast curves for the Customs Department (a), and the Other Agencies (b). 
 
 Box-Jenkins is a statistical model 
commonly used in forecasting or for 
comparison with new models that are being 
introduced, such as in [4-6, 13, 22]. In this 
research, the Box-Jenkins model construction 
process is briefly summarized as follows: The 
parameters for the Box-Jenkins ARIMA model 
were computed using a multi-step approach. 
First, the consistency of the time series was 
examined through the analysis of the time 
series curve, the Autocorrelation Function, and 
the Partial Autocorrelation Function (PACF) 
curves. The Dickey-Fuller (DF) test was 
utilized for unit root checking, with the 
maximum order of Lag set at 12. The Bayesian 
Information Criterion (BIC) was employed to 
determine the lowest value. If the time series 
was found to be non-stationary, it was 
transformed to become stationary in order to 
obtain d and D values. A bounding set of p, q, 
P, and Q values ranging from 0 to 3 was 
employed. To find suitable parameters, a grid 
search method, a machine learning technique 
for hyperparameter tuning, was utilized. This 
approach proved more effective than the 
traditional method of considering ACF and 
PACF curves, which can be challenging to 
determine when multiple possibilities exist. 
Therefore, instead of dealing with 256 possible 
models, the grid search method streamlined the 
process. 
 Tables 2-5 illustrate that the WOA-D 
method outperformed the other three models in 
three datasets during the training phase. 

Specifically, the Revenue Department showed 
the lowest values across all three evaluation 
criteria. In terms of the Customs Department 
and Other Agencies, WOA-D yielded the 
lowest values in two out of three evaluation 
criteria. However, for the Excise Department, 
the WOA-HW method recorded the lowest 
values in two evaluation criteria. 
Notwithstanding, the WOA method 
demonstrated strong performance across all 
datasets when applied to parameter value 
searches for model fitting. During the training 
phase, the only model that surpassed the WOA 
method in performance was the Classic-D 
method applied to the Customs Department 
data, which resulted in the lowest MAPE. 
Also, when the Classic-D method was utilized 
for Other Agencies, it produced the lowest 
MAE. Thus, it can be concluded that the WOA 
method excelled in 10 out of 12 evaluation 
metrics across the four datasets, with three 
metrics evaluated per dataset. 
 The WOA-D method outperforms the 
Classic-D in parameter tuning, primarily due 
to its capability to search for all parameters 
simultaneously. In contrast, the Classic-D 
method conducts a search for each parameter 
sequentially, which might lead to a local 
optimization situation. However, the 
simultaneous parameter search approach of the 
WOA-D allows for a broader exploration of 
the solution space, thus increasing the 
likelihood of achieving global optimization. 
The importance of creating parameter 



W. Minsan and P. Minsan | Science & Technology Asia | Vol.28 No.4 October – December 2023 

51 

boundaries is highlighted in section 2.6, 
Hybrid Whale Optimization Algorithm with 
Decomposition (WOA-D), where Scaling 
Parameters is identified as a crucial step. 
 Examining the parameters of the HW 
forecasting model, one can see it is capable of 
estimating the parameters  and  for the 
time series of the four government revenue 
sectors, as demonstrated in Tables 2-5. 
Particularly notable is the relatively large  
(the seasonal smoothing factor) in the Revenue 
Department, Customs Department, and Other 
Agencies, standing at 0.53, 0.43, and 0.41, 
respectively. This indicates that the influence 
of the previous year’s season carries a weight 
of approximately 40-50%, diminishing 
exponentially for each preceding year. 
However,  across all four government 
revenue sectors indicates that the model will 
not update the trend component based on new 
data. It should not be interpreted as an absence 
of trend within the time series but rather as an 
assumption by the model that the trend will 
remain constant throughout the forecast 
period. The level adjuster also plays a role in 
fitting the trend to the dataset, as expressed in 
Eq. (2.3) and . 
 This study examines two methods of 
forecasting with decomposition: Classic-D and 
WOA-D. Given the model’s 14 parameters, 
distinct outcomes were observed from each 
method. The percentage change of WOA-D 
parameters relative to Classic-D is presented in 
Table 6. The Revenue Department exhibited 
the smallest divergence in parameters, with the 
most considerable discrepancy of 11% 
occurring in December. The Excise 
Department displayed a moderate variation in 
parameters, peaking at a 196% difference in 
August. Similarly, the Customs Department 
showed moderate parameter disparity, with the 
maximum divergence reaching 1,655% in 
October. Other Agencies demonstrated the 
largest parameter differences, with a whopping 
5,725% discrepancy in April. The significant 
parameter differences underscore the 
importance of the method used to derive the 

model parameters. The superior performance 
of WOA-D in optimizing the fitness objective 
lends credence to the effectiveness of the 
WOA-D and WOA-HW techniques. 
  
3.3 Forecasting government revenue for the 
next 12 months 
 In pursuit of the most suitable model for 
forecasting government revenue, the 
performance of different models was evaluated 
using the test dataset.  The WOA-HW model 
showed commendable performance across 
three datasets: Revenue Department, Excise 
Department, and Other Agencies. These 
results indicate that the WOA-HW model can 
effectively be used to forecast the subsequent 
12 months, outperforming all other models in 
the comparison. For the Customs Department 
dataset, the Box-Jenkins model emerged as the 
top performer, satisfying the assumptions of 
residual normal distribution, constant variance 
(homoscedasticity), independence, and a mean 
of zero. As a result, both the WOA-HW and 
Box-Jenkins models were utilized to forecast 
future government revenue across the four 
sectors. The forecasting results are visually 
represented in Figs. 6-7. 
 As depicted in Fig. 6(a) for the Revenue 
Department, the WOA-HW model projects a 
pattern akin to the preceding 12 months. This 
prediction aligns with the  value of 0.53, as 
reported in Table 2. The closer the values are 
to 1, the more emphasis they place on recent 
observations. A notably low MAPE of 8.08 in 
the test dataset implies the high accuracy of 
this forecasting model. In the case of the 
Excise Department, portrayed in Fig. 6(b), the 
model has three estimated parameters outlined 
in Table 3, all relatively small. Lower values 
correspond to increased smoothing in the 
model. Again, a low MAPE value of 14.73 in 
the test dataset signals the model's high 
forecasting accuracy. Turning to Fig. 7(a), the 
Box-Jenkins model maintains high accuracy in 
forecasting, as suggested by its low MAPE 
value of 13.09 in the test dataset. Fig. 7(b) 
showcases the Other Agencies model, which 
anticipates a pattern similar to the previous 12 
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months. The  value of 0.41, as detailed in 
Table 5, indicates that recent seasonal patterns 
are somewhat weighted but are also smoothed 
due to the high variability in the data. The 
MAPE value in the test dataset stands at 27.46, 
the highest among all datasets. This is 
consistent with the inherent nature of the data, 
which encompasses revenue from various 
sources and hence exhibits higher variability 
than the first three revenue sources. 
 
4. Conclusions 
 The results of this study demonstrate a 
successful forecasting of government revenue, 
with different sectors emerging as key factors. 
Therefore, it is necessary to make informed 
decisions when formulating policies for 
government tax collection or projecting future 
revenue. Notably, seasonal influences are 
discernible across all sectors of government 
revenue. 
 In this study, an approach incorporating 
the Whale Optimization Algorithm with Holt-
Winters (WOA-HW) and Decomposition 
(WOA-D) was introduced to forecast future 
government revenue in Thailand. This 
proposed method demonstrated superior 
performance over traditional models in 
forecasting Thailand’s government revenue. 
Regardless of the sources of government 
revenue represented in the time series data, the 
WOA-HW and WOA-D models offer superior 
forecasting compared to Classic-D. 
Consequently, users can trust in the models’ 
ability to handle level adjustment, trend 
considerations, and seasonal components of 
the time series data. However, it remains 
inconclusive as to which method, either WOA-
HW or WOA-D, is superior. Therefore, if the 
data exhibit both trend and seasonal 
components, it is recommended to employ 
both forecasting methods and select the one 
that yields the most accurate results based on 
predetermined criteria. The WOA can 
effectively determine the relevant parameters. 
In conclusion, this paper contributes an 
effective tool for studying time series data. In 
future research, enhanced versions of WOA-

HW or WOA-D will be deployed to forecast 
other time series data. 
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