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ABSTRACT

The goal of this research is to examine a Thakur’s iterative approach for a noncyclic
relatively Suzuki’s nonexpansive with a projection mapping in the famework of convex uni-
formly Banach space. Using this iteration as a base, we offer a few sufficient conditions and
useful lemma to ensure the convergence of a best proximity pair for a mapping. We also pro-
vide a case study to illustrate the main results with numerical simulation for this algorithm.

Keywords: Best proximity pair ; Noncyclic mapping; Suzuki’s relatively nonexpansive ;
Uniformly convex Banach space.

1. Introduction

Since a large number of problems
can be transformed to fixed point problems,
fixed point theory is a useful technique for
problem resolution many in real-world sit-
uations. This can be expressed in the form

of equations I'x = x, " : Q — Q, where is
topological space Q. However, in situation
E and K are nonempty disjoint subsets of a
metric space Q. There may not always be
a solution to the aforementioned equation.
It is crucial in this case to find a solution u
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that minimizes the error d(u,l'u). This is
the concept behind, Fan proposed the best
approximation theory [[l]]. Afterward, sev-
eral authors have developed numerous ex-
pansions of Fan’s Theorem, one can refer to
[2-8]. In 2003, Banach’s contraction con-
cept was expanded to apply to cyclic map-
pings by Kirk et al., thatis Y : AU® —
A U @ with the properties Y(A) € @ and
Y(®) € A. They show that a mapping’s
fixed point solution implies that A must in-
tersect @, which leads to the conclusion that
Banach’s principle of contractions is im-
plied. In 2005, Eldred et al. [9] created a
mapping [ : E U K — E U K with proper-
tiesT'(E) € E andT'(K) C K. It is known
as a noncyclic mapping, which investigates
whether the following minimization prob-
lem existed to determine s € E and & € K
satisfying

min d(s,T's), min d(h,Th)

d(s, h),

i 1.1
(s,lgleuElxK ( )

and a solution of Eq. ([L.1}) is an element
(s, h) € E x K with the property

and

s=Is, h=Thand d(s,h) =dist(E,K).

which is called a best proximal pair. Fol-
lowing, other authors have investigated and
developed the existence of a solution of Eq.
([1.1)), see for instance[[10-12].

On the other hand, for the ap-
proximation of nonexpansive and general-
ized nonexpansive mappings, many itera-
tive methods were introduced and studied
Suzuki [[13] presented the condition C in
2008, which is weaker than nonexpansive-
ness, later we know that as the Suzuki’s type
or Suzuki’s generalized nonexpansive map-
ping. Thakur et al. [[14] proposed the itera-
tion approach in 2017. For an arbitrary cho-
sen element u; in subset of Banach space Q

15

and sequence {u, } generated by :

Ups1 = (1 = 0)Twy, + 0Ty,
v = (1= o)W + 0wy,
wp = (1= pp)uy + pplu,,

(1.2)

where {0, }, {on} and {p, } are sequence in
(0,1). In 2019,Suparatulatorn and Suantai
[14], suggested a new technique for global
optimum proximity minimization points in
a classes proximally nonexpansive map-
ping. Recently, Gabeleh [|11] used the con-
cept of proximity pairs to examine iterations
of Ishikawa for the best proximity pairs uti-
lizing the concept of noncyclic relatively
nonexpansive mapping.

Motivated by the preceding, this pa-
per examines Thakur’s iterative approach
for a noncyclic Suzuki’s relatively non-
expansive with a projection mapping in
the famework of convex uniformly Ba-
nach space. First, we provide an algo-
rithm with sufficient conditions and use-
ful lemma. Second, we show the weak
and strong convergence of a best proxim-
ity pair. Eventually, we provide an example
todemonstrate the outcomes with numeri-
cal simulation for this algorithm. Also, we
show that the conclusion of Gabeleh [[12] is
not applicable of our main result.

2. Preliminaries

In this part, we provide definitions
and attributes for our important results. As
nonempty subsets of Q, that E, K. (Q, d) to
be a metric space. Define

d(E,K) =inf{d(s,w) : s € E,w € K},

Fix(T) = {s€eExK:s=TIs}, Fixg(I')
= {seE:s=Ts},
Ey = {s€E:d(s,w)=dist(E,K)

for some w € K},
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Ko = {weK:d(s,w)=dist(E,K)
for some s € E},
Proxpxx(I') = {(s,w) € EXK:s=Ts,

w=Iw

and d(s,w) =dist(E,K)}.

Note that, if s € Eandw € Ks.t. d(s,w) =
d(E, K), then w is proximal point of s (s is
proximal point of w). Also, the proximal
pair of (E, K) denote by (Eq, Kp).

Definition 2.1. LetI': EUK - FUK. A
best proximity point of I in E is defined as
apoint s € E where d(s,I's) = d(E, K).

Definition 2.2. A pair (E, K) is said to be
have P-property if and only if d(sq,w1) =
d(E,K) and d(s2,ws) = d(E, K) implies
d(s1,s2) = d(w1,w2).

Lemma 2.3 ([[10]). The P-property exists
in every bounded, nonempty, closed, and
convex pair in a uniformly convex Banach
space L.

Definition 2.4 ([15]). If": EUK — EUK
is a cyclic mapping, 3¢ € [0, 1) s.t. said to
be if

d(I'r,T's) < &d(r,s)+ (1 -¢)d(E,K),

2.1
Vr € E and Vs € K. Then I is considered a
cyclic contraction.

Ifd(E,K) = 0, it is obvious that the
mapping of cyclic contractions is reduced to
mapping of contractions.

Definition 2.5. A noncyclic mapping I" :

E UK — E UK is called relatively nonex-

pansive if and only if
d(I'r,T's) <d(r,s), 2.2)

Vr € Eand Vs € K.

16

Definition 2.6 ([16]). A noncyclic mapping
I': EUK — EUK is called quasi-noncyclic
relatively nonexpansive if and only if

(1) Fix(I') N Eg and Fix(I') N Ky are
nonempty.

(i) for each ¢ € Fix(I') N Ky, g €
Fix() N Eq.

d(Tu,e) < d(u,e),
d(g,I'v) <d(g,v),

uek

vek, @9

Note that, if £ = K then the quasi-
noncyclic relatively nonexpansive becomes
the quasi-nonexpansive.

Definition 2.7. If a function that is strictly
increasing exists, ¢ : (0,2] — [0,1] ina
Banach space €, it is said to be uniformly
convex, such that, Vr,s,¢ € Q,0 > 0 and
l€[0,20],

Ir-sll <o s
ls=sll<o t = |5 —ﬂ
lr=s|| =1

< (1 - ¢(§))a.

Lemma 2.8. ([[17,[18]) Let E, K be a pair
of a reflexive and strictly convex Banach
space € that is nonempty closed, convex

and proximal. Define P : Eqg U Ky —
Eq UKy as
_ PEO (S), s € Ko
Pls) = { Pio(s). se€Ey. Y
Then

(i) |ls—=Ps|| =d(E,K) foranys € EygU
Ko and P(Eg) € Ko, P(Ko) C Ej.

(ii) P is isometry, that is
||Ps=Ps]|| = ||s—s]|| forall s,5 € Ey,

and

|Pw=Pw| = ||[w—w| forall w,w € Ky.
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(iii) P is affine.

Remark 2.9. Well know that, if P is projec-
tion on E, when E C Q,

[Ps —Pwll < |ls —wl,
forall s,w € E.

Lemma 2.10 ([[13]). Assume that a normed
space Q, has nonempty closed and con-
vex subsets, E and K. Then ||lu — Pgul|| =
d(E,K) Yu € Ey.

Definition 2.11 ([[11]). Assume that the
pair (E, K) in a uniformly convex Banach
space Q, is nonempty, closed, convex, and
proximal. Then (E, K) satisfying proximal
Opail’s condition, if every {u,} in E( re-
spectively in K) with {u,} — u € E (re-
spectively {u,} — u € K), then

lim sup||u, — Pul|| < lim sup||u,, — w||,
n—oo n—oo
Vw # Pu € K (respectively for all w #
Pu e E.

Lemma 2.12 ([[19]). Let {h,} and {w,}
be sequences in uniformly convex Banach
space Q s.t.  limsup,_. ]l < p,
lim sup,,_,e [|Wall < p and

,}E& l@ph, + (1 —@)wall = p

for some p > 0 where {w,} € R, 0 < ¢ <
wy<d<1,VYneN. Then

lim ||, — wpl| = 0.
n—o00

Definition 2.13 ([[L1]). A noncyclic map-
ping I' E UK — E UK is called
demi-closed at zero, if {(un,u,)} in (Ep X
Ko) with |lu, — u,|| = d(E,K) n €
N, if {(un,n)} — (ux,it,) and {(I -
Tu,, I —Tu,)} — (0,0) then (uy,ut.) €
Proxgxk (I').

17

3. Main Results

This section presents the new idea
of a noncyclic relatively Suzuki’s nonex-
pansive and apply this idea to establish a
best proximity pair’s convergence in uni-
formly convex Banach space. First, se-
quence (t,, t,) is defined using the concept
of Thakur’s iteration scheme with the con-
trol sequences as follows :
Algorithm I
Initialization : Setn = 1 and choose 1 € Ej
and lTl = P(Zl) € Kp.
Iterative step. Compute (¢,41,fn+1) by us-
ing

In+l = (1 - ¢n)rsn + ¢ul'ry,

rn=(1=29,)s,+%.s,, 3.1
Sp = (1 - gn)tn + Iy,
and
fn+1 = (1 - ¢n)fn + ¢nrfn,
Fo= (1= 0)5n+ 0050, (3.2)

Sp = (1 - {n)fn + gnrfn,

where {¢,}, {3,} < [0,1] and {Z,} C
[%, 1] s.t.

lim (1 —2¢,) # 0. (3.3)
n—oo

After setting n to n + 1, the iterative step is
performed.

Definition 3.1. Assume that £ and K be
nonempty subsets of a normed spaces Q.
I': EUK — E U K referred to as a non-
cyclic relatively Suzuki's nonexpansive, if I’
is noncyclic mapping and

1

g hr=Trii<lir=g ll= [Ir-Tgll <l r=g II,
(3.4

V(r,g) € E XK.

Proposition 3.2. Every noncyclic relatively
nonexpansive mapping is a noncyclic rela-
tively Suzuki’s nonexpansive.
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Proof. Clearly, from definition of non-
cyclic relatively nonexpansive and non-
cyclic relatively Suzuki’s nonexpansive.

m]

Proposition 3.3. Assume that a mapping
I': EUK — EUK be anoncyclic relatively
Suzuki's nonexpansive has a best proximity
pair. Then I is a quasi-noncyclic relatively
nonexpansive mapping.

Proof. Let (s,r) best proximity pair of I'.
Then s =I's and r = I'r. Since,

1
§||r -Tr||=0<||g—r| forall g €E,
we have

Ir =Tqll = [[Ur = Tq|l < [Ir - ql|.

Similarly, [[s — I'z|| = [[I's - z[| < ||s — 2|l
for all z € K. Then I' is a quasi-noncyclic
relatively nonexpansive mapping. |

Lemma34. LetI': EUK — EUK bea
noncyclic relatively Suzuki’s nonexpansive
mapping. be a mapping on a subset of a
Banach space. Then

s =Tr|l < 3lls = Ts{[ + lls — 7|,
forall (s,r) €e ExXK.

Proof. By applying the proof of Lemma 7
in [20], we obtain the result of this Lemma.
O

Lemma 3.5. Assume that (E,K) be a
closed, nonempty convex pair of uniformly
convex Banach space Q. and letT" : E U
K — E U K be a noncyclic relatively
Suzukis nonexpansive mapping. Let {t,},
{t,,} be generated by Algorithm 1.

(1) lim, e (|t —01| and limy, e |7, —ql|
exists for any 6 € Fix(I') N Ky, q €
Fix(I) N Ey,

18

(ii) sequence {t,} and {t,} are bounded.

Proof. Note that, since every noncyclic
contraction is relatively nonexpansive, and
every noncyclic relatively nonexpansive is
a noncyclic relatively Suzuki’s nonexpan-
sive mapping, and uniformly convex is
strictly convex, then by Theorem 3.5 in
[21], we have I" has best proximity pair
and (Eyp, Kp) is nonempty closed and con-
vex pair of Q. By Algorithm I with any
0 € Fix(I') N Ky, we have

”(1 - ¢n)rsn + ¢, - ol
| (T — )
+(1 = ¢n)(Tsn — Ol

s = 0l

Gullrn =01l + (1 = ¢p)llsn — 6|
Gull(1 = 0n)sp + Inl's, — 0|
+(1 = ¢)lI(1 = L)t
+(, It — 0|
= ¢ullOn(Ts, - 6)
+(1 =) (sn = O)|
+(1 = ¢u)l1£n (Tt — 6)
+(1 = &n) (ta = 0|
Gn(FnllTsn — 0l
+(1 = 9,)llsn = O)|)
+(1 = ¢n) (ZallTt, = 6]
+(1 = Z)lltn = 611)
Gnnllsn =0l
+¢n (1= 9,) |5, = 0)l
+(1 = ¢n)nllty — 0
+(1 = ¢n) (1 = &) lltn = 0l
= ¢nlls, =0
+(1 = ¢n)lnlltn =0
+(1 = ¢n) (1 = &) lltn — 0l
= ¢all(1 = L)t + LTty = 0|
+(1 = dn)lallty =0
+(1 = ¢n) (1 = &) lltn — 0l
= ¢ullén(Tty - 6)
+(1 = Zn) (ta = O)|
+(1 = ¢n)lnllty — 0l
+(1 = ¢n) (1 = &) lltn — 0l

IN NN

IA

IA

¢n”rrn - 9” + (]- - ¢n)||rsn - 9”



N. Onjai-Uea et al. | Science & Technology Asia | Vol.29 No.1 January - March 2024

IA

Pnlnlltn — 0|
+¢n(1 = Zn)lltn = 6l
+(1 = ¢n)dnlltn =6l
+(1 = ¢n) (1= Za)lltn = 6|
Pulltn — 0l
+(L = ¢n)ulltn — 6l
+(1 =) (1 = o) litn = 6|
= (In—Ln—Pnln+1

—Ln = ¢n + ¢nln)lltn = 0|
< llitn -6l

IA

This means that {||z, — 6||} is non-
increasing and bounded. Hence
lim, o ||t — 0] exists. Since {||t,, — 0]|}
bounded, M > 0 exists such that
||t, — 0| < M for all n € N. Further

lall = lltn — 6 + 6]

IA

lltn =011 + 6]
M+ 1],

IA

forall n € N. Then {z,} is also bounded.
Similarly, we can show that lim,, .« ||7;,—6||
exists and {¢,,} is bounded.

O

Lemma 3.6. Let (E,K) be a nonempty
closed and convex pair of uniformly convex
Banach space Q such that E or K bounded,
andletT" : EUK — E UK be a noncyclic
relatively Suzuki'’s nonexpansive mapping.
Let {tn}, {tu}, {rn}, {Fn}.{sn} and {5,} be
created by Algorithm 1. Then

lim |lsn = Dspll =0, lim I, =7, = 0
and

lim I5, = I5ull =0, lim [z, = T2, = 0.
Further,

lim [T, =Tsp |l = 0, lim [[T7, =T, = 0.

Proof. Let (6,6) € Proxgxk (I'),then 6 =
6,6 =T6 and ||6 — 6|| = d(E,K). By

Lemma B.5, we have lim, o [|t, — 0] ex-

ists. Suppose that
lim ||t, — 0| = k. (3.5)
n—oo

Using Proposition B.3, we have

ITsn =0l < |lsn—0ll
< ”(1 - {n)tn + {nrtn - 9”
= Hgn(rtn - 9) + (1 - {n)(tn - 9)”
< évnth - 0” + (1 - gn)lltn - 0”
= ”tn _9”’
and
ITrp =0l < |lrn— 6
< ”(1 - ﬁn)sn + 3uI's;, — 9”
= ”ﬁn(rsn - 9)
+(1 - ﬁn)(sn - 9)
< Dallsn =0l
+(1 - ﬁn)llsn - 6”
= |ls, -4
< it =0l
Therefore
limsup||l's, —0|]] < limsup|ls, — 0]
n—oo n—oo
< limsup||t, — 9|
n—oo
= k, (3.6)
and
limsup||l'r, —0|| < limsup|r, — 06|
n—o0 n—oeo
< limsup|lt, — 9|
n—oo
= k. 3.7
Furthermore,

r}gr.}o”‘ﬁn(rrn =0)+ (1= ¢,) (s, —0)|

Y}I_I)I;H(l - (bn)rsn +¢ulr, — oll

lim [|71 = 6|
n—oo
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= k.
By Lemma 2.12, we have
r}i_IEOHFrn —I'sy|| =0. (3.9)
Moreover, by Eq. (B.1)), we have

lim [|t41=T'spll = lim ¢, [T, s, || = 0.
n—oo n—oo

Next, we will show that lim ||s,,—I's,]|| = 0.
n—0oo

Since

(1= ¢u)sp + ¢pl'ry, =0
Onlllry = Tsp|l + |Tsp, = 6]

||tn+1 - 9”

IA

It follows that Egs. (8.3) and (B.§) combine
to give

k < lirrlri)i()rolfllfsn -9 3.9
Hence, by Egs. (8.6) and (B.9)
,}Ergolll“s,, -0 = k. (3.10)
Further,
ITsp =0l < NTsp =Irall + |7, = 0]
< ||Tsp = Tryll (3.11)
+ lrn =6l
Then, by Eqgs. (3.10)-(B.11)
k < h,?gigf””n -0|. (3.12)

Therefore, by Eqs. (B.1)), (8.3), and
(B-12)) combine to give
lim [[(1 = &) (s — 6) + T (Tsp, — )]

Lim ||[(1 = &,)s, + 9,I's, — 0|
n—oo

lim ||r,, — 6|
n—oo

= k. (3.13)
Again, by Lemma P.12, give us
lim ||s,, — T'sy|| = 0. (3.14)
n—0oo

20

On the other hand, by Eq. (B.1), we have
sn = (1= &)ty + &Ity then s, — 1, =
{n(Tty—ty), ¥Yn e N. Since, &, € [1/2,1],
then

A

Inlltn — Tty ||
[, = snll, Vn e N.

1
_th - Ftn” =
2

By Eq. (B.4), we have

T, = Usull < ||tn = su, [l YR €N.
(3.15)
Since
ltn =Ttnll < |ltn = sull + [Isn — Tsyll
+|Tsp — Tt|
< ity = snll + lIsn = Tsall

+lsn = tall

= 2|lsp = tall + llsn — Tsal|

= 20(1 = Z)tn + Lalty — 1]
+||sn = syl

= 24,|ITty — tall
+|lsn = Tspll.

Then, we have

1
1_2§n
1

< =55l -~ Tsall

”tn_rtn” < ||Sn—FSn||

Taking n — oo, by using Egs. (8.3) and
(B.14), we have

lim ||t — Tta || = 0.
n—oo

In the same way, we may demon-
strate that

lim |5, — ']l = 0,
n—o0

and
lim ||z, = T%,]|| =0.
n—oo
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Theorem 3.7. Let (E,K) be a nonempty,
bounded, closed and convex pair of uni-
formly convex Banach space Q. LetT : EU
K — EUK is a noncyclic Suzuki s relatively
nonexpansive and P : EgUKy — EqgUKj is
a projection mapping defined as Eq. (2.4).
Assume that {t,} and {t,} are a sequence
generated by Algorithm 1. Then there exist
(tx, 1) € Eq X Ko such that

(i) TP(ty) =P(tx) andTP(t.) = P(¢.),
(ii) ty =Tty andt, =11,
(iii) PI't, = I'Pt, and PI't, = I'Pt..

Furthermore, if (Eg, Ko) satisfying proxi-
mal Opails condition then {(t,,t,)} con-
verges weakly to (ts, t.).

Proof. Let {t,} and {7,} are a sequence
generated by Algorithm I. By Lemma B.3
(i), sequence {t,} and {7,} are bounded.
Then there exist {t,, } € {t,} with {¢,,, } —
t« € Eo, and a subsequence {7, } of {f,}
with converges weakly to 7, € Kj. Since
tx € Ey, then

ltx — Pti|| = d(E, K). (3.16)
By Lemma B.4, we have
20, ~TP ()l < 3lltn, =Tt 1+, =P (20l
Letting k — oo, we get
lltx = TPl < lItx = P01l = d(E, K),
and this yields that

ltx =TP(t0)|l = d(E, K). (3.17)
By Egs. (8.16), (B.17) and Lemma .3, give
us I'P(7,) = P(t4). Hence, by Lemma 2.§
(see also Remark 2.9)

ITP(14) = PT ()1l = [P (14) = PT(24)]

21

< ltw = Tt4ll. (3.18)

Next, we will show that 7, = Tt,.
Lemma B.4, we have

By

||tl’lk - Ft*” S 3”tnk _FtnkH + “tnk - t*”’
Vn € N. Letting n — oo, we get
”t* - Ft*” - 0,

and hence ¢, = TIt,.

(B.18), we have

ITP(74) = PL ()] = 0,

Therefore, by Eq.

thatis T'P(zx) = PI'(#4).

Similarly, we can show that 7, = I'%,
and PI'z, = I'Pf... Therefore, we obtain (i),
(i), (iii) and (iii).

Next, we will show that {¢,} con-
verges weakly to 7.. Let {7,;} be an-
other subsequence of {¢, } which converges
weakly to z € Eg. Suppose that ., # z.
Then, by Lemma .5(i) r}grolo lt, — Pt.|| and
’}1_1};0 llt, — Pz|| exist. From the fact that
(Eo, Ko) satisfies proximal Opail’s condi-
ton, we have

lim sup||t,, — Pt4]|

—00

lim sup||t,, — Pz||
k—o00

lim sup||t,, — Pty||

n—oo

lim ||t — Pz||

n—oo

lim (|1, — Pz|

‘14)00

lim supl|t,; — Pty|
Jj—ooo ’

lim sup||t,, — Pt4|,
n—oo

which is a contradiction and thus 7, = z.

Hence {t,} — tx € Fix(I') N Ey. Likewise,

we can demonstrate that {z,,} converges

weakly to some element 7. € Fix(I') N

K. O

Theorem 3.8. Let (E,K) be a nonempty,
bounded, closed and convex pair of
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uniformly convex Banach space Q with
(Eo, Ko) satisfying proximal Opail’s condi-
tion. LetT": EUK — E UK is a noncyclic
Suzuki's relatively nonexpansive, and {uy,},
{it,} are sequence generated by Algorithm
I Then I =1 is demi-closed at zero.

Proof. By Lemma B.7, we have {(,,7,)}
converges weakly to (z4x,7.). Now, we
claim that

ltn —tull =d(E,K) VneN. (3.19)

Since {t,}, {f.} be a sequence generated by
Algorithm I, then by assumption

lty — 11l = d(E, K).
Suppose that, for each £ € N, we have
lltx — txll = d(E, K), (3.20)

and Lemma.g, forany € > 0, 3N € Nsuch
that

€

llte = Tte|| < 5
_ _ €
Gillte =Tt < =,
6

€

s — sl < =,
ITsk — skll 5
sk - Tsell < =
Sk =I5 -,
k Kl <5

Orlllre — il <

drl|Tsk — Tre|| <

MmO M

for all kK > N. Then, we have

I((1 = )Tk + drlri)
—((1 = @)% + pplr) ||
= |IUsg + ¢n(Tri — Tsy)
=I'si + (dr(Usx — Trp) ||

||tk+1 - fk+1 || =

< |ITsg = Tsil|
+oi||ITr — Uil
+@r |5k — T'rycl|

22

= |(Tsg = sx) + (sk — 5k)
+(Sk = Tsp)ll

+¢i ||l — U |

+¢ [0Sk — Tre|

sk = Skl + [Tsk — skl

IA

+Isk = sl

+¢i|[Ur — Tl

+o |05k — Tre|
= (= Zi)tr + & Tty)
—((1 = &)tk + LTt ||
sk = skl + [I5k — T5k|l
+¢|[Trg — Tl
+i||Tsk — Tre|
7k — il + Qiclltx — Tl
+ic |t — Tt |
sk = sl + [I5x — T3k |l
+i||Tri — U |
+i||ITsk — Tre|

IA

< te-fell+ S+
k=T E 76
€ € € €
e e

6 6 6 6
= ltx —tll +€
= d(E,K)+e.

Hence, we can conclude that ||rz.1 —
fx+1]| < d(E, K). By mathematical induc-
tion, we can imply that the claim Eq. (B.19)
holds. Then

d(E,K)

IA

175 — 2|
lim inf||t, — 7|
n—oo

d(E,K).

IA

Therefore (f4,f.) € Proxgxx(I)
and hence the proof is complete. O

Theorem 3.9. Let (E,K) be a nonempty,
bounded, closed and convex pair of
uniformly convex Banach space € with
(Eo, Ko) satisfying proximal Opail s condi-
tion. LetT' : EUK — E UK be a noncyclic
relatively Suzuki’s nonexpansive mapping,
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{tn} and {t,} be generated by Algorithm I.
Then {(t,,t,)} converges weakly to a best
proximity pair of T.

Proof. By Theorem B.7, we now have the
sequence {(f,,f,)} converges weakly to
(tx.1x) € Eg X Kp, tx = I'ty and 7, =
I'7.. By Lemma B.g, we have {(1 - T't,,, I —
I'7,)} converges to (0, 0), by Theorem .8,
the sequence {(7,,7,)} converges weakly
to (fx,f.) € Proxgxg(I'). Hence the
sequence {(t,,f,)} converges weakly to a
best proximity pair of I". O

Corollary 3.10. Assume that (E,K) be a,
bounded, closed, nonempty and convex pair
of uniformly convex Banach space Q. As-
sume thatT : EUK — EUK be a noncyclic
relatively nonexpansive mapping, {t,} and
{tn} generated by Algorithm I. {(tn,t,)}
converges weakly to a best proximity pair

of T.

Next, we give a strong convergence
of Algorithm I with noncyclic relatively
Suzuki’s nonexpansive mapping.

Theorem 3.11. Let (E, K) be a nonempty,
compact and convex pair of uniformly con-
vex Banach space Q. LetT" : EUK — EUK
be a noncyclic relatively Suzuki’s nonexpan-
sive mapping, {t,} and {t,,} be generated
by Algorithm I. Then {(t,,t,)} converges
strongly to a best proximity pair of T

Proof By Lemma B.4, we have {(/ —
I't,,I — I't,)} converges to (0,0). Since
(E,K) is a compact subset of Q and
{(tn, 1} 1s a sequences in Ey X Ky. Then
there exist {t,,} € {t,} with converges
strongly to t, € Eo, and {f,,} € {tn}
with converges strongly to 7. € Ky. Since
ty € Eg, then

lltx = Prul = d(E, K). (3.21)

23

By Lemma .4, we have
tn, = Ttall < 3lltny = Tty I+ [12ny, — 1]l
for all k € N. Letting n — oo, we get
lltx = Ttull = 0,

and hence f, = I'ty. Similarly, f. = I¥,.

Then t, € Fix(I') N Eg and £, € Fix(I') N

K. Therefore, by Lemma B.5(i) lim ||z, —
n—o00

Pt,|| and lim ||#, — Pt.|| exist. Hence
n—0oo

lim [|7, — Pl = kli_{rgolltnk — Pl
= ||tx - Pt,]| = d(E, K).

Therefore {z,} with converges
strongly to t, € Eg. Similarly, {f,} with
converges strongly to 7, € Ky. Further-
more, by the same argument as the proof of
Theorem B.8, we can show that

ltn — Tnll = d(E,K) VneN. (3.22)

Hence,
ltx = Ell = lim Ity = Full = d(A, B),
and the proof is complete. |

Corollary 3.12. Let (E, K) be a nonempty,
compact and convex pair of uniformly con-
vex Banach space Q. LetT’ : EUK —
E U K be a noncyclic relatively nonexpan-
sive mapping, {t,} and {t,} be generated
by Algorithm I. Then {(t,,t,)} converges
strongly to a best proximity pair of T'.

4. An Example and Numerical Simu-
lation

We present in this section, an il-
lustrative example of noncyclic relatively
Suzuki’s nonexpansive mapping for support
our main results with numerical experiment
via Algroithm I. Also we show that the con-
clusion of Gabeleh [|12] is not applicable for
our main result.
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Example 4.1. Let Q = R? with the Eu-

clidian norm, E = {(y,u) € R? : 0 <
Y < 1L,1 <pu<2andD = {(y,p) €
R?2 : 0 <y <1,-2 < u < -1}. Then
0 = {(y,1) e R? : 0 < sl}
= {(y,-1) € R? : 0 < < 1}

and d(C,D) = 2. Define the mappmg
'-cCub — CUD by

(L-y,p) ify €[0,3):
Ly, p) =

(2w ify e (311,

for all ,u € Q. Then I' is noncyclic
mapping. First, we will show that, I" is a
noncyclic relatively Suzuki’s nonexpansive
mapping.

case I Let (¢1, 1) € C such that

W1 € [0, %). Then

1

S V(21 -1)
L 2 1
§|| Y1 =1

1
S 1) =T, )l

For

1
§||(lﬁ1,ﬂ1)—r(lﬂ1,#1)|| < (W1, ) =2, p2) |l

that is

1 -2y
2

- p2)?.
4.1

<NW1 —¥2)% + (1

Since (u1 — p2)? 2 0. If (g — p2)?

then
1-2y
2

VW1 = ¥2)? + (1 — p2)?

(Y1 —2)?

= [ly1 = yall. (4.2)
Thus, to show that Eq. (4.1)) holds, without
generality we will consider an element ¢o €
[0, 1] which satisfies Eq. (#.2). Now, we
divided four case.
() If =5 < [[Y1 — o]l and Y1 < Yz, then

1- 20, o1
5 <Y -y, 1le, §S¢2S1-

IA

24

Thus, for ¢; € [0, %) and o € (%, 1], we
now have
I (W1, 1) = T2, p2)ll

= (1 =y, u1) - ( ,#2)||
= \/(1—901— )2+(,U1—,u2)2
%”2
< 1=-yq- ||+||ﬂ1 wall
1 -6y, -
= ||T||+||,u1—/~t2||
12y
< ||1—||+||ﬂ1 pall
< =l - ool
= 19 M1 — M2
< Ll - ol
= 3 M1 — M2
< VW1 —¥2)? + (11 — u2)?

(@1, 1) — (Yo, w2)|l.
(if) If 222 < [ly1 — ol and yy > o, then

1-2
# <Y — Yo,
2
it follows that
<2 1 d 1 <2 1 < 1
—— and —= — < -,
Yo < 2y 5 5 W1 > G

which is impossible in this case.

(i) If =52 > [ly1—yol| andy < V2, then
12—‘”1 > Y9 — Y it follows that o > 2,
and hence we must have o € [0, ;] If
Yo € [%, %], we can show I' is a noncyclic
relatively Suzuki’s nonexpansive mapping
by similarly (i). Suppose 2 € [0, %), then
we have

IT (1, p1) = T (2, p2) |l

1(1 =1, 1) — (1 — W2, w2l
|2 =1, w1 — p2) |

V1 —v2)? + (1 — p2)?
(1, y1) = (W2, p2) |-
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(iv) If 222 > |ly1 — ol and ¥y > yo,

then 1_3'//1 > Y1 — Yo it follows that
1 1 1 1
lﬂg > 2',01—5 and —5 < 2{01-5 < —g.

Thus, we must have o € [ g 1], we obtain
I' is a noncyclic relatively Suzuki’s nonex-
pansive mapping by similarly in ().

case II Let (¥1,u11) € C such that y; €
[%, 1]. Then

Wi, 1) =T, w) |

For

1
§||(¢1,#1)—F(¢1,M1)|| < (W1, ) =2, p2) |l

that 1s
5 — 51// 1

< VW1 = P2)? + (a1 — p2)?.

We will con51der four case.
() 1f < g - vl and <y,
then 2 < Yo — 1. which implies that

5+172¢/1 15 Wy and o € [2L,1]. Hence, for
djl € [6’

1] and o € [?7’;, 1], we have
T (1, u1) = T(a, w2l
5
I ) -
\/(lﬂ1+5 1702+5

6
\/(lﬂl

VW1 = ¥2)? + (1 — p2)?
(W1, p1) = (2, ).

S50 < Jlyy — ol and gy > o, then
— 9. it follows that

-5
72

lﬁ2+5

s ko)l

—— )%+ (u1 — p2)?

2)2 + (1 = p)?

IA

(i) If
5—1521//1 < lpl

25

and
13

17y -5
12 72
which is impossible in this cases.
(iii) If 252 > [ly1 - oll and ys
then 5_152'//1 > o — 1 implies that

<1,

< Yo,

W1 +5
12 7

Yo <
and
37 _ 1T -5
72 72
Thus 5 € [0, %), then we have
(Y1, p1) = T2, o)l

lﬁ1+5

< 1.

(> p1) = (1 = 2, )|

\/(‘”16 — (L= 92)? + (1 — p2)?
1+ 6y

U1 -
Y
6o + 6o

V=

)2+ (1 — p2)?

< )2+ (1 — p2)?,
(v 0<yg <1/6)
S (T
< VW1 —v2)? + (U1 — p2)?
= (W1, 11) — W2, w2)l.
(iv) If 22 > |lyy — yoll and ¢y > yo,
then 5_152'/’1 < 1 — Yo implies that
171 —
and 13 1701 -5
— _ e
72 12

which is impossible in this case. Then T is a
noncyclic relatively Suzuki’s nonexpansive
mapping for the case considered. Figs. [l
show that Case I and Case II hold.
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Cose It 2, € [0,1/6) and 23 € [0,1/6) Case Iz, € [0,1/6) and =, € [1/6.1

Fig. 1. The Red and Blue surfaces represent Case II’s LHS and RHS, respectively.

Case T 2, € [1/6.1] and 2 € [32/72.1 Case Ty & [1/6.1] and 2, € [32/72.1

- ™ © =

o

Mo B s mow B e B s i

Fig. 2. The Red and Blue surfaces represent Case II’s LHS and RHS, respectively.
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Therefore, by both cases I' is a
noncyclic relatively Suzuki’s nonexpansive
mapping. Further, there is (1,1) € Cy and
(1,-1) € Dg such that

ran =2 )=,

', -1) = (’%5,—1) =(1,-1),

and

1(1,1) - (1, =Dl

= 2.

Thatis ((1,1), (1,-1)) € Proxcxp. How-
ever, I is not noncyclic relatively nonex-
pansive mapping, by setting (¥1,u1) =
(35.1) € Cand (Y2, u2) = (3,-1) € D,
we have

T, 11) = T2, u2)l|

- 12612 o \/i2 2
) \/(30) P2 (gp) 2
Iy = pll.

So, the conclusion of Gabeleh [|12] cannot
applied this example.

Now, we shall give a numerical ex-
periment and convergence behavior of A/-
grorithm I involving noncyclic relatively
Suzuki’s nonexpansive mapping. We set
¢n = O = Lu = 0.5+ 5. With initial
point t; = (0,1) and ¢#; = (0.5,1). Tables
-2 shows the numerical approximations for
I'’s best proximity pair ((1, 1); (1, 1)).

5. Conclusions

In this work we presented a new con-
cept of a noncyclic relatively Suzuki’s non-
expansive and used this concept for prov-
ing the convergence of a best proximity pair
in uniformly convex Banach space and an
illustrative example of noncyclic relatively
Suzuki’s nonexpansive mapping for support
our main results. Also we show that the
conclusion of Gabeleh [[12] is not applica-
ble for our main result.

V=12 + (1= (-1)?
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Table 1. Convergence of sequence for #; =

(0,1).

n th n

I (0D (0-1)

2 (0.978545,1)  (0.978545,-1)
3 (0.999288,1)  (0.999288,-1)
4 (0.999971,1)  (0.999971,-1)
5 (0.999999,1) (0.999999.-1)
6 (1,1) (1,-1)

7 (LD (1,-1)

Table 2. Convergence of sequence for #;

(0.5,1).
n tn tn
1 (0.5,1) (0.5,-1)
2 (0.989273,1)  (0.989273,-1)
3 (0.999644,1) (0.999644.-1)
4 (0.999985,1)  (0.999985,-1)
5 (0.999999,1) (0.999999,-1)
6 (1,1 (1,-1)
7 (1,1) (1,-1)
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