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ABSTRACT
In this paper, a within-host model of human papillomavirus (HPV) infection and cer-

vical cancer is proposed. The model consists of seven compartments including susceptible,
exposed, infected, early-stage cervical cancer cells, end-stage cervical cancer cells, HPV,
and recovered cervical cells. The existence, positivity and boundary of solutions are proved
and the basic reproduction number is calculated. We obtain that when the basic reproduction
number is less than one, an infection-free equilibrium point is both locally and globally sta-
ble, whereas when it is greater than one an infected steady state exists and is globally stable.
Further, the optimal control problem is applied in this study by using Pontryagin’s Minimum
Principle with three control variables which are preventive vaccine, treatment effort for in-
fected cervical cells and treatment effort for early-stage cervical cancer cells. Numerical
simulations of optimal control model demonstrate that each individual control could reduce
an HPV infection and cervical cancer to some certain extent, however, a combination of all
three controls gives the best scenario in controlling HPV infection and cervical cancer.

Keywords: Cervical cancer; Epithelial cell; HPV infection; Optimal control; Treatment;
Vaccination

1. Introduction
Human papillomavirus (HPV) is

considered as one of the viruses that
contribute to the cancer and other disease.
It is one of the most common causes of
sexual transmitted infection worldwide.

HPV is a double-stranded DNA virus in
Papovaviridae family that infects epithe-
lium [1-3]. There are more than 200 types
of HPVs that are identified where the
high-risk types are 16, 18, 31, 33, 35, 39,
45. 51, 52, 56, 58, 59 and 68 [2]. About
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50% of all patients with cervical cancers
worldwide are associated with HPV 16
[3, 4]. Infection with high-risk HPV type
could develop further to cervical cancer
although it is not sufficient to cause cancer
by itself [3, 5]. Most HPV infections are
benign, however, persistent infection can
cause cervical cancer in woman [6].

Cervical cancer is the fourth most
common cancer among women worldwide.
According to World Health Organization
(WHO), globally in 2020 approximately
604,000 women were diagnosed with cervi-
cal cancer and about 342,000 women died
from the disease [6]. However, cervical
cancer is one of cancer related diseases that
can be cured and treated successfully if di-
agnosed early and treated promptly.

HPV infected cells can be eliminated
over time without any treatment although
when the infection persists, one can be
treated by medications, surgical and other
procedures. Further, any precancerous le-
sions needed to be removed together with
other procedures. HPV infection can be
prevented by HPV vaccine which helps in
protecting us against some certain types of
HPV which could lead to genital warts or
cancer. According to work by Brotherton,
2019, the statistical data shows that HPV
vaccine utilization is very effective in pre-
venting infection and disease related to the
specific HPV genotypes [7]. In many coun-
tries worldwide, vaccine programs have
been very successful [7, 8].

As with many other diseases, math-
ematical models have been a useful tool to
further and better understanding of HPV in-
fection and cervical cancer. Models at pop-
ulation level have been studied by a num-
ber of researchers. The examples are the
work by Elbasha, 2008 [9], Ribassin-Majed
and Lounes, 2010 [10] and Lee and Tameru,
2012 [11]. Further, optimal control was

also applied into the model to seek the ap-
propriate strategy to control the HPV infec-
tion, e.g., the work by Gurmu et al., 2019
[12], Zhang et al., 2020a [13] and Zhang et
al., 2020b [14].

In addition, some researchers stud-
ied the HPV infection further at the molec-
ular level to understand the necessary in-
teractions of viruses spreading within cells.
To our knowledge, there are only a few
works that investigate within-host dynam-
ics of HPV infection. In 2015, Smith et al.
proposed a within-host model to examine
the long-term outcomes ofHPVvaccination
and they divided cells into two types which
are low-risk and high-risk [15]. A year
later, Asih et al. proposed a model which
involves free virus compartment and the
cells were divided into four compartments
i.e., susceptible, infected, precancerous and
cancer cells [16]. In 2019, Gurmu and
Koya proposed a model to study the impact
of screening on HPV transmission. Their
model consists of five compartments i.e.,
susceptible, unaware infected, screened in-
fected, recovered and cervical cancer cells
[17]. Recently, Allali had extended the
work of Asih et al., 2016 by adding two
therapies i.e., therapy for blocking new in-
fection and therapy for inhibiting viral pro-
duction [18] and also considered optimal
control into his model.

In this study, we therefore propose
a within-host model of HPV infection and
cervical cancer. Our model includes the la-
tent period of HPV infection and consid-
ers two different stages of cancer i.e., early-
stage and end-stage and the recover cervical
cells. Later on, optimal control has been ap-
plied into our model with three control vari-
ables in order to seek the appropriate strat-
egy to control HPV infection and cervical
cancer. The paper is constructed as follows.
We start describing how our model is for-
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mulated in section 2. All model properties
are demonstrated and proved in section 3.
The optimal control model is in section 4,
where its numerical simulations are shown
in section 5. Finally, we briefly discuss our
results and conclude in section 6.

2. Model Formulation
In this study, we propose a within-

host model of HPV infection and cervical
cancer. We extend the work of Asih et
al., 2016 [16] by adding the latent period
of HPV infection and the recovery state of
cells. Our model consists of seven com-
partments which are 𝑆 is the concentration
of susceptible cervical cells, 𝐸 is the con-
centration of exposed cervical cells, 𝐼 is the
concentration of infected cervical cells, 𝐶1

is the concentration of early-stage cervical
cancer cells, 𝐶2 is the concentration of end-
stage cervical cancer cells, 𝑉 is the concen-
tration of human papillomavirus (HPV) and
𝑅 is the concentration of recovered cells.
The cervical cells are recruited at a rate Λ,
they are infected by both viruses and in-
fected cervical cells at a rate 𝛽 giving the
transmission term as 𝛽𝑆(𝑉 + 𝐼). Once the
cervical cells are infected, they first are in
the exposed state then are transferred to in-
fected state at a rate 𝜔. Both exposed and
infected cervical cells can be recoveredwith
a rate 𝑞 and 𝛼, respectively, whereas some
of infected cervical cells progress to be-
come early-stage cervical cancer cells at a
rate 𝛿. The cancer cells at this early stage
can be recovered by some treatment at a rate
𝜙 and can progress to become end-stage cer-
vical cancer cells at a rate 𝜃. All cervical
cells die naturally at a rate 𝜇, whereas the in-
fected cervical cells die at a rate 𝑑 due to the
HPV infection and both early-stage cervical
cancer cells and end-stage cervical cancer
cells die due to the cancer at a rate 𝜌 and 𝑚,
respectively. Further, HPVs are generated

at a rate 𝑘 by infected cervical cells and are
cleared at a rate 𝜖 . The diagram of model
described above is shown in Fig. 1.

Fig. 1. A schematic diagram for the HPV in-
fection and cervical cancer of epithelial cells
model.

The model above is given by the fol-
lowing system of differential equations:

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛽𝑆(𝑉 + 𝐼),

𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝑉 + 𝐼) − (𝜇 + 𝜔 + 𝑞)𝐸,

𝑑𝐼

𝑑𝑡
= 𝜔𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝛼)𝐼,

𝑑𝐶1

𝑑𝑡
= 𝛿𝐼 − (𝜇 + 𝜌 + 𝜃 + 𝜙)𝐶1, (2.1)

𝑑𝐶2

𝑑𝑡
= 𝜃𝐶1 − (𝜇 + 𝑚)𝐶2,

𝑑𝑉

𝑑𝑡
= 𝑘 𝐼 − 𝜖𝑉,

𝑑𝑅

𝑑𝑡
= 𝑞𝐸 + 𝛼𝐼 + 𝜙𝐶1 − 𝜇𝑅,

with initial conditions: 𝑆(0) ≥ 0, 𝐸 (0) ≥
0, 𝐼 (0) ≥ 0, 𝐶1(0) ≥ 0, 𝐶2(0) ≥
0, 𝑉 (0) ≥ 0, 𝑅(0) ≥ 0.

Here, the population of all cervical
cells are represented by 𝑁 (𝑡) = 𝑆(𝑡)+𝐸 (𝑡)+
𝐼 (𝑡) + 𝐶1(𝑡) + 𝐶2(𝑡) + 𝑅(𝑡).

3. Model Analysis
3.1 Model properties

3.1.1 Existence of solution
Theorem 3.1. Let 𝑆0, 𝐸0, 𝐼0, 𝐶10 , 𝐶20 , 𝑉0,
𝑅0 ∈ R be given. There exists
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𝑡0 > 0 and continuously differen-
tiable functions 𝑆, 𝐸,𝐼, 𝐶1, 𝐶2, 𝑉, 𝑅 :
[0, 𝑡0) −→ R such that the ordered
(𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉, 𝑅) satisfies the sys-
tem (2.1) and (𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉, 𝑅) (0)=
(𝑆0, 𝐸0, 𝐼0, 𝐶10 , 𝐶20 , 𝑉0, 𝑅0).

Proof. We use the classical 𝑃𝑖𝑐𝑎𝑟𝑑 −
𝐿𝑖𝑛𝑑𝑒𝑙 ¥𝑜 𝑓 theorem to prove. First, let

𝑓 =


Λ − 𝜇𝑆 − 𝛽𝑆 (𝑉 + 𝐼 )

𝛽𝑆 (𝑉 + 𝐼 ) − (𝜇 + 𝜔 + 𝑞)𝐸
𝜔𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝛼) 𝐼
𝛿𝐼 − (𝜇 + 𝜌 + 𝜃 + 𝜙)𝐶1

𝜃𝐶1 − (𝜇 +𝑚)𝐶2

𝑘𝐼 − 𝜖 𝑉
𝑞𝐸 + 𝛼𝐼 + 𝜙𝐶1 − 𝜇𝑅

 . (3.1)

We next calculate all partial derivatives of
𝑓 to show that they are continuous and
bounded. Thus, the Jacobian matrix of 𝑓
is

𝐽 ( 𝑓 ) =


−𝜇 − 𝛽 (𝑉 + 𝐼 ) 0 −𝛽𝑆

𝛽 (𝑉 + 𝐼 ) −(𝜇 + 𝜔 + 𝑞) 𝛽𝑆
0 𝜔 −(𝜇 + 𝑑 + 𝛿 + 𝛼)
0 0 𝛿
0 0 0
0 0 𝑘
0 𝑞 𝛼

0 0 −𝛽𝑆 0
0 0 𝛽𝑆 0
0 0 0 0

−(𝜇 + 𝜌 + 𝜃 + 𝜙) 0 0 0
𝜃 −(𝜇 +𝑚) 0 0
0 0 −𝜖 0
𝜙 0 0 −𝜇

 . (3.2)

The 𝐽 ( 𝑓 ) above is linear and there-
fore it is locally bounded for every
(𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉, 𝑅) ∈ R7. Hence, 𝑓 has a
continuous and bounded derivative on any
compact subset of R7. This leads to 𝑓 being
locally Lipschitz in R7. Therefore, by the
𝑃𝑖𝑐𝑎𝑟𝑑 − 𝐿𝑖𝑛𝑑𝑒𝑙 ¥𝑜 𝑓 Theorem [19], there
exists a unique solution of system (2.1) with
initial value (𝑆0, 𝐸0, 𝐼0, 𝐶10 , 𝐶20 , 𝑉0, 𝑅0)
on [0, 𝑡0] for some 𝑡0 > 0. □

3.1.2 Positivity and boundedness of
the solutions
Theorem 3.2. With nonnegative initial
conditions, all solutions of system (2.1) re-
main nonnegative and bounded for all 𝑡 >
0.

Proof. For 𝑡 > 0, we have the following :

𝑑𝑆

𝑑𝑡

�����
𝑆=0

= Λ ≥ 0, (3.3)

𝑑𝐸

𝑑𝑡

�����
𝐸=0

= 𝛽𝑆(𝑉 + 𝐼) ≥ 0, (3.4)

𝑑𝐼

𝑑𝑡

�����
𝐼=0

= 𝜔𝐸 ≥ 0, (3.5)

𝑑𝐶1

𝑑𝑡

�����
𝐶1=0

= 𝛿𝐼 ≥ 0, (3.6)

𝑑𝐶2

𝑑𝑡

�����
𝐶2=0

= 𝜃𝐶1 ≥ 0, (3.7)

𝑑𝑉

𝑑𝑡

�����
𝑉 =0

= 𝑘 𝐼 ≥ 0, (3.8)

𝑑𝑅

𝑑𝑡

�����
𝑅=0

= 𝑞𝐸 + 𝛼𝐼 + 𝜙𝐶1 ≥ 0. (3.9)

Therefore, by functional differential
equations theory, the positivity of all solu-
tions initiating in R7+ is guaranteed for all
𝑡 > 0. Next, we will prove the boundedness
of solutions. □

Since 𝑁 (𝑡) = 𝑆(𝑡) + 𝐸 (𝑡) + 𝐼 (𝑡) +
𝐶1(𝑡) + 𝐶2(𝑡) + 𝑅(𝑡), then

𝑑𝑁

𝑑𝑡
= Λ − 𝜇(𝑆 + 𝐸 + 𝐼 + 𝐶1 + 𝐶2 + 𝑅)

− 𝑑𝐼 − 𝜌𝐶1 − 𝑚𝐶2

≤ Λ − 𝜇(𝑆 + 𝐸 + 𝐼 + 𝐶1 + 𝐶2 + 𝑅)
≤ Λ − 𝜇𝑁. (3.10)

Then, we have
𝑑𝑁

𝑑𝑡
+ 𝜇𝑁 ⩽ Λ. (3.11)

We next solve Eq. (3.11) by using integrat-
ing factor (𝐼 .𝐹), where 𝐼 .𝐹 = 𝑒𝜇𝑡 . Multi-
plying both sides of Eq. (3.11) by the above
𝐼 .𝐹, we have

𝑒𝜇𝑡
(
𝑑𝑁

𝑑𝑡
+ 𝜇𝑁

)
⩽ Λ𝑒𝜇𝑡 . (3.12)
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The Eq. (3.12) can be written as

𝑑

𝑑𝑡

(
𝑁 (𝑡)𝑒𝜇𝑡

)
⩽ Λ𝑒𝜇𝑡 . (3.13)

Integrating both sides of Eq. (3.13), then

𝑁 (𝑡) ⩽ Λ
𝜇
−

(
Λ
𝜇
− 𝑁 (0)

)
𝑒−𝜇𝑡 . (3.14)

Then, 𝑁 (𝑡) → Λ
𝜇 as 𝑡 → ∞, implying

𝑁1(𝑡) ∈
(
0, Λ𝜇

]
.

Hence, 𝑁 (𝑡) is bounded above by Λ
𝜇
.

By the above method, we then have

𝑉 (𝑡) ⩽ 𝑘Λ
𝜖𝜇

−
(
𝑘Λ
𝜖𝜇

−𝑉 (𝑡)
)
𝑒𝜖 𝑡 . (3.15)

Then, 𝑉 (𝑡) → 𝑘Λ
𝜖 𝜇 as 𝑡 → ∞, implying

𝑉 (𝑡) ∈
(
0, 𝑘Λ

𝜖 𝜇

]
.

Hence, 𝑉 (𝑡) is bounded above by 𝑘Λ
𝜖𝜇

.

Hence, all solutions of system (2.1) are
bounded and the biologically feasible re-
gion Ω for system (2.1) is defined by the
following compact set

Ω =
{
(𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉, 𝑅) ∈ R7+ : 𝑁 ≤ Λ

𝜇

and 𝑉 ≤ 𝑘Λ
𝜖 𝜇

}
.

This completes the proof.

3.2 Infection-free equilibrium point
The infection-free equilibrium point

is

𝐼𝐹𝐸 = (𝑆∗0, 𝐸∗
0, 𝐼

∗
0, 𝐶

∗
10
, 𝐶∗

20
, 𝑉∗

0 , 𝑅
∗
0)

=

(
Λ
𝜇
, 0, 0, 0, 0, 0, 0

)
. (3.16)

3.3 The basic reproduction number R0

The basic reproduction number (R0)
is the expected number of secondary cases
of HPV infection caused by a typical case

of infected cell. The next-generation matrix
method by [20] is used to calculate R0.Ma-
trices F and V are obtained below, where
F is the matrix of the rate of appearance of
new infections and V is the matrix of the
transfer rate of individual infections.

F =

[
𝛽𝑆 (𝑉 + 𝐼 )

0
0

]
,

and

V =

[
(𝜇 + 𝜔 + 𝑞)𝐸

(𝜇 + 𝑑 + 𝛿 + 𝛼) 𝐼 − 𝜔𝐸
𝜖𝑉 − 𝑘𝐼

]
.

The Jacobian matrices of F andV are

𝐹 =

[
0 𝛽𝑆 𝛽𝑆
0 0 0
0 0 0

]
,

and

𝑉 =

[
(𝜇 + 𝜔 + 𝑞) 0 0

−𝜔 (𝜇 + 𝑑 + 𝛿 + 𝛼) 0
0 −𝑘 𝜖

]
.

By 𝐼𝐹𝐸 =

(
Λ
𝜇
, 0, 0, 0, 0, 0, 0

)
, one has

𝐹 (𝐸0) =
[

0 𝛽Λ
𝜇 𝛽Λ

𝜇

0 0 0
0 0 0

]
,

and

𝑉 (𝐸0) =

(𝜇 + 𝜔 + 𝑞) 0 0

−𝜔 (𝜇 + 𝑑 + 𝛿 + 𝛼) 0
0 −𝑘 𝜖

 .
And,

𝐹𝑉 −1

=


𝛽Λ𝜔 (𝜖 + 𝑘)

𝜇𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼)
𝛽Λ(𝜖 + 𝑘)

𝜇𝜖 (𝜇 + 𝑑 + 𝛿 + 𝛼)
𝛽Λ
𝜇𝜖

0 0 0
0 0 0

 .
The basic reproduction number is given by
the spectral radius of the martrix 𝐹𝑉−1, thus

R0 =
𝛽Λ𝜔(𝜖 + 𝑘)

𝜇𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼) .
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3.4 The infected steady state
The infected steady state is denoted

by 𝐸∗
1 = (𝑆∗, 𝐸∗, 𝐼∗, 𝐶∗

1, 𝐶
∗
2, 𝑉

∗, 𝑅∗) where

𝑆∗ =
(𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼)

𝛽𝜔( 𝑘𝜖 + 1)
,

𝐸∗ =
(𝜇 + 𝑑 + 𝛿 + 𝛼)

𝜔
𝐼∗,

𝐼∗ =
𝜇𝜖

𝛽(𝑘 + 𝜖) [𝑅0 − 1],

𝐶∗
1 =

𝛿

(𝜇 + 𝜌 + 𝜃 + 𝜙) 𝐼
∗,

𝐶∗
2 =

𝜃𝛿

(𝜇 + 𝑚)(𝜇 + 𝜌 + 𝜃 + 𝜙) 𝐼
∗,

𝑉∗ =
𝑘

𝜖
𝐼∗,

𝑅∗ =

[ 𝑞 (𝜇+𝑑+𝛿+𝛼)
𝜔 + 𝛼 + 𝜙𝛿

(𝜇+𝜌+𝜃+𝜙)
𝜇

]
𝐼∗.

3.5 Stability of infection-free equilib-
rium point

3.5.1 Local stability of infection-
free equilibrium point
Theorem 3.3. If 𝑅0 < 1, then the infection-
free equilibrium point (𝐼𝐹𝐸) is locally
asymptotically stable, otherwise it is unsta-
ble.

Proof. The Jacobian matrix of the
infection-free equilibrium point is

𝐽
(
𝑆∗0, 𝐸

∗
0, 𝐼

∗
0, 𝐶

∗
10
, 𝐶∗

20
, 𝑉∗

0 , 𝑅
∗
0

)
=


−𝜇 0 − 𝛽Λ

𝜇

0 −(𝜇 + 𝜔 + 𝑞) 𝛽Λ
𝜇

0 𝜔 −(𝜇 + 𝑑 + 𝛿 + 𝛼)
0 0 𝛿
0 0 0
0 0 𝑘
0 𝑞 𝛼

0 0 − 𝛽Λ
𝜇 0

0 0
𝛽Λ
𝜇 0

0 0 0 0
−(𝜇 + 𝜌 + 𝜃 + 𝜙) 0 0 0

𝜃 −(𝜇 +𝑚) 0 0
0 0 −𝜖 0
𝜙 0 0 −𝜇


.

Then, we find the eigenvalues by de-
termining the characteristic equation as fol-
lows:

𝑑𝑒𝑡 (𝐽 (𝐼𝐹𝐸) − 𝜆𝐼) = 0,��������������

−𝜇 − 𝜆 0 − 𝛽Λ
𝜇

0 −(𝜇 + 𝜔 + 𝑞) − 𝜆 𝛽Λ
𝜇

0 𝜔 −(𝜇 + 𝑑 + 𝛿 + 𝛼) − 𝜆
0 0 𝛿
0 0 0
0 0 𝑘
0 𝑞 𝛼

0 0 − 𝛽Λ
𝜇 0

0 0
𝛽Λ
𝜇 0

0 0 0 0
−(𝜇 + 𝜌 + 𝜃 + 𝜙) − 𝜆 0 0 0

𝜃 −(𝜇 +𝑚) − 𝜆 0 0
0 0 −𝜖 − 𝜆 0
𝜙 0 0 −𝜇 − 𝜆

��������������
= 0.

Hence, the first four eigenvalues are

𝜆1 = −𝜇 < 0,

𝜆2 = −𝜇 < 0,

𝜆3 = −(𝜇 + 𝑚) < 0,

𝜆4 = −(𝜇 + 𝜌 + 𝜃 + 𝜙) < 0.

And, the rest of a characterestic equation is

𝜆3 +
(
(𝜇 + 𝜔 + 𝑞) + ( 𝜖 + 𝜇 + 𝑑 + 𝛿 + 𝛼)

)
𝜆2

+
(
(𝜇 + 𝜔 + 𝑞) ( 𝜖 + 𝜇 + 𝑑 + 𝛿 + 𝛼) + 𝜖 (𝜇 + 𝑑 + 𝛿 + 𝛼) − 𝛽Λ𝜔

𝜇

)
𝜆

+
(
𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼) − 𝛽Λ𝜔 (𝜖 + 𝑘)

𝜇

)
= 0.

Consider the above characteristic equation
by using the Routh-Hurwitz Criterion and
consider it in the form of

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0,

we have

𝑎1 = (𝜇 + 𝜔 + 𝑞) + (𝜖 + 𝜇 + 𝑑 + 𝛿 + 𝛼) > 0,

𝑎3 = 𝜖 (𝜇 + 𝜔 + 𝑞)(𝜇 + 𝑑 + 𝛿 + 𝛼)[
1 − 𝛽Λ𝜔(𝜖 + 𝑘)

𝜇𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼)
]

= 𝜖 (𝜇 + 𝜔 + 𝑞)(𝜇 + 𝑑 + 𝛿 + 𝛼)
[
1 − 𝑅0

]
,

when R0 < 1 then 𝑎3 > 0

𝑎1𝑎2 − 𝑎3 =
[
(𝜇 + 𝜔 + 𝑞) + ( 𝜖 + 𝜇 + 𝑑 + 𝛿 + 𝛼)

]
·
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[
(𝜇 + 𝜔 + 𝑞) (𝜖 + 𝜇 + 𝑑 + 𝛿 + 𝛼) − 𝛽Λ𝜔

𝜇

]
+𝜖 (𝜇 + 𝑑 + 𝛿 + 𝛼)

[
(𝜇 + 𝜔 + 𝑞) + ( 𝜖 + 𝜇 + 𝑑 + 𝛿 + 𝛼)

]
−𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼)

[
1 − 𝑅0

]
.

Consider when R0 < 1, we have

𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼)

> 𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼)
[
1 − 𝑅0

]
,

and
𝛽Λ𝜔(𝜖 + 𝑘)

𝜇𝜖
< (𝜇 + 𝜔 + 𝑞)(𝜇 + 𝑑 + 𝛿 + 𝛼).

This implies that
𝛽Λ𝜔

𝜇
⩽

𝛽Λ𝜔 (𝜖 + 𝑘)
𝜇𝜖

< (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝑑 + 𝛿 + 𝛼)

⩽ (𝜇 + 𝜔 + 𝑞) (𝜖 + 𝜇 + 𝑑 + 𝛿 + 𝛼) .

Thus 𝑎1𝑎2 − 𝑎3 > 0, i.e., 𝑎1𝑎2 >
𝑎3 when R0 < 1. Therefore, we obtain
that when R0 < 1, then 𝑎1 > 0, 𝑎3 >
0 and 𝑎1𝑎2 > 𝑎3. Thus, by the Routh-
Hurwitz Criterion, the infection-free equi-
librium point is locally asymptotically sta-
ble, if R0 < 1.When R0 > 1, it is unstable.
This completes the proof. □

3.5.2 Global stability of the
infection-free equilibrium point

In this subsection, we use a method
of Castillo-Chavez et al. [21] by consider-
ing a model system written in the form

𝑑𝑋1

𝑑𝑡
= 𝐹 (𝑋1, 𝑋2),

𝑑𝑋2

𝑑𝑡
= 𝐺 (𝑋1, 𝑋2), 𝐺 (𝑋1, 0) = 0,

where 𝑋1 ∈ R𝑚 denotes (its components)
the number of uninfected individuals and
𝑋2 ∈ R𝑛 denotes (its components) the num-
ber of infected individuals including latent,
infectious, etc; (𝑋∗

1) denotes the infection-
free equilibrium of the system. Also assume
the conditions (H1) and (H2) below:

(H1) For
𝑑𝑋1

𝑑𝑡
= 𝐹 (𝑋1, 0), 𝑋∗

1 is
globally asymptotically stable,

(H2) 𝐺 (𝑋1, 𝑋2) = 𝐴𝑋2 − 𝐺 (𝑋1, 𝑋2),
all elements in 𝐺 (𝑋1, 𝑋2) are nonnegative
for(𝑋1, 𝑋2) ∈ Ω,

where the Jacobian 𝐴 =
𝜕𝐺

𝜕𝑋2
(𝑋∗

1 , 0) is an
M-matrix (the off diagonal elements of 𝐴
are nonnegative) and Ω is the region where
the model makes biological sense.
Then the IFE is globally asymptotically sta-
ble provided that R0 < 1.

Theorem 3.4. (global stability of IFE). If
R0 < 1, then IFE is globally asymptotically
stable.

Proof. To show that the conditions (H1)
and (H2) hold when R0 < 1. In our
ODE system, we let 𝑋1 = (𝑆, 𝑅), 𝑋2 =

(𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉) and 𝑋∗
1 =

(
Λ
𝜇 , 0

)
.

Therefore,

𝑑𝑋1

𝑑𝑡
= 𝐹 (𝑋1, 𝑋2) =

[
Λ − 𝜇𝑆 − 𝛽𝑆 (𝑉 + 𝐼 )

𝑞𝐸 + 𝛼𝐼 + 𝜙𝐶1 − 𝜇𝑅

]
.

We have

𝑑𝑋1

𝑑𝑡
= 𝐹 (𝑋1, 0) =

[
Λ − 𝜇𝑆

−𝜇𝑅

]
.

From above, we have 𝑑𝑆
𝑑𝑡 = Λ − 𝜇𝑆.

By solving above differential equation, we
obtain

𝑆𝑡 =
Λ
𝜇
− (Λ − 𝜇𝑆0)𝑒−𝜇𝑡

𝜇
.

Consider when 𝑡 −→ ∞, then 𝑆(𝑡) −→ Λ
𝜇 .

Similarly, we have from above that

𝑑𝑅

𝑑𝑡
= −𝜇𝑅.

Thus, 𝑅𝑡 = 𝑅0𝑒
−𝜇𝑡 .

Consider when 𝑡 −→ ∞, then 𝑅(𝑡) −→ 0.
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This show that (H1) holds.
Thus 𝑋∗

1 = (Λ𝜇 , 0) is globally asymptotically
stable equilibrium point for the reduced sys-
tem model equation 𝑑𝑋1

𝑑𝑡 = 𝐹 (𝑋1, 0).
Next consider

𝑑𝑋2

𝑑𝑡
= 𝐺 (𝑋1, 𝑋2) =


𝛽𝑆 (𝑉 + 𝐼 ) − (𝜇 + 𝜔 + 𝑞)𝐸
𝜔𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝛼) 𝐼
𝛿𝐼 − (𝜇 + 𝜌 + 𝜃 + 𝜙)𝐶1

𝜙𝐶1 − (𝜇 +𝑚)𝐶2

𝑘𝐼 − 𝜖 𝑉

 .
Then,

𝜕𝐺

𝜕𝑋2
(𝑋1, 𝑋2)

=


−(𝜇 + 𝜔 + 𝑞) 𝛽𝑆 0

𝜔 −(𝜇 + 𝑑 + 𝛿 + 𝛼) 0
0 𝛿 −(𝜇 + 𝜌 + 𝜃 + 𝜙)
0 0 𝜃
0 𝑘 0

0 𝛽𝑆
0 0
0 0

−(𝜇 +𝑚) 0
0 −𝜖


.

Then,
𝜕𝐺

𝜕𝑋2
(𝑋∗

1 , 0)

=


−(𝜇 + 𝜔 + 𝑞) 𝛽 Λ

𝜇 0

𝜔 −(𝜇 + 𝑑 + 𝛿 + 𝛼) 0
0 𝛿 −(𝜇 + 𝜌 + 𝜃 + 𝜙)
0 0 𝜃
0 𝑘 0

=

0 𝛽 Λ
𝜇

0 0
0 0

−(𝜇 +𝑚) 0
0 −𝜖


= 𝐴.

This is an M-matrix with non-negatives off
diagonal elements. Then, we have
𝐺 (𝑋1, 𝑋2) = 𝐴𝑋2 − 𝐺 (𝑋1, 𝑋2),
𝐺 (𝑋1, 𝑋2) = 𝐴𝑋2 − 𝐺 (𝑋1, 𝑋2),

=


−(𝜇 + 𝜔 + 𝑞) 𝛽 Λ

𝜇 0

𝜔 −(𝜇 + 𝑑 + 𝛿 + 𝛼) 0
0 𝛿 −(𝜇 + 𝜌 + 𝜃 + 𝜙)
0 0 𝜃
0 𝑘 0

0 𝛽 Λ
𝜇

0 0
0 0

−(𝜇 +𝑚) 0
0 −𝜖




𝐸
𝐼
𝐶1

𝐶2

𝑉



−


𝛽𝑆 (𝑉 + 𝐼 ) − (𝜇 + 𝜔 + 𝑞)𝐸
𝜔𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝛼) 𝐼
𝛿𝐼 − (𝜇 + 𝜌 + 𝜃 + 𝜙)𝐶1

𝜙𝐶1 − (𝜇 +𝑚)𝐶2

𝑘𝐼 − 𝜖 𝑉



=


𝛽(𝑉 + 𝐼)

[
Λ
𝜇 − 𝑆

]
0
0
0
0


.

Since, 0 ≤ 𝑆 ≤ Λ
𝜇 .

Hence,𝐺 (𝑋1, 𝑋2) ≥ 0. This show that (H2)
holds.

Therefore, provided that R0 < 1 we
can conclude that the infection-free equilib-
rium point is globally asymptotically stable
under these extreme circumstances. □

3.6 Stability of the infected steady state

3.6.1 Local stability of the infected
steady state
Theorem 3.5. When R0 > 1, the infected
steady state point (𝐸∗

1) is stable if it satisfies
the Routh-Hurwitz criteria.

Proof. The Jacobian matrix at the infected
steady state is determined as follows:

𝐽 (𝐸∗
1)

=


−[𝜇 + 𝛽 (𝑉 ∗ + 𝐼 ∗) ] 0 −𝛽𝑆∗

𝛽 (𝑉 ∗ + 𝐼 ∗) −(𝜇 + 𝜔 + 𝑞) 𝛽𝑆∗

0 𝜔 −(𝜇 + 𝑑 + 𝛿 + 𝛼)
0 0 𝛿
0 0 0
0 0 𝑘
0 𝑞 𝛼

0 0 −𝛽𝑆∗ 0
0 0 𝛽𝑆∗ 0
0 0 0 0

−(𝜇 + 𝜌 + 𝜃 + 𝜙) 0 0 0
𝜃 −(𝜇 +𝑚) 0 0
0 0 −𝜖 0
𝜙 0 0 −𝜇

 .
(3.17)

Then, the characteristic equation of Eq.
(3.17) is given by

𝜆4 + 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4 = 0,
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where

𝑎1 = 3𝜇 + 𝑑 + 𝛿 + 𝛼 + 𝜔 + 𝑞 + 𝜖 + 𝛽(𝑉∗ + 𝐼∗),
𝑎2 = (𝜇 + 𝛽(𝑉∗ + 𝐼∗)) (𝜇 + 𝑑 + 𝛿 + 𝛼)

+ (𝜇 + 𝜔 + 𝑞 + 𝜖)(2𝜇 + 𝑑 + 𝛿 + 𝛼 + 𝛽(𝑉∗

+ 𝐼∗)) + 𝜖 (𝜇 + 𝜔 + 𝑞) − 𝛽𝑆∗𝜔,

𝑎3 = (𝜇 + 𝜔 + 𝑞 + 𝜖) (𝜇 + 𝛽(𝑉∗ + 𝐼∗))
(𝜇 + 𝑑 + 𝛿 + 𝛼) + 𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝛽(𝑉∗

+ 𝐼∗)) (𝜇 + 𝑑 + 𝛿 + 𝛼) − 𝛽𝑆∗𝜔(𝑘 + 𝜇 + 𝜖),
𝑎4 = 𝜖 (𝜇 + 𝜔 + 𝑞) (𝜇 + 𝛽(𝑉∗ + 𝐼∗)) (𝜇 + 𝑑

+ 𝛿 + 𝛼) − 𝛽𝑆∗𝜔𝜇(𝑘 + 𝜖).

Therefore, the infected steady state is stable
if it satisfies the Routh-Hurwitz criteria for
n = 4, that is
(i) 𝑎1 > 0, 𝑎3 > 0, 𝑎4 > 0, and
(ii) 𝑎1𝑎2𝑎3 > 𝑎23 + 𝑎21𝑎4. □

3.6.2 Global stability of the infected
steady state
Theorem 3.6. (global stability of 𝐸∗

1). If
R0 > 1, then the infected equilibrium point
𝐸∗
1 is globally asymptotically stable in Ω.

Proof. We use the method of Lyapunov
functions. We define the positive definite
Lyapunov function as

𝐿 = (𝑆 − 𝑆∗ − 𝑆∗ ln
𝑆

𝑆∗
)

+ (𝐸 − 𝐸∗ − 𝐸∗ ln
𝐸

𝐸∗ )

+ ( 𝜇 + 𝜔 + 𝑞

𝜔
) (𝐼 − 𝐼∗ − 𝐼∗ ln

𝐼

𝐼∗
)

+ (𝐶1 − 𝐶∗
1 − 𝐶∗

1 ln
𝐶1

𝐶∗
1

)

+ ( 𝜇 + 𝜌 + 𝜃 + 𝜙

𝜃
)(𝐶2 − 𝐶∗

2 − 𝐶∗
2 ln

𝐶2

𝐶∗
2

).

At infected steady state, we have

Λ =
[
𝜇 + 𝛽(𝑉∗ + 𝐼∗)

]
𝑆∗,

𝜇 + 𝜔 + 𝑞 =
𝛽𝑆∗(𝑉∗ + 𝐼∗)

𝐸∗ ,

𝜇 + 𝑑 + 𝛿 + 𝛼 =
𝜔𝐸∗

𝐼∗
,

𝜇 + 𝜌 + 𝜃 + 𝜙 =
𝛿𝐼∗

𝐶∗
1

,

𝜇 + 𝑚 =
𝜃𝐶∗

1

𝐶∗
2

.

It can be seen that 𝐿 is positive definite, and
𝐿 (𝑆∗, 𝐸∗, 𝐼∗, 𝐶∗

1, 𝐶
∗
2, 𝑉

∗, 𝑅∗) = 0.
Next, calculating the derivative of 𝐿 along
the solutions of the model gives

𝐿
′
=

𝜕𝐿

𝜕𝑆
· 𝑑𝑆
𝑑𝑡

+ 𝜕𝐿

𝜕𝐸
· 𝑑𝐸
𝑑𝑡

+ 𝜕𝐿

𝜕𝐼
· 𝑑𝐼
𝑑𝑡

+ 𝜕𝐿

𝜕𝐶1
· 𝑑𝐶1

𝑑𝑡
+ 𝜕𝐿

𝜕𝐶2
· 𝑑𝐶2

𝑑𝑡
,

Consider the above in separate terms, and we have

𝜕𝐿

𝜕𝑆
· 𝑑𝑆
𝑑𝑡

= (1 − 𝑆∗

𝑆
) (Λ − 𝜇𝑆 − 𝛽𝑆(𝑉 + 𝐼))

= (1 − 𝑆∗

𝑆
) (𝜇𝑆∗ + 𝛽𝑆∗(𝑉∗ + 𝐼∗)

− 𝜇𝑆 − 𝛽𝑆(𝑉 + 𝐼))

= 𝜇𝑆∗
(
2 − 𝑆

𝑆∗
− 𝑆∗

𝑆

)
+ 𝛽𝑆∗(𝑉∗ + 𝐼∗)(

1 − 𝑆∗

𝑆
− 𝑆(𝑉 + 𝐼)
𝑆∗(𝑉∗ + 𝐼∗) +

𝑉 + 𝐼

𝑉∗ + 𝐼∗

)
,

𝜕𝐿

𝜕𝐸
· 𝑑𝐸
𝑑𝑡

=
(
1 − 𝐸∗

𝐸

) (
𝛽𝑆(𝑉 + 𝐼) − (𝜇 + 𝜔 + 𝑞)𝐸

)
=

(
1 − 𝐸∗

𝐸

) (
𝛽𝑆(𝑉 + 𝐼) − 𝛽𝑆∗ (𝑉∗ + 𝐼∗)

𝐸∗ 𝐸
)

= 𝛽𝑆∗ (𝑉∗ + 𝐼∗)
(
1 − 𝐸

𝐸∗ − 𝐸∗𝑆(𝑉 + 𝐼)
𝐸𝑆∗ (𝑉∗ + 𝐼∗)

+ 𝑆(𝑉 + 𝐼)
𝑆∗ (𝑉∗ + 𝐼∗)

)
,

𝜕𝐿

𝜕𝐼
· 𝑑𝐼
𝑑𝑡

=
(
1 − 𝐼∗

𝐼

) ( 𝜇 + 𝜔 + 𝑞

𝜔

) (
𝜔𝐸 − (𝜇 + 𝑑

+ 𝛿 + 𝛼)𝐼
)

=
(
1 − 𝐼∗

𝐼

) 𝛽𝑆∗(𝑉∗ + 𝐼∗)
𝜔𝐸∗

(
𝜔𝐸 − 𝜔𝐸∗

𝐼∗
𝐼
)
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= 𝛽𝑆∗(𝑉∗ + 𝐼∗)
(
𝐸

𝐸∗ − 𝐼

𝐼∗

− 𝐸𝐼∗

𝐸∗𝐼
+ 1

)
,

𝜕𝐿

𝜕𝐶1
· 𝑑𝐶1

𝑑𝑡
=

(
1 −

𝐶∗
1

𝐶1

) (
𝛿𝐼 − (𝜇 + 𝜌 + 𝜃 + 𝜙)𝐶1

)
=

(
1 −

𝐶∗
1

𝐶1

) (
𝛿𝐼 − 𝛿𝐼∗

𝐶∗
1

𝐶1

)
= 𝛿𝐼∗

(
1 − 𝐶1

𝐶∗
1

−
𝐶∗
1𝐼

𝐶1𝐼∗
+ 𝐼

𝐼∗

)
.

And,

𝜕𝐿

𝜕𝐶2
· 𝑑𝐶2

𝑑𝑡
=

(
1 −

𝐶∗
2

𝐶2

) ( 𝜇 + 𝜌 + 𝜃 + 𝜙

𝜃

)
(
𝜃𝐶1 − (𝜇 + 𝑚)𝐶2

)
=

(
1 −

𝐶∗
2

𝐶2

) ( 𝛿𝐼∗
𝜃𝐶∗

1

) (
𝜃𝐶1 −

𝜃𝐶∗
1

𝐶∗
2

𝐶2

)
= 𝛿𝐼∗

(
𝐶1

𝐶∗
1

− 𝐶2

𝐶∗
2

−
𝐶1𝐶

∗
2

𝐶∗
1𝐶2

+ 1

)
.

Hence,

𝐿
′
=

𝜕𝐿

𝜕𝑆
· 𝑑𝑆
𝑑𝑡

+ 𝜕𝐿

𝜕𝐸
· 𝑑𝐸
𝑑𝑡

+ 𝜕𝐿

𝜕𝐼
· 𝑑𝐼
𝑑𝑡

+ 𝜕𝐿

𝜕𝐶1
· 𝑑𝐶1

𝑑𝑡
+ 𝜕𝐿

𝜕𝐶2
· 𝑑𝐶2

𝑑𝑡

= 𝜇𝑆∗
(
2 − 𝑆

𝑆∗
− 𝑆∗

𝑆

)
+ 𝛿𝐼∗

(
2 − 𝐶2

𝐶∗
2

−
𝐶1𝐶

∗
2

𝐶∗
1𝐶2

+ 𝐼

𝐼∗

(
1 −

𝐶∗
1

𝐶1

))
+ 𝛽𝑆∗(𝑉∗ + 𝐼∗)

(
3 − 𝑆∗

𝑆
− 𝐼

𝐼∗
− 𝐸𝐼∗

𝐸∗𝐼

+ 𝑉 + 𝐼

𝑉∗ + 𝐼∗

(
1 − 𝐸∗𝑆

𝐸𝑆∗

))
.

By the fact that the arithmetic mean is
greater than or equal to the geometric mean,
we have

2 − 𝑆

𝑆∗
− 𝑆∗

𝑆
≤ 0,

2 − 𝐶2

𝐶∗
2

−
𝐶1𝐶

∗
2

𝐶∗
1𝐶2

+ 𝐼

𝐼∗

(
1 −

𝐶∗
1

𝐶1

)
≤ 0,

3 − 𝑆∗

𝑆
− 𝐼

𝐼∗
− 𝐸𝐼∗

𝐸∗𝐼
+ 𝑉 + 𝐼

𝑉∗ + 𝐼∗

(
1 − 𝐸∗𝑆

𝐸𝑆∗

)
≤ 0.

This leads 𝐿 ′ < 0 and 𝐿 ′ = 0 when
𝑆 = 𝑆∗, 𝐸 = 𝐸∗, 𝐼 = 𝐼∗, 𝐶1 = 𝐶∗

1 and
𝐶2 = 𝐶∗

2. By the LaSalle invariance prin-
ciple [22], the infected steady state 𝐸∗

1 is
globally asymptotically stable when R0 >
1. □

4. Optimal Control Model
In order to prevent the HPV infection

from spreading, we extend the system (2.1)
by applying optimal control variables in the
model shown in Fig. 2. We include three
control variables defined as:
(i) 𝑢1(𝑡) is the preventive vaccine control.
(ii) 𝑢2(𝑡) is the treatment effort for infected
cervical cells.
(iii) 𝑢3(𝑡) is the treatment effort for early-
stage cervical cancer cells.

Fig. 2. A schematic diagram for the optimal
control model of HPV infection.

The model above can be written as a
system of equations as follows:

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛽𝑆(𝑉 + 𝐼) − 𝑢1 (𝑡)𝑆,

𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝑉 + 𝐼) − (𝜇 + 𝜔 + 𝑞)𝐸,

𝑑𝐼

𝑑𝑡
= 𝜔𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝛼)𝐼 − 𝑢2 (𝑡)𝐼,

𝑑𝐶1

𝑑𝑡
= 𝛿𝐼 − (𝜇 + 𝜌 + 𝜃 + 𝜙)𝐶1 − 𝑢3 (𝑡)𝐶1,

𝑑𝐶2

𝑑𝑡
= 𝜃𝐶1 − (𝜇 + 𝑚)𝐶2,
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𝑑𝑉

𝑑𝑡
= 𝑘 𝐼 − 𝜖𝑉,

𝑑𝑅

𝑑𝑡
= 𝑞𝐸 + 𝛼𝐼 + 𝜙𝐶1 − 𝜇𝑅 + 𝑢2 (𝑡)𝐼

+ 𝑢3 (𝑡)𝐶1. (4.1)

The objective of the optimal control
model is tominimize the number of exposed
cervical cells, infected cervical cells, early-
stage cervical cancer cells, end-stage cervi-
cal cancer cells and human papillomavirus
(HPV) at a minimal cost of control over the
time interval [0, 𝑇], i.e.

𝑃(𝑢1, 𝑢2, 𝑢3) = min
∫ 𝑇

0

[
𝐴1𝐸 + 𝐴2𝐼

+ 𝐴3𝐶1 + 𝐴4𝐶2 + 𝐴5𝑉 + 1

2
(𝐴6𝑢

2
1(𝑡)

+ 𝐴7𝑢
2
2(𝑡) + 𝐴8𝑢

2
3(𝑡))

]
𝑑𝑡 (4.2)

with initial conditions

𝑆(0) ≥ 0, 𝐸 (0) ≥ 0, 𝐼 (0) ≥ 0, 𝐶1(0) ≥ 0,

𝐶2(0) ≥ 0, 𝑉 (0) ≥ 0 and 𝑅(0) ≥ 0.

Here the weight constants are
𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7 and 𝐴8 and
the terms 𝐴6𝑢

2
1(𝑡), 𝐴7𝑢

2
2(𝑡) and 𝐴8𝑢

2
3(𝑡)

represent the costs associated with preven-
tive vaccines control, the treatment effort
for infected cervical cells and treatment
effort for early-stage cervical cancer cells,
respectively.

The Lagrangian of the optimal con-
trol problem is given by

𝑔(𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉, 𝑢1, 𝑢2, 𝑢3)
= 𝐴1𝐸 + 𝐴2𝐼 + 𝐴3𝐶1 + 𝐴4𝐶2 + 𝐴5𝑉

+ 1

2

[
𝐴6𝑢

2
1(𝑡) + 𝐴7𝑢

2
2(𝑡) + 𝐴8𝑢

2
3(𝑡)

]
.

(4.3)

Applying Pontryagin’s Minimum
Principle (PMP), we form the Hamiltonian

and derive the optimality system:

𝐻 = 𝐴1𝐸 + 𝐴2𝐼 + 𝐴3𝐶1 + 𝐴4𝐶2 + 𝐴5𝑉

+ 1

2

[
𝐴6𝑢

2
1(𝑡) + 𝐴7𝑢

2
2(𝑡) + 𝐴8𝑢

2
3(𝑡)

]
+ 𝜆𝑆 [Λ − 𝜇𝑆 − 𝛽𝑆(𝑉 + 𝐼) − 𝑢1(𝑡)𝑆]
+ 𝜆𝐸 [𝛽𝑆(𝑉 + 𝐼) − (𝜇 + 𝜔 + 𝑞)𝐸]
+ 𝜆𝐼 [𝜔𝐸 − (𝜇 + 𝑑 + 𝛿 + 𝛼)𝐼 − 𝑢2(𝑡)𝐼]
+ 𝜆𝐶1 [𝛿𝐼 − (𝜇 + 𝜌 + 𝜃 + 𝜙)𝐶1 − 𝑢3(𝑡)𝐶1]
+ 𝜆𝐶2 [𝜃𝐶1 − (𝜇 + 𝑚)𝐶2] + 𝜆𝑉 [𝑘 𝐼 − 𝜖𝑉]
+ 𝜆𝑅 [𝑞𝐸 + 𝛼𝐼 + 𝜙𝐶1 − 𝜇𝑅 + 𝑢2(𝑡)𝐼
+ 𝑢3(𝑡)𝐶1], (4.4)

where 𝜆𝑆 , 𝜆𝐸 , 𝜆𝐼 , 𝜆𝐶1 , 𝜆𝐶2 , 𝜆𝑉 and 𝜆𝑅 are
the adjoint functions associated with the
state equations for 𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and 𝑅,
respectively.

Theorem 4.1. Let 𝑆, 𝐸, 𝐼̃, 𝐶1, 𝐶2, 𝑉 and 𝑅
be optimal state solution with associated
optimal control variable 𝑢∗1(𝑡), 𝑢∗2(𝑡) and
𝑢∗3(𝑡) for the optimal control problem of the
system (4.1). Then there exist adjoint vari-
ables 𝜆𝑆 , 𝜆𝐸 , 𝜆𝐼 , 𝜆𝐶1 , 𝜆𝐶2 , 𝜆𝑉 and 𝜆𝑅 sat-
isfying:

𝜆
′
𝑆 = −

[
− 𝜆𝑆

(
𝑢1(𝑡) + 𝜇 + 𝛽(𝑉 + 𝐼̃)

)
+ 𝜆𝐸

(
𝛽(𝑉 + 𝐼̃)

)]
,

𝜆
′
𝐸 = −

[
𝐴1 − 𝜆𝐸 (𝜇 + 𝜔 + 𝑞) + 𝜆𝐼𝜔 + 𝜆𝑅𝑞

]
,

𝜆
′
𝐼 = −

[
𝐴2 − 𝜆𝑆𝛽𝑆 + 𝜆𝐸 𝛽𝑆 − 𝜆𝐼

(
(𝜇 + 𝑑

+ 𝛿 + 𝛼) + 𝑢2(𝑡)
)
+ 𝜆𝐶1𝛿 + 𝜆𝑉 𝑘

+ 𝜆𝑅

(
𝑢2(𝑡) + 𝛼

)]
,

𝜆
′
𝐶1

= −
[
𝐴3 − 𝜆𝐶1

(
(𝜇 + 𝜌 + 𝜃 + 𝜙) + 𝑢3(𝑡)

)
+ 𝜆𝐶2𝜃 + 𝜆𝑅

(
𝜙 + 𝑢3(𝑡)

)]
,

𝜆
′
𝐶2

= −
[
𝐴4 − 𝜆𝐶2 (𝜇 + 𝑚)

]
,

𝜆
′
𝑉 = −

[
𝐴5 − 𝜆𝑆𝛽𝑆 + 𝜆𝐸 𝛽𝑆 − 𝜆𝑉 𝜖

]
,
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𝜆
′
𝑅 = −

[
− 𝜆𝑅𝜇

]
.

with transversality conditions:

𝜆𝑆 (𝑇) = 0, 𝜆𝐸 (𝑇) = 0, 𝜆𝐼 (𝑇) = 0, 𝜆𝐶1
(𝑇) = 0,

𝜆𝐶2
(𝑇) = 0, 𝜆𝑉 (𝑇) = 0, 𝜆𝑅 (𝑇) = 0.

And, the characterization of the optimal
control is given by

𝑢∗1(𝑡) = max{0,min(𝑢1max, 𝑢1)},
𝑢∗2(𝑡) = max{0,min(𝑢2max, 𝑢2)},
𝑢∗3(𝑡) = max{0,min(𝑢3max, 𝑢3)},

where

𝑢1 =
𝜆𝑆𝑆

𝐴6
,

𝑢2 =
(𝜆𝐼 − 𝜆𝑅) 𝐼̃

𝐴7
,

𝑢3 =
(𝜆𝐶1 − 𝜆𝑅)𝐶1

𝐴8
.

Proof. We first differentiate the Hamilto-
nian with respect to 𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and 𝑅,
respectively, and then the adjoint system is
obtained as follows:

𝜆
′
𝑆 = −𝜕𝐻

𝜕𝑆
= −

[
− 𝜆𝑆

(
𝑢1 (𝑡) + 𝜇 + 𝛽(𝑉 + 𝐼̃)

)
+ 𝜆𝐸 𝛽(𝑉 + 𝐼̃)

]
,

𝜆
′
𝐸 = −𝜕𝐻

𝜕𝐸
= −

[
𝐴1 − 𝜆𝐸 (𝜇 + 𝜔 + 𝑞) + 𝜆𝐼𝜔

+ 𝜆𝑅𝑞
]
,

𝜆
′
𝐼 = −𝜕𝐻

𝜕𝐼
= −

[
𝐴2 − 𝜆𝑆𝛽𝑆 + 𝜆𝐸 𝛽𝑆

− 𝜆𝐼

(
(𝜇 + 𝑑 + 𝛿 + 𝛼) + 𝑢2 (𝑡)

)
+ 𝜆𝐶1

𝛿 + 𝜆𝑉 𝑘 + 𝜆𝑅

(
𝑢2 (𝑡) + 𝛼

)]
,

𝜆
′
𝐶1

= − 𝜕𝐻

𝜕𝐶1
= −

[
𝐴3 − 𝜆𝐶1

(
(𝜇 + 𝜌 + 𝜃 + 𝜙)

+ 𝑢3 (𝑡)
)
+ 𝜆𝐶2

𝜃 + 𝜆𝑅

(
𝜙 + 𝑢3 (𝑡)

)]
,

𝜆
′
𝐶2

= − 𝜕𝐻

𝜕𝐶2
= −

[
𝐴4 − 𝜆𝐶2

(𝜇 + 𝑚)
]
,

𝜆
′
𝑉 = −𝜕𝐻

𝜕𝑉
= −

[
𝐴5 − 𝜆𝑆𝛽𝑆 + 𝜆𝐸 𝛽𝑆 − 𝜆𝑉 𝜖

]
,

𝜆
′
𝑅 = −𝜕𝐻

𝜕𝑅
= −

[
− 𝜆𝑅𝜇

]
. (4.5)

Further, by the approach of Pontrya-

gin et al. [23] we solve the equation,
𝜕𝐻

𝜕𝑢𝑖
=

0 at 𝑢∗𝑖 ; for 𝑖 = 1, 2, 3 and we have

𝜕𝐻

𝜕𝑢1
= 𝐴6𝑢1(𝑡) − 𝜆𝑆𝑆

∴ 𝑢1(𝑡) =
𝜆𝑆𝑆

𝐴6
. (4.6)

𝜕𝐻

𝜕𝑢2
= 𝐴7𝑢2(𝑡) + 𝜆𝑅 𝐼̃ − 𝜆𝐼 𝐼̃ = 0

∴ 𝑢2(𝑡) =
(𝜆𝐼 − 𝜆𝑅) 𝐼̃

𝐴7
. (4.7)

𝜕𝐻

𝜕𝑢3
= 𝐴8𝑢3(𝑡) + 𝜆𝑅𝐶1 − 𝜆𝐶1𝐶1 = 0

∴ 𝑢3(𝑡) =
(𝜆𝐶1 − 𝜆𝑅)𝐶1

𝐴8
. (4.8)

With the standard control arguments
involving the bounds on the controls, thus
we have

𝑢∗1(𝑡) = max

{
0,min

{
𝜆𝑆𝑆

𝐴6
, 𝑢1max

}}
,

(4.9)

𝑢∗2(𝑡) = max

{
0,min

{
(𝜆𝐼 − 𝜆𝑅) 𝐼̃

𝐴7
, 𝑢2max

}}
,

(4.10)

𝑢∗3(𝑡) = max

{
0, min

{
(𝜆𝐶1 − 𝜆𝑅)𝐶1

𝐴8
, 𝑢3max

}}
.

(4.11)

This completes the proof. □

5. Numerical Simulation of Optimal
Control Problem

In this section, the dynamics of the
system (4.1) are studied by performing nu-
merical simulations. We use the forward-
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backward sweep method to solve the opti-
mality system numerically. We consider the
optimal control continuously for 15 years,
with the use of parameter values in Table 1.
The numerical results are shown in Figs. 3-
6. We divide our results into four startegies
as shown below, where the solid line and the
dash line represents control and non-control
condition, respectively.

Fig. 3. Numerical simulation of the optimal
control model (4.1) with optimal control of pre-
ventive vaccines of 𝑢1 alone when 𝑢1𝑚𝑎𝑥 = 0.7.
(a-g) the concentration of 𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and
𝑅, and (h) the strategy guildline of control (𝑢1).

5.1 Strategy A : Control with the pre-
ventive vaccines control only

Under this strategy, we use control 𝑢1
to optimize the objective function while 𝑢2
and 𝑢3 are set to be zero. Fig. 3(a) shows
that the concentration of susceptible cervi-
cal cells (𝑆) reduces faster in the control

condition and seems to reach equilibrium
value faster than non-control one. Fig. 3(b)
shows that the concentration of exposed
cervical cells (𝐸) decreases significantly in
control case, whereas it reaches the peak of
more than 1,580 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟 in non-
control one. Further, the result shows that
it reaches the equilibrium value faster in
the control condition. Fig. 3(c) shows
that the concentration of infected cervical
cells (𝐼) reduces dramatically in the control
case since the start, whereas it increases and
reaches the peak of 57 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟 in
the non-control one. Fig. 3(d) shows that in
control case the concentration of early-stage
cervical cancer cells (𝐶1) reduces faster
and more than non-control case. Figs.3
(e-g) show that in control condition, the
concentration of end-stage cervical cancer
cells (𝐶2), the concentration of human pa-
pillomavirus (HPV) (𝑉) and the concentra-
tion of recovered cells (𝑅), respectively, re-
duce significantly and tends to reach lower
value of equilibrium state. From the results
above, it is obtained that 𝑢1 could have a
big impact in reducing the concentration of
𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and 𝑅. Finally, Fig. 3(h)
shows the strategy of 𝑢1 that it has to be
at the maximum rate of 70% for about 14
years and then decreases gradually towards
zero in the 15𝑡ℎ year.

5.2 Strategy B : Control with the treat-
ment effort for infected cervical cells
control only

Under this strategy, we use control
𝑢2 to optimize the objective function while
𝑢1 and 𝑢3 are set to be zero. Fig. 4(a)
shows that the concentration of suscepti-
ble cervical cells (𝑆) reduces slower in the
control condition and seems to reach higher
equilibrium value than the non-control one.
Fig. 4(b) shows that the concentration
of exposed cervical cells (𝐸) decreases in
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Table 1. Parameter values used in the model.

Parameter Description Value Unit Reference
Λ The constant recruitment rate of

cervical cells
20 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟 Estimated

𝛽 The infection rate 0.0001 𝑚𝑚3 Gureu, E.D., 2019
𝜔 The progression rate from ex-

posed cervical cells to infected
cervical cells

0.01 𝑦𝑒𝑎𝑟 Asih, T.S.N., 2016

𝑞 The recovery rate of exposed cer-
vical cells

0.6 𝑦𝑒𝑎𝑟−1 Gureu, E.D., 2019

𝑑 The death rate of infected cervical
cells due to the HPV infection

0.15 𝑦𝑒𝑎𝑟−1 Gureu, E.D., 2019

𝛿 The progression rate from infected
cervical cells to early-stage cervi-
cal cancer cells

0.0082 𝑦𝑒𝑎𝑟−1 Asih, T.S.N., 2016

𝛼 The recovery rate of infected cer-
vical cells

0.02 𝑦𝑒𝑎𝑟−1 Estimated

𝜌 The death rate of early-stage cer-
vical cancer cells due to cancer

0.04 𝑦𝑒𝑎𝑟−1 Estimated

𝜃 The progression rate from early-
stage cervical cancer cells to end-
stage cervical cancer cells

0.04 𝑦𝑒𝑎𝑟−1 Gureu, E.D., 2019

𝜙 The recovery rate of early-stage
cervical cancer cells due to treat-
ment

0.01 𝑦𝑒𝑎𝑟−1 Kheunchana, R., 2020

𝑚 The death rate of end-stage cervi-
cal cancer cells due to cancer

0.03 𝑦𝑒𝑎𝑟−1 Gureu, E.D., 2019

𝜇 The natural death rate of cervical
cells

0.01 𝑦𝑒𝑎𝑟−1 Kheunchana, R., 2020

𝑘 The HPV generated rate which are
produced by the infected cervical
cells

100 𝑦𝑒𝑎𝑟−1 Estimated

𝜖 The clearance rate of HPV 0.8 𝑦𝑒𝑎𝑟−1 Estimated

control case with the peak of about 1,075
𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟 , whereas it reaches the
peak of more than 1,580 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟
in non-control one. Fig. 4(c) shows that
the concentration of infected cervical cells
(𝐼) reduces considerably in the control case
since the start, whereas it increases and
reaches the peak of 57 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟 in
non-control one. Fig. 4(d) shows that in
control case the concentration of early-stage
cervical cancer cells (𝐶1) reduces faster and
more than the non-control case and seems
to reach lower equilibrium value. Fig.
4(e) shows that in control condition, the

concentration of end-stage cervical cancer
cells (𝐶2) increases, reaches the peak and
drops down faster than the non-control one.
Fig. 4(f) shows a significant reduction of
the concentration of human papillomavirus
(HPV) (𝑉) in control case, and the peak in
the control case occurs much faster. Fur-
ther, with control, it tends to reach much
lower equilibrium value. Fig. 4(g) shows
that in control condition, the concentration
of recovered cells (𝑅) reduces largely and
tends to reach lower value of equilibrium
state. Finally, Fig. 4(h) shows the strat-
egy of 𝑢2 that it has to start at the maximum
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rate of 70% for about 14 years and gradu-
ally goes down to 0 on the 15𝑡ℎ year. Fur-
ther, from the results above, it is obtained
that 𝑢2 could have a big impact in reducing
the concentration of 𝐸, 𝐼, 𝐶1, 𝐶2 and 𝑉 .

Fig. 4. Numerical simulation of the optimal
control model (4.1) with optimal control of
treatment effort of infected cervical cells of 𝑢2
alone when 𝑢2𝑚𝑎𝑥 = 0.7. (a-g) the concentra-
tion of 𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and 𝑅, and (i) the strat-
egy guildline of control (𝑢2).

5.3 Strategy C : Control with the treat-
ment effort for early-stage cervical can-
cer cells control only

Under this strategy, we use control 𝑢3
to optimize the objective function while 𝑢1
and 𝑢2 are set to be zero. With this strategy,
Figs. 5(a-c, f, g) demonstrate an unchange
in the concentration of susceptible cervical
cells (𝑆), the concentration of exposed cer-
vical cells (𝐸), the concentration of infected

cervical cells (𝐼), the concentration of hu-
man papillomavirus (HPV) (𝑉) and the con-
centration of recovered cells (𝑅) between
the control and the non-control one. How-
ever, Figs. 5(d-e) show a dramatic decrease
in the concentration of early-stage cervical
cancer cells (𝐶1) and the concentration of
end-stage cervical cancer cells (𝐶2) in the
control case comparing to the non-control
one. From the results above, it is obtained
that (𝑢3) plays a key role only in reduc-
ing the concentration of early-stage cervi-
cal cancer cells (𝐶1) and the concentration
of end-stage cervical cancer cells (𝐶2). Fi-
nally, Fig. 5(h) shows the strategy of 𝑢3 that
it has to start at the maximum rate of 70%
for about 10 years and 4 months and goes
down to 0 at the 15𝑡ℎ year.

5.4 Strategy D : Combination of all con-
trols

Under this strategy, we use a combi-
nation of all three controls to optimize the
objective fuction. Fig. 6(a) shows that the
concentration of susceptible cervical cells
(𝑆) reduces faster in the control condition
and seems to reach equilibrium value faster
than the non-control one. Fig. 6(b) shows
that the concentration of exposed cervical
cells (𝐸) decreases significantly in the con-
trol case, whereas it reaches the peak of
more than 1,580 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟 in the
non-control one. Further, the result shows
that the peak occurs faster and it reaches
the equilibrium value faster in the control
condition. Fig. 6(c) shows that the concen-
tration of infected cervical cells (𝐼) reduces
considerably in the control case since the
start, whereas it increases and reaches the
peak of 57 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3/𝑦𝑒𝑎𝑟 in non-control
one. Fig. 6(d-e) show dramatic decrease
in the concentration of early-stage cervi-
cal cancer cells (𝐶1) and the concentration
of end-stage cervical cancer cells (𝐶2) in
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Fig. 5. Numerical simulation of the optimal
control model (4.1) with optimal control of pre-
ventive and treatment effort of early-stage cer-
vical cancer cells of 𝑢3 alonewhen 𝑢3𝑚𝑎𝑥 = 0.7.
(a-g) the concentration of 𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and
𝑅, and (j) the strategy guildline of control (𝑢3).

control case comparing to non-control one.
Fig. 6(f) shows a significant reduction of
the concentration of human papillomavirus
(HPV) (𝑉) in the control case and it reaches
the peak much faster than the non-control
one. Fig. 6(g) shows that in the control con-
dition, the concentration of recovered cells
(𝑅) reduce largely and tends to reach lower
value of equilibrium state.

Overall, our results demonstrate that
𝑢1 seems to give an impact in reducing the
concentration of 𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and 𝑅.
The control 𝑢2 gives an impact mainly in re-
ducing the concentration of 𝐸, 𝐼, 𝐶1, 𝐶2 and
𝑉 whereas the control 𝑢3 only gives impact
mainly in decreasing the value of 𝐶1 and

𝐶2. However, a combination of all three
controls give the best result in reducing the
HPV infection of cervical epithelial cells
overall.

Fig. 6. Numerical simulation of the optimal
control model (4.1) with optimal control of
antiretroviral therapy of 𝑢1, 𝑢2 and 𝑢3 when
𝑢1𝑚𝑎𝑥 = 𝑢2𝑚𝑎𝑥 = 𝑢3𝑚𝑎𝑥 = 0.7. (a-g) the con-
centration of 𝑆, 𝐸, 𝐼, 𝐶1, 𝐶2, 𝑉 and 𝑅, and (h)-(j)
the strategy guildeline of control (𝑢1), (𝑢2) and
(𝑢3).

6. Conclusions
Although HPV vaccine has been

available in many countries worldwide,
there are still a number of infected peo-
ple with HPV and cervical cancer, and they
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have been increasing in the past decade. A
kinetic of virus spreading within cells there-
fore remains essential to understand. In this
paper, we propose a within-host model of
HPV infection and cervical cancer. We ex-
tend the work of Asih et al. [16] by adding
the latent period of HPV infection and the
recovery state of cells. There are seven
compartments in this model consists of 𝑆
is the concentration of susceptible cervical
cells, 𝐸 is the concentration of exposed cer-
vical cells, 𝐼 is the concentration of infected
cervical cells, 𝐶1 is the concentration of
early-stage cervical cancer cells, 𝐶2 is the
concentration of end-stage cervical cancer
cells,𝑉 is the concentration of human papil-
lomavirus (HPV) and 𝑅 is the concentration
of recovered cells. All model properties are
demonstrated starting from the existence,
positivity and boundary of solutions. Two
equilibrium points which are infection-free
and infected steady state are determined.
The basic reproduction number is calcu-
lated using next generation method and it
becomes the threshold for stability of equi-
librium points i.e., when it is less than unity,
the infection-free equilibrium point is both
locally and globally stable whereas when
it is greater than one the infection persists
and the infected steady state is globally sta-
ble. Further, an optimal control problem
by Pontryagin’s Minimum Principle is ap-
plied into the model with three control vari-
ables consisting of preventive control, treat-
ment effort for infected cervical cells and
treatment effort for early-stage cervical can-
cer cells. The numerical simulations of
optimal control model are performed and
the results demonstrate that vaccines could
reduce HPV infection and cervical cancer
greatly. The treatment effort for early-stage
cervical cancer cells could significantly de-
crease the concentration of infected cervi-
cal cells and viruses and the treatment effort

for end-stage cervical cancer cells mainly
reduces the concentration of both stages of
cancer cells. However, with a combination
of all three controls we obtain the best so-
lution in reducing the HPV infection and
cervical cancer overall. These results con-
firm an encouragement in having vaccine
and treatment once one getting infected as
early as possible.
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