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ABSTRACT
The goal of this research is to examine a Thakur’s iterative approach for a noncyclic

relatively Suzuki’s nonexpansive with a projection mapping in the famework of convex uni-
formly Banach space. Using this iteration as a base, we offer a few sufficient conditions and
useful lemma to ensure the convergence of a best proximity pair for a mapping. We also pro-
vide a case study to illustrate the main results with numerical simulation for this algorithm.

Keywords: Best proximity pair ; Noncyclic mapping; Suzuki’s relatively nonexpansive ;
Uniformly convex Banach space.

1. Introduction
Since a large number of problems

can be transformed to fixed point problems,
fixed point theory is a useful technique for
problem resolution many in real-world sit-
uations. This can be expressed in the form

of equations Γ𝑥 = 𝑥, Γ : Ω → Ω, where is
topological space Ω. However, in situation
𝐸 and 𝐾 are nonempty disjoint subsets of a
metric space Ω. There may not always be
a solution to the aforementioned equation.
It is crucial in this case to find a solution 𝑢
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that minimizes the error 𝑑 (𝑢, Γ𝑢). This is
the concept behind, Fan proposed the best
approximation theory [1]. Afterward, sev-
eral authors have developed numerous ex-
pansions of Fan’s Theorem, one can refer to
[2–8]. In 2003, Banach’s contraction con-
cept was expanded to apply to cyclic map-
pings by Kirk et al., that is Υ : Λ ∪ Φ →
Λ ∪ Φ with the properties Υ(Λ) ⊆ Φ and
Υ(Φ) ⊆ Λ. They show that a mapping’s
fixed point solution implies that Λ must in-
tersectΦ, which leads to the conclusion that
Banach’s principle of contractions is im-
plied. In 2005, Eldred et al. [9] created a
mapping Γ : 𝐸 ∪ 𝐾 → 𝐸 ∪ 𝐾 with proper-
ties Γ(𝐸) ⊆ 𝐸 and Γ(𝐾) ⊆ 𝐾 . It is known
as a noncyclic mapping, which investigates
whether the following minimization prob-
lem existed to determine 𝑠 ∈ 𝐸 and ℎ ∈ 𝐾
satisfying

min
𝑠∈𝐸

𝑑 (𝑠, Γ𝑠), min
ℎ∈𝐾

𝑑 (ℎ, Γℎ)

and min
(𝑠,ℎ) ∈𝐸×𝐾

𝑑 (𝑠, ℎ), (1.1)

and a solution of Eq. (1.1) is an element
(𝑠, ℎ) ∈ 𝐸 × 𝐾 with the property

𝑠 = Γ𝑠, ℎ = Γℎ and 𝑑 (𝑠, ℎ) = 𝑑𝑖𝑠𝑡 (𝐸, 𝐾).

which is called a best proximal pair. Fol-
lowing, other authors have investigated and
developed the existence of a solution of Eq.
(1.1), see for instance[10–12].

On the other hand, for the ap-
proximation of nonexpansive and general-
ized nonexpansive mappings, many itera-
tive methods were introduced and studied
Suzuki [13] presented the condition C in
2008, which is weaker than nonexpansive-
ness, later we know that as the Suzuki’s type
or Suzuki’s generalized nonexpansive map-
ping. Thakur et al. [14] proposed the itera-
tion approach in 2017. For an arbitrary cho-
sen element 𝑢1 in subset of Banach spaceΩ

and sequence {𝑢𝑛} generated by :
𝑢𝑛+1 = (1 − 𝜎𝑛)Γ𝑤𝑛 + 𝜎𝑛Γ𝑣𝑛,
𝑣𝑛 = (1 − 𝜚𝑛)𝑤𝑛 + 𝜚𝑛Γ𝑤𝑛,
𝑤𝑛 = (1 − 𝜌𝑛)𝑢𝑛 + 𝜌𝑛Γ𝑢𝑛,

(1.2)

where {𝜎𝑛}, {𝜚𝑛} and {𝜌𝑛} are sequence in
(0, 1). In 2019,Suparatulatorn and Suantai
[14], suggested a new technique for global
optimum proximity minimization points in
a classes proximally nonexpansive map-
ping. Recently, Gabeleh [11] used the con-
cept of proximity pairs to examine iterations
of Ishikawa for the best proximity pairs uti-
lizing the concept of noncyclic relatively
nonexpansive mapping.

Motivated by the preceding, this pa-
per examines Thakur’s iterative approach
for a noncyclic Suzuki’s relatively non-
expansive with a projection mapping in
the famework of convex uniformly Ba-
nach space. First, we provide an algo-
rithm with sufficient conditions and use-
ful lemma. Second, we show the weak
and strong convergence of a best proxim-
ity pair. Eventually, we provide an example
todemonstrate the outcomes with numeri-
cal simulation for this algorithm. Also, we
show that the conclusion of Gabeleh [12] is
not applicable of our main result.

2. Preliminaries
In this part, we provide definitions

and attributes for our important results. As
nonempty subsets ofΩ, that 𝐸 , 𝐾 . (Ω, 𝑑) to
be a metric space. Define

𝑑 (𝐸, 𝐾) = inf{𝑑 (𝑠, 𝑤) : 𝑠 ∈ 𝐸, 𝑤 ∈ 𝐾},

𝐹𝑖𝑥(Γ) := {𝑠 ∈ 𝐸 × 𝐾 : 𝑠 = Γ𝑠}, 𝐹𝑖𝑥𝐸 (Γ)
:= {𝑠 ∈ 𝐸 : 𝑠 = Γ𝑠},

𝐸0 := {𝑠 ∈ 𝐸 : 𝑑 (𝑠, 𝑤) = 𝑑𝑖𝑠𝑡 (𝐸, 𝐾)
for some 𝑤 ∈ 𝐾},
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𝐾0 := {𝑤 ∈ 𝐾 : 𝑑 (𝑠, 𝑤) = 𝑑𝑖𝑠𝑡 (𝐸, 𝐾)
for some 𝑠 ∈ 𝐸},

𝑃𝑟𝑜𝑥𝐸×𝐾 (Γ) := {(𝑠, 𝑤) ∈ 𝐸 × 𝐾 : 𝑠 = Γ𝑠,

𝑤 = Γ𝑤

and 𝑑 (𝑠, 𝑤) = 𝑑𝑖𝑠𝑡 (𝐸, 𝐾)}.

Note that, if 𝑠 ∈ 𝐸 and𝑤 ∈ 𝐾 s.t. 𝑑 (𝑠, 𝑤) =
𝑑 (𝐸, 𝐾), then 𝑤 is proximal point of 𝑠 (𝑠 is
proximal point of 𝑤). Also, the proximal
pair of (𝐸, 𝐾) denote by (𝐸0, 𝐾0).

Definition 2.1. Let Γ : 𝐸 ∪𝐾 → 𝐸 ∪𝐾 . A
best proximity point of Γ in 𝐸 is defined as
a point 𝑠 ∈ 𝐸 where 𝑑 (𝑠, Γ𝑠) = 𝑑 (𝐸, 𝐾).

Definition 2.2. A pair (𝐸, 𝐾) is said to be
have 𝑃-property if and only if 𝑑 (𝑠1, 𝑤1) =
𝑑 (𝐸, 𝐾) and 𝑑 (𝑠2, 𝑤2) = 𝑑 (𝐸, 𝐾) implies
𝑑 (𝑠1, 𝑠2) = 𝑑 (𝑤1, 𝑤2).

Lemma 2.3 ([10]). The 𝑃-property exists
in every bounded, nonempty, closed, and
convex pair in a uniformly convex Banach
space Ω.

Definition 2.4 ([15]). If Γ : 𝐸∪𝐾 → 𝐸∪𝐾
is a cyclic mapping, ∃𝜉 ∈ [0, 1) s.t. said to
be if

𝑑 (Γ𝑟, Γ𝑠) ≤ 𝜉𝑑 (𝑟, 𝑠) + (1 − 𝜉)𝑑 (𝐸, 𝐾),
(2.1)

∀𝑟 ∈ 𝐸 and ∀𝑠 ∈ 𝐾. Then Γ is considered a
cyclic contraction.

If 𝑑 (𝐸, 𝐾) = 0, it is obvious that the
mapping of cyclic contractions is reduced to
mapping of contractions.

Definition 2.5. A noncyclic mapping Γ :
𝐸 ∪ 𝐾 → 𝐸 ∪ 𝐾 is called relatively nonex-
pansive if and only if

𝑑 (Γ𝑟, Γ𝑠) ≤ 𝑑 (𝑟, 𝑠), (2.2)

∀𝑟 ∈ 𝐸 and ∀𝑠 ∈ 𝐾.

Definition 2.6 ([16]). Anoncyclicmapping
Γ : 𝐸∪𝐾 → 𝐸∪𝐾 is called quasi-noncyclic
relatively nonexpansive if and only if

(i) 𝐹𝑖𝑥(Γ) ∩ 𝐸0 and 𝐹𝑖𝑥(Γ) ∩ 𝐾0 are
nonempty.

(ii) for each 𝑒 ∈ 𝐹𝑖𝑥(Γ) ∩ 𝐾0, 𝑔 ∈
𝐹𝑖𝑥(Γ) ∩ 𝐸0.{
𝑑 (Γ𝑢, 𝑒) ≤ 𝑑 (𝑢, 𝑒), 𝑢 ∈ 𝐸
𝑑 (𝑔, Γ𝑣) ≤ 𝑑 (𝑔, 𝑣), 𝑣 ∈ 𝐾. (2.3)

Note that, if 𝐸 = 𝐾 then the quasi-
noncyclic relatively nonexpansive becomes
the quasi-nonexpansive.

Definition 2.7. If a function that is strictly
increasing exists, 𝜙 : (0, 2] → [0, 1] in a
Banach space Ω, it is said to be uniformly
convex, such that, ∀𝑟, 𝑠, 𝜍 ∈ Ω, 𝜎 > 0 and
𝑙 ∈ [0, 2𝜎],

∥𝑟 − 𝜍 ∥ ≤ 𝜎
∥𝑠 − 𝜍 ∥ ≤ 𝜎
∥𝑟 − 𝑠∥ ≥ 𝑙

 =⇒




𝑟 + 𝑠2 − 𝜍






≤

(
1 − 𝜙

(
𝑙
𝜎

) )
𝜎.

Lemma 2.8. ([17, 18]) Let 𝐸, 𝐾 be a pair
of a reflexive and strictly convex Banach
space Ω that is nonempty closed, convex
and proximal. Define P : 𝐸0 ∪ 𝐾0 →
𝐸0 ∪ 𝐾0 as

P(𝑠) =
{
P𝐸0 (𝑠), 𝑠 ∈ 𝐾0

P𝐾0 (𝑠), 𝑠 ∈ 𝐸0.
(2.4)

Then

(i) ∥𝑠 −P𝑠∥ = 𝑑 (𝐸, 𝐾) for any 𝑠 ∈ 𝐸0 ∪
𝐾0 and P(𝐸0) ⊆ 𝐾0,P(𝐾0) ⊆ 𝐸0.

(ii) P is isometry, that is

∥P𝑠−P𝑠̄∥ = ∥𝑠−𝑠̄∥ for all 𝑠, 𝑠̄ ∈ 𝐸0,

and

∥P𝑤−P𝑤̄∥ = ∥𝑤−𝑤̄∥ for all 𝑤, 𝑤̄ ∈ 𝐾0.
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(iii) P is affine.

Remark 2.9. Well know that, if P is projec-
tion on 𝐸 , when 𝐸 ⊆ Ω,

∥P𝑠 − P𝑤∥ ≤ ∥𝑠 − 𝑤∥,

for all 𝑠, 𝑤 ∈ 𝐸 .

Lemma 2.10 ([13]). Assume that a normed
space Ω, has nonempty closed and con-
vex subsets, E and K. Then ∥𝑢 − P𝐾𝑢∥ =
𝑑 (𝐸, 𝐾) ∀𝑢 ∈ 𝐸0.

Definition 2.11 ([11]). Assume that the
pair (𝐸, 𝐾) in a uniformly convex Banach
space Ω, is nonempty, closed, convex, and
proximal. Then (𝐸, 𝐾) satisfying proximal
Opail’s condition, if every {𝑢𝑛} in 𝐸( re-
spectively in 𝐾) with {𝑢𝑛} ⇀ 𝑢 ∈ 𝐸 (re-
spectively {𝑢𝑛} ⇀ 𝑢 ∈ 𝐾), then

lim sup
𝑛→∞

∥𝑢𝑛 − P𝑢∥ < lim sup
𝑛→∞

∥𝑢𝑛 − 𝑤∥,

∀𝑤 ≠ P𝑢 ∈ 𝐾 (respectively for all 𝑤 ≠
P𝑢 ∈ 𝐸 .

Lemma 2.12 ([19]). Let {ℎ𝑛} and {𝑤𝑛}
be sequences in uniformly convex Banach
space Ω s.t. lim sup𝑛→∞ ∥ℎ𝑛∥ ≤ 𝜌,
lim sup𝑛→∞ ∥𝑤𝑛∥ ≤ 𝜌 and

lim
𝑛→∞

∥𝜛𝑛ℎ𝑛 + (1 −𝜛𝑛)𝑤𝑛∥ = 𝜌

for some 𝜌 ≥ 0 where {𝜛𝑛} ∈ R, 0 < 𝑐 ≤
𝜛𝑛 < 𝑑 < 1, ∀𝑛 ∈ N. Then

lim
𝑛→∞

∥ℎ𝑛 − 𝑤𝑛∥ = 0.

Definition 2.13 ([11]). A noncyclic map-
ping Γ : 𝐸 ∪ 𝐾 → 𝐸 ∪ 𝐾 is called
demi-closed at zero, if {(𝑢𝑛, 𝑢𝑛)} in (𝐸0 ×
𝐾0) with ∥𝑢𝑛 − 𝑢𝑛∥ = 𝑑 (𝐸, 𝐾) 𝑛 ∈
N, if {(𝑢𝑛, 𝑢𝑛)} ⇀ (𝑢★, 𝑢∗) and {(𝐼 −
Γ𝑢𝑛, 𝐼 − Γ𝑢𝑛)} → (0, 0) then (𝑢★, 𝑢∗) ∈
𝑃𝑟𝑜𝑥𝐸×𝐾 (Γ).

3. Main Results
This section presents the new idea

of a noncyclic relatively Suzuki’s nonex-
pansive and apply this idea to establish a
best proximity pair’s convergence in uni-
formly convex Banach space. First, se-
quence (𝑡𝑛, 𝑡̄𝑛) is defined using the concept
of Thakur’s iteration scheme with the con-
trol sequences as follows :
Algorithm I
Initialization : Set 𝑛 = 1 and choose 𝑡1 ∈ 𝐸0

and 𝑡̄1 := P(𝑡1) ∈ 𝐾0.
Iterative step. Compute (𝑡𝑛+1, 𝑡̄𝑛+1) by us-
ing

𝑡𝑛+1 = (1 − 𝜙𝑛)Γ𝑠𝑛 + 𝜙𝑛Γ𝑟𝑛,
𝑟𝑛 = (1 − 𝜗𝑛)𝑠𝑛 + 𝜗𝑛Γ𝑠𝑛,
𝑠𝑛 = (1 − 𝜁𝑛)𝑡𝑛 + 𝜁𝑛Γ𝑡𝑛,

(3.1)

and
𝑡̄𝑛+1 = (1 − 𝜙𝑛) 𝑡̄𝑛 + 𝜙𝑛Γ𝑟𝑛,
𝑟𝑛 = (1 − 𝜗𝑛) 𝑠̄𝑛 + 𝜗𝑛Γ𝑠̄𝑛,
𝑠̄𝑛 = (1 − 𝜁𝑛) 𝑡̄𝑛 + 𝜁𝑛Γ𝑡̄𝑛,

(3.2)

where {𝜙𝑛}, {𝜗𝑛} ⊂ [0, 1] and {𝜁𝑛} ⊂
[ 12 , 1] s.t.

lim
𝑛→∞

(1 − 2𝜁𝑛) ≠ 0. (3.3)

After setting 𝑛 to 𝑛 + 1, the iterative step is
performed.

Definition 3.1. Assume that 𝐸 and 𝐾 be
nonempty subsets of a normed spaces Ω.
Γ : 𝐸 ∪ 𝐾 → 𝐸 ∪ 𝐾 referred to as a non-
cyclic relatively Suzuki’s nonexpansive, if Γ
is noncyclic mapping and

1

2
∥ 𝑟−Γ𝑟 ∥≤∥ 𝑟−𝑔 ∥⇒ ∥Γ𝑟−Γ𝑔∥ ≤∥ 𝑟−𝑔 ∥,

(3.4)
∀(𝑟, 𝑔) ∈ 𝐸 × 𝐾 .

Proposition 3.2. Every noncyclic relatively
nonexpansive mapping is a noncyclic rela-
tively Suzuki’s nonexpansive.
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Proof. Clearly, from definition of non-
cyclic relatively nonexpansive and non-
cyclic relatively Suzuki’s nonexpansive.

□

Proposition 3.3. Assume that a mapping
Γ : 𝐸∪𝐾 → 𝐸∪𝐾 be a noncyclic relatively
Suzuki’s nonexpansive has a best proximity
pair. Then Γ is a quasi-noncyclic relatively
nonexpansive mapping.

Proof. Let (𝑠, 𝑟) best proximity pair of Γ.
Then 𝑠 = Γ𝑠 and 𝑟 = Γ𝑟 . Since,

1

2
∥𝑟 − Γ𝑟 ∥ = 0 ≤ ∥𝑞 − 𝑟 ∥ for all 𝑞 ∈ 𝐸,

we have

∥𝑟 − Γ𝑞∥ = ∥Γ𝑟 − Γ𝑞∥ ≤ ∥𝑟 − 𝑞∥.

Similarly, ∥𝑠 − Γ𝑧∥ = ∥Γ𝑠 − Γ𝑧∥ ≤ ∥𝑠 − 𝑧∥
for all 𝑧 ∈ 𝐾. Then Γ is a quasi-noncyclic
relatively nonexpansive mapping. □

Lemma 3.4. Let Γ : 𝐸 ∪ 𝐾 → 𝐸 ∪ 𝐾 be a
noncyclic relatively Suzuki’s nonexpansive
mapping. be a mapping on a subset of a
Banach space. Then

∥𝑠 − Γ𝑟 ∥ ≤ 3∥𝑠 − Γ𝑠∥ + ∥𝑠 − 𝑟 ∥,

for all (𝑠, 𝑟) ∈ 𝐸 × 𝐾.

Proof. By applying the proof of Lemma 7
in [20], we obtain the result of this Lemma.

□

Lemma 3.5. Assume that (𝐸, 𝐾) be a
closed, nonempty convex pair of uniformly
convex Banach space Ω. and let Γ : 𝐸 ∪
𝐾 → 𝐸 ∪ 𝐾 be a noncyclic relatively
Suzuki’s nonexpansive mapping. Let {𝑡𝑛},
{𝑡̄𝑛} be generated by Algorithm I.

(i) lim𝑛→∞ ∥𝑡𝑛−𝜃∥ and lim𝑛→∞ ∥ 𝑡̄𝑛−𝑞∥
exists for any 𝜃 ∈ 𝐹𝑖𝑥(Γ) ∩ 𝐾0, 𝑞 ∈
𝐹𝑖𝑥(Γ) ∩ 𝐸0,

(ii) sequence {𝑡𝑛} and {𝑡̄𝑛} are bounded.

Proof. Note that, since every noncyclic
contraction is relatively nonexpansive, and
every noncyclic relatively nonexpansive is
a noncyclic relatively Suzuki’s nonexpan-
sive mapping, and uniformly convex is
strictly convex, then by Theorem 3.5 in
[21], we have Γ has best proximity pair
and (𝐸0, 𝐾0) is nonempty closed and con-
vex pair of Ω. By Algorithm I with any
𝜃 ∈ 𝐹𝑖𝑥(Γ) ∩ 𝐾0, we have

∥𝑡𝑛+1 − 𝜃∥ = ∥(1 − 𝜙𝑛)Γ𝑠𝑛 + 𝜙𝑛Γ𝑟𝑛 − 𝜃∥
= ∥𝜙𝑛 (Γ𝑟𝑛 − 𝜃)

+(1 − 𝜙𝑛)(Γ𝑠𝑛 − 𝜃)∥
≤ 𝜙𝑛∥Γ𝑟𝑛 − 𝜃∥ + (1 − 𝜙𝑛)∥Γ𝑠𝑛 − 𝜃∥
≤ 𝜙𝑛∥𝑟𝑛 − 𝜃∥ + (1 − 𝜙𝑛)∥𝑠𝑛 − 𝜃∥
≤ 𝜙𝑛∥(1 − 𝜗𝑛)𝑠𝑛 + 𝜗𝑛Γ𝑠𝑛 − 𝜃∥

+(1 − 𝜙𝑛)∥(1 − 𝜁𝑛)𝑡𝑛
+𝜁𝑛Γ𝑡𝑛 − 𝜃∥

= 𝜙𝑛∥𝜗𝑛 (Γ𝑠𝑛 − 𝜃)
+(1 − 𝜗𝑛)(𝑠𝑛 − 𝜃)∥

+(1 − 𝜙𝑛)∥𝜁𝑛 (Γ𝑡𝑛 − 𝜃)
+(1 − 𝜁𝑛) (𝑡𝑛 − 𝜃∥

≤ 𝜙𝑛
(
𝜗𝑛∥Γ𝑠𝑛 − 𝜃∥
+(1 − 𝜗𝑛)∥𝑠𝑛 − 𝜃)∥

)
+(1 − 𝜙𝑛)

(
𝜁𝑛∥Γ𝑡𝑛 − 𝜃∥

+(1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥
)

≤ 𝜙𝑛𝜗𝑛∥𝑠𝑛 − 𝜃∥
+𝜙𝑛 (1 − 𝜗𝑛)∥𝑠𝑛 − 𝜃)∥
+(1 − 𝜙𝑛)𝜁𝑛∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛)(1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥

= 𝜙𝑛∥𝑠𝑛 − 𝜃∥
+(1 − 𝜙𝑛)𝜁𝑛∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛)(1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥

= 𝜙𝑛∥(1 − 𝜁𝑛)𝑡𝑛 + 𝜁𝑛Γ𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛)𝜁𝑛∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛)(1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥

= 𝜙𝑛∥𝜁𝑛 (Γ𝑡𝑛 − 𝜃)
+(1 − 𝜁𝑛) (𝑡𝑛 − 𝜃)∥
+(1 − 𝜙𝑛)𝜁𝑛∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛) (1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥
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≤ 𝜙𝑛𝜁𝑛∥𝑡𝑛 − 𝜃∥
+𝜙𝑛 (1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛)𝜁𝑛∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛) (1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥

≤ 𝜙𝑛∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛)𝜁𝑛∥𝑡𝑛 − 𝜃∥
+(1 − 𝜙𝑛) (1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥

= (𝜙𝑛 − 𝜁𝑛 − 𝜙𝑛𝜁𝑛 + 1

−𝜁𝑛 − 𝜙𝑛 + 𝜙𝑛𝜁𝑛)∥𝑡𝑛 − 𝜃∥
≤ ∥𝑡𝑛 − 𝜃∥.

This means that {∥𝑡𝑛 − 𝜃∥} is non-
increasing and bounded. Hence
lim𝑛→∞ ∥𝑡𝑛 − 𝜃∥ exists. Since {∥𝑡𝑛 − 𝜃∥}
bounded, 𝑀 > 0 exists such that
∥𝑡𝑛 − 𝜃∥ ≤ 𝑀 for all 𝑛 ∈ N. Further

∥𝑡𝑛∥ = ∥𝑡𝑛 − 𝜃 + 𝜃∥ ≤ ∥𝑡𝑛 − 𝜃∥ + ∥𝜃∥
≤ 𝑀 + ∥𝜃∥,

for all 𝑛 ∈ N. Then {𝑡𝑛} is also bounded.
Similarly, we can show that lim𝑛→∞ ∥ 𝑡̄𝑛−𝜃∥
exists and {𝑡̄𝑛} is bounded.

□

Lemma 3.6. Let (𝐸, 𝐾) be a nonempty
closed and convex pair of uniformly convex
Banach spaceΩ such that 𝐸 or 𝐾 bounded,
and let Γ : 𝐸 ∪ 𝐾 → 𝐸 ∪ 𝐾 be a noncyclic
relatively Suzuki’s nonexpansive mapping.
Let {𝑡𝑛}, {𝑡̄𝑛}, {𝑟𝑛}, {𝑟𝑛},{𝑠𝑛} and {𝑠̄𝑛} be
created by Algorithm I. Then

lim
𝑛→∞

∥𝑠𝑛 − Γ𝑠𝑛∥ = 0, lim
𝑛→∞

∥𝑡𝑛 − Γ𝑡𝑛∥ = 0

and

lim
𝑛→∞

∥ 𝑠̄𝑛 − Γ𝑠̄𝑛∥ = 0, lim
𝑛→∞

∥ 𝑡̄𝑛 − Γ𝑡̄𝑛∥ = 0.

Further,

lim
𝑛→∞

∥Γ𝑟𝑛−Γ𝑠𝑛∥ = 0, lim
𝑛→∞

∥Γ𝑟𝑛−Γ𝑠̄𝑛∥ = 0.

Proof. Let (𝜃, 𝜃) ∈ 𝑃𝑟𝑜𝑥𝐸×𝐾 (Γ),then 𝜃 =
Γ𝜃, 𝜃 = Γ𝜃 and ∥𝜃 − 𝜃∥ = 𝑑 (𝐸, 𝐾). By

Lemma 3.5, we have lim𝑛→∞ ∥𝑡𝑛 − 𝜃∥ ex-
ists. Suppose that

lim
𝑛→∞

∥𝑡𝑛 − 𝜃∥ = 𝑘. (3.5)

Using Proposition 3.3, we have

∥Γ𝑠𝑛 − 𝜃∥ ≤ ∥𝑠𝑛 − 𝜃∥
≤ ∥(1 − 𝜁𝑛)𝑡𝑛 + 𝜁𝑛Γ𝑡𝑛 − 𝜃∥
= ∥𝜁𝑛 (Γ𝑡𝑛 − 𝜃) + (1 − 𝜁𝑛)(𝑡𝑛 − 𝜃)∥
≤ 𝜁𝑛∥𝑡𝑛 − 𝜃∥ + (1 − 𝜁𝑛)∥𝑡𝑛 − 𝜃∥
= ∥𝑡𝑛 − 𝜃∥,

and

∥Γ𝑟𝑛 − 𝜃∥ ≤ ∥𝑟𝑛 − 𝜃∥
≤ ∥(1 − 𝜗𝑛)𝑠𝑛 + 𝜗𝑛Γ𝑠𝑛 − 𝜃∥
= ∥𝜗𝑛 (Γ𝑠𝑛 − 𝜃)

+(1 − 𝜗𝑛)(𝑠𝑛 − 𝜃)
≤ 𝜗𝑛∥𝑠𝑛 − 𝜃∥

+(1 − 𝜗𝑛)∥𝑠𝑛 − 𝜃∥
= ∥𝑠𝑛 − 𝜃∥
≤ ∥𝑡𝑛 − 𝜃∥.

Therefore

lim sup
𝑛→∞

∥Γ𝑠𝑛 − 𝜃∥ ≤ lim sup
𝑛→∞

∥𝑠𝑛 − 𝜃∥

≤ lim sup
𝑛→∞

∥𝑡𝑛 − 𝜃∥

= 𝑘, (3.6)

and

lim sup
𝑛→∞

∥Γ𝑟𝑛 − 𝜃∥ ≤ lim sup
𝑛→∞

∥𝑟𝑛 − 𝜃∥

≤ lim sup
𝑛→∞

∥𝑡𝑛 − 𝜃∥

= 𝑘. (3.7)

Furthermore,
lim
𝑛→∞

∥𝜙𝑛 (Γ𝑟𝑛 − 𝜃) + (1 − 𝜙𝑛) (Γ𝑠𝑛 − 𝜃)∥

= lim
𝑛→∞

∥(1 − 𝜙𝑛)Γ𝑠𝑛 + 𝜙𝑛Γ𝑟𝑛 − 𝜃∥
= lim

𝑛→∞
∥𝑡𝑛+1 − 𝜃∥
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= 𝑘.

By Lemma 2.12, we have

lim
𝑛→∞

∥Γ𝑟𝑛 − Γ𝑠𝑛∥ = 0. (3.8)

Moreover, by Eq. (3.1), we have

lim
𝑛→∞

∥𝑡𝑛+1−Γ𝑠𝑛∥ = lim
𝑛→∞

𝜙𝑛∥Γ𝑟𝑛−Γ𝑠𝑛∥ = 0.

Next, wewill show that lim
𝑛→∞

∥𝑠𝑛−Γ𝑠𝑛∥ = 0.

Since

∥𝑡𝑛+1 − 𝜃∥ = ∥(1 − 𝜙𝑛)Γ𝑠𝑛 + 𝜙𝑛Γ𝑟𝑛 − 𝜃∥
≤ 𝜙𝑛∥Γ𝑟𝑛 − Γ𝑠𝑛∥ + ∥Γ𝑠𝑛 − 𝜃∥.

It follows that Eqs. (3.5) and (3.8) combine
to give

𝑘 ≤ lim inf
𝑛→∞

∥Γ𝑠𝑛 − 𝜃∥. (3.9)

Hence, by Eqs. (3.6) and (3.9)

lim
𝑛→∞

∥Γ𝑠𝑛 − 𝜃∥ = 𝑘. (3.10)

Further,

∥Γ𝑠𝑛 − 𝜃∥ ≤ ∥Γ𝑠𝑛 − Γ𝑟𝑛∥ + ∥Γ𝑟𝑛 − 𝜃∥
≤ ∥Γ𝑠𝑛 − Γ𝑟𝑛∥ (3.11)
+ ∥𝑟𝑛 − 𝜃∥.

Then, by Eqs. (3.10)-(3.11)

𝑘 ≤ lim inf
𝑛→∞

∥𝑟𝑛 − 𝜃∥. (3.12)

Therefore, by Eqs. (3.1), (3.5), and
(3.12) combine to give
lim
𝑛→∞

∥(1 − 𝜗𝑛)(𝑠𝑛 − 𝜃) + 𝜗𝑛 (Γ𝑠𝑛 − 𝜃)∥

= lim
𝑛→∞

∥(1 − 𝜗𝑛)𝑠𝑛 + 𝜗𝑛Γ𝑠𝑛 − 𝜃∥
= lim

𝑛→∞
∥𝑟𝑛 − 𝜃∥

= 𝑘. (3.13)

Again, by Lemma 2.12, give us

lim
𝑛→∞

∥𝑠𝑛 − Γ𝑠𝑛∥ = 0. (3.14)

On the other hand, by Eq. (3.1), we have
𝑠𝑛 = (1 − 𝜁𝑛)𝑡𝑛 + 𝜁𝑛Γ𝑡𝑛, then 𝑠𝑛 − 𝑡𝑛 =
𝜁𝑛 (Γ𝑡𝑛−𝑡𝑛), ∀𝑛 ∈ N. Since, 𝜁𝑛 ∈ [1/2, 1],
then

1

2
∥𝑡𝑛 − Γ𝑡𝑛∥ ≤ 𝜁𝑛∥𝑡𝑛 − Γ𝑡𝑛∥

= ∥𝑡𝑛 − 𝑠𝑛∥, ∀𝑛 ∈ N.

By Eq. (3.4), we have

∥Γ𝑡𝑛 − Γ𝑠𝑛∥ ≤ ∥𝑡𝑛 − 𝑠𝑛, ∥ ∀𝑛 ∈ N.
(3.15)

Since

∥𝑡𝑛 − Γ𝑡𝑛∥ ≤ ∥𝑡𝑛 − 𝑠𝑛∥ + ∥𝑠𝑛 − Γ𝑠𝑛∥
+∥Γ𝑠𝑛 − Γ𝑡𝑛∥

≤ ∥𝑡𝑛 − 𝑠𝑛∥ + ∥𝑠𝑛 − Γ𝑠𝑛∥
+∥𝑠𝑛 − 𝑡𝑛∥

= 2∥𝑠𝑛 − 𝑡𝑛∥ + ∥𝑠𝑛 − Γ𝑠𝑛∥
= 2∥(1 − 𝜁𝑛)𝑡𝑛 + 𝜁𝑛Γ𝑡𝑛 − 𝑡𝑛∥

+∥𝑠𝑛 − Γ𝑠𝑛∥
= 2𝜁𝑛∥Γ𝑡𝑛 − 𝑡𝑛∥

+∥𝑠𝑛 − Γ𝑠𝑛∥.

Then, we have

∥𝑡𝑛 − Γ𝑡𝑛∥ ≤ 1

1 − 2𝜁𝑛
∥𝑠𝑛 − Γ𝑠𝑛∥

≤ 1

1 − 2𝑏
∥𝑠𝑛 − Γ𝑠𝑛∥.

Taking 𝑛 → ∞, by using Eqs. (3.3) and
(3.14), we have

lim
𝑛→∞

∥𝑡𝑛 − Γ𝑡𝑛∥ = 0.

In the same way, we may demon-
strate that

lim
𝑛→∞

∥ 𝑠̄𝑛 − Γ𝑠̄𝑛∥ = 0,

and
lim
𝑛→∞

∥ 𝑡̄𝑛 − Γ𝑡̄𝑛∥ = 0.

□
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Theorem 3.7. Let (𝐸, 𝐾) be a nonempty,
bounded, closed and convex pair of uni-
formly convex Banach spaceΩ. Let Γ : 𝐸 ∪
𝐾 → 𝐸∪𝐾 is a noncyclic Suzuki’s relatively
nonexpansive andP : 𝐸0∪𝐾0 → 𝐸0∪𝐾0 is
a projection mapping defined as Eq. (2.4).
Assume that {𝑡𝑛} and {𝑡̄𝑛} are a sequence
generated by Algorithm I. Then there exist
(𝑡★, 𝑡̄∗) ∈ 𝐸0 × 𝐾0 such that

(i) 𝑇P(𝑡★) = P(𝑡★) and ΓP(𝑡∗) = P(𝑡∗),

(ii) 𝑡★ = Γ𝑡★ and 𝑡̄∗ = Γ𝑡̄∗,

(iii) PΓ𝑡★ = ΓP𝑡★ and PΓ𝑡̄∗ = ΓP𝑡̄∗.

Furthermore, if (𝐸0, 𝐾0) satisfying proxi-
mal Opail’s condition then {(𝑡𝑛, 𝑡̄𝑛)} con-
verges weakly to (𝑡★, 𝑡̄∗).

Proof. Let {𝑡𝑛} and {𝑡̄𝑛} are a sequence
generated by Algorithm I. By Lemma 3.5
(ii), sequence {𝑡𝑛} and {𝑡̄𝑛} are bounded.
Then there exist {𝑡𝑛𝑘 } ⊆ {𝑡𝑛} with {𝑡𝑛𝑘 } ⇀
𝑡★ ∈ 𝐸0, and a subsequence {𝑡̄𝑛𝑘 } of {𝑡̄𝑛}
with converges weakly to 𝑡̄∗ ∈ 𝐾0. Since
𝑡★ ∈ 𝐸0, then

∥𝑡★ − P𝑡★∥ = 𝑑 (𝐸, 𝐾). (3.16)

By Lemma 3.4, we have

∥𝑡𝑛𝑘−ΓP(𝑡★)∥ ≤ 3∥𝑡𝑛𝑘−Γ𝑡𝑛𝑘 ∥+∥𝑡𝑛𝑘−P(𝑡★)∥.

Letting 𝑘 → ∞, we get

∥𝑡★ − ΓP(𝑡★)∥ ≤ ∥𝑡★ − P(𝑡★)∥ = 𝑑 (𝐸, 𝐾),

and this yields that

∥𝑡★ − ΓP(𝑡★)∥ = 𝑑 (𝐸, 𝐾). (3.17)

By Eqs. (3.16), (3.17) and Lemma 2.3, give
us ΓP(𝑡★) = P(𝑡★). Hence, by Lemma 2.8
(see also Remark 2.9)

∥ΓP(𝑡★) − PΓ(𝑡★)∥ = ∥P(𝑡★) − PΓ(𝑡★)∥

≤ ∥𝑡★ − Γ𝑡★∥. (3.18)

Next, we will show that 𝑡★ = Γ𝑡★. By
Lemma 3.4, we have

∥𝑡𝑛𝑘 − Γ𝑡★∥ ≤ 3∥𝑡𝑛𝑘 − Γ𝑡𝑛𝑘 ∥ + ∥𝑡𝑛𝑘 − 𝑡★∥,

∀𝑛 ∈ N. Letting 𝑛→ ∞, we get

∥𝑡★ − Γ𝑡★∥ = 0,

and hence 𝑡★ = Γ𝑡★. Therefore, by Eq.
(3.18), we have

∥ΓP(𝑡★) − PΓ(𝑡★)∥ = 0,

that is ΓP(𝑡★) = PΓ(𝑡★).
Similarly, we can show that 𝑡̄∗ = Γ𝑡̄∗

and PΓ𝑡̄∗ = ΓP𝑡̄∗. Therefore, we obtain (𝑖),
(𝑖𝑖), (𝑖𝑖𝑖) and (𝑖𝑖𝑖).

Next, we will show that {𝑡𝑛} con-
verges weakly to 𝑡★. Let {𝑡𝑛 𝑗 } be an-
other subsequence of {𝑡𝑛} which converges
weakly to 𝑧 ∈ 𝐸0. Suppose that 𝑡★ ≠ 𝑧.
Then, by Lemma 3.5(i) lim

𝑛→∞
∥𝑡𝑛 −P𝑡★∥ and

lim
𝑛→∞

∥𝑡𝑛 − P𝑧∥ exist. From the fact that
(𝐸0, 𝐾0) satisfies proximal Opail’s condi-
ton, we have

lim sup
𝑛→∞

∥𝑡𝑛 − P𝑡★∥ = lim sup
𝑘→∞

∥𝑡𝑛𝑘 − P𝑡★∥

< lim sup
𝑘→∞

∥𝑡𝑛𝑘 − P𝑧∥

= lim
𝑛→∞

∥𝑡𝑛 − P𝑧∥

= lim
𝑗→∞

∥𝑡𝑛 𝑗 − P𝑧∥

< lim sup
𝑗→∞

∥𝑡𝑛 𝑗 − P𝑡★∥

= lim sup
𝑛→∞

∥𝑡𝑛 − P𝑡★∥,

which is a contradiction and thus 𝑡★ = 𝑧.
Hence {𝑡𝑛} ⇀ 𝑡★ ∈ 𝐹𝑖𝑥(Γ) ∩𝐸0. Likewise,
we can demonstrate that {𝑡̄𝑛} converges
weakly to some element 𝑡̄∗ ∈ 𝐹𝑖𝑥(Γ) ∩
𝐾0. □

Theorem 3.8. Let (𝐸, 𝐾) be a nonempty,
bounded, closed and convex pair of
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uniformly convex Banach space Ω with
(𝐸0, 𝐾0) satisfying proximal Opail’s condi-
tion. Let Γ : 𝐸 ∪𝐾 → 𝐸 ∪𝐾 is a noncyclic
Suzuki’s relatively nonexpansive, and {𝑢𝑛},
{𝑢𝑛} are sequence generated by Algorithm
I. Then 𝐼 − Γ is demi-closed at zero.

Proof. By Lemma 3.7, we have {(𝑡𝑛, 𝑡̄𝑛)}
converges weakly to (𝑡★, 𝑡̄∗). Now, we
claim that

∥𝑡𝑛 − 𝑡̄𝑛∥ = 𝑑 (𝐸, 𝐾) ∀𝑛 ∈ N. (3.19)

Since {𝑡𝑛}, {𝑡̄𝑛} be a sequence generated by
Algorithm I, then by assumption

∥𝑡1 − 𝑡̄1∥ = 𝑑 (𝐸, 𝐾).

Suppose that, for each 𝑘 ∈ N, we have

∥𝑡𝑘 − 𝑡̄𝑘 ∥ = 𝑑 (𝐸, 𝐾), (3.20)

and Lemma 3.6, for any 𝜖 > 0, ∃𝑁 ∈ Nsuch
that

𝜁𝑘 ∥𝑡𝑘 − Γ𝑡𝑘 ∥ <
𝜖

6
,

𝜁𝑘 ∥ 𝑡̄𝑘 − Γ𝑡̄𝑘 ∥ <
𝜖

6
,

∥Γ𝑠𝑘 − 𝑠𝑘 ∥ <
𝜖

6
,

∥ 𝑠̄𝑘 − Γ𝑠̄𝑘 ∥ <
𝜖

6
,

𝜙𝑘 ∥Γ𝑟𝑘 − Γ𝑠𝑘 ∥ <
𝜖

6
,

𝜙𝑘 ∥Γ𝑠̄𝑘 − Γ𝑟𝑘 ∥ <
𝜖

6
.

for all 𝑘 ≥ 𝑁. Then, we have

∥𝑡𝑘+1 − 𝑡̄𝑘+1∥ = ∥((1 − 𝜙𝑘 )Γ𝑠𝑘 + 𝜙𝑘Γ𝑟𝑘 )
−((1 − 𝜙𝑘 )Γ𝑠̄𝑘 + 𝜙𝑛Γ𝑟𝑘 )∥

= ∥Γ𝑠𝑘 + 𝜙𝑛 (Γ𝑟𝑘 − Γ𝑠𝑘 )
−Γ𝑠̄𝑘 + (𝜙𝑘 (Γ𝑠̄𝑘 − Γ𝑟𝑘 )∥

≤ ∥Γ𝑠𝑘 − Γ𝑠̄𝑘 ∥
+𝜙𝑘 ∥Γ𝑟𝑘 − Γ𝑠𝑘 ∥
+𝜙𝑘 ∥Γ𝑠̄𝑘 − Γ𝑟𝑘 ∥

= ∥(Γ𝑠𝑘 − 𝑠𝑘 ) + (𝑠𝑘 − 𝑠̄𝑘 )
+( 𝑠̄𝑘 − Γ𝑠̄𝑘 )∥
+𝜙𝑘 ∥Γ𝑟𝑘 − Γ𝑠𝑘 ∥
+𝜙𝑘 ∥Γ𝑠̄𝑘 − Γ𝑟𝑘 ∥

≤ ∥𝑠𝑘 − 𝑠̄𝑘 ∥ + ∥Γ𝑠𝑘 − 𝑠𝑘 ∥
+∥ 𝑠̄𝑘 − Γ𝑠̄𝑘 ∥
+𝜙𝑘 ∥Γ𝑟𝑘 − Γ𝑠𝑘 ∥
+𝜙𝑘 ∥Γ𝑠̄𝑘 − Γ𝑟𝑘 ∥

= ∥((1 − 𝜁𝑘 )𝑡𝑘 + 𝜁𝑘Γ𝑡𝑘 )
−((1 − 𝜁𝑘 ) 𝑡̄𝑘 + 𝜁𝑘Γ𝑡̄𝑘 )∥
+∥Γ𝑠𝑘 − 𝑠𝑘 ∥ + ∥ 𝑠̄𝑘 − Γ𝑠̄𝑘 ∥
+𝜙𝑘 ∥Γ𝑟𝑘 − Γ𝑠𝑘 ∥
+𝜙𝑘 ∥Γ𝑠̄𝑘 − Γ𝑟𝑘 ∥

≤ ∥𝑡𝑘 − 𝑡̄𝑘 ∥ + 𝜁𝑘 ∥𝑡𝑘 − Γ𝑡𝑘 ∥
+𝜁𝑘 ∥ 𝑡̄𝑘 − Γ𝑡̄𝑘 ∥
+∥Γ𝑠𝑘 − 𝑠𝑘 ∥ + ∥ 𝑠̄𝑘 − Γ𝑠̄𝑘 ∥
+𝜙𝑘 ∥Γ𝑟𝑘 − Γ𝑠𝑘 ∥
+𝜙𝑘 ∥Γ𝑠̄𝑘 − Γ𝑟𝑘 ∥

< ∥𝑡𝑘 − 𝑡̄𝑘 ∥ +
𝜖

6
+ 𝜖
6

+ 𝜖
6
+ 𝜖
6
+ 𝜖
6
+ 𝜖
6

= ∥𝑡𝑘 − 𝑡̄𝑘 ∥ + 𝜖
= 𝑑 (𝐸, 𝐾) + 𝜖 .

Hence, we can conclude that ∥𝑡𝑘+1 −
𝑡̄𝑘+1∥ ≤ 𝑑 (𝐸, 𝐾). By mathematical induc-
tion, we can imply that the claim Eq. (3.19)
holds. Then

𝑑 (𝐸, 𝐾) ≤ ∥𝑡★ − 𝑡̄∗∥
≤ lim inf

𝑛→∞
∥𝑡𝑛 − 𝑡̄𝑛∥

= 𝑑 (𝐸, 𝐾).

Therefore (𝑡★, 𝑡̄∗) ∈ 𝑃𝑟𝑜𝑥𝐸×𝐾 (Γ)
and hence the proof is complete. □

Theorem 3.9. Let (𝐸, 𝐾) be a nonempty,
bounded, closed and convex pair of
uniformly convex Banach space Ω with
(𝐸0, 𝐾0) satisfying proximal Opail’s condi-
tion. Let Γ : 𝐸 ∪𝐾 → 𝐸 ∪𝐾 be a noncyclic
relatively Suzuki’s nonexpansive mapping,
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{𝑡𝑛} and {𝑡̄𝑛} be generated by Algorithm I.
Then {(𝑡𝑛, 𝑡̄𝑛)} converges weakly to a best
proximity pair of Γ.

Proof. By Theorem 3.7, we now have the
sequence {(𝑡𝑛, 𝑡̄𝑛)} converges weakly to
(𝑡★, 𝑡̄∗) ∈ 𝐸0 × 𝐾0, 𝑡★ = Γ𝑡★ and 𝑡̄∗ =
Γ𝑡̄∗. By Lemma 3.6, we have {(𝐼 − Γ𝑡𝑛, 𝐼 −
Γ𝑡̄𝑛)} converges to (0, 0), by Theorem 3.8,
the sequence {(𝑡𝑛, 𝑡̄𝑛)} converges weakly
to (𝑡★, 𝑡̄∗) ∈ 𝑃𝑟𝑜𝑥𝐸×𝐾 (Γ). Hence the
sequence {(𝑡𝑛, 𝑡̄𝑛)} converges weakly to a
best proximity pair of Γ. □

Corollary 3.10. Assume that (𝐸, 𝐾) be a ,
bounded, closed, nonempty and convex pair
of uniformly convex Banach space Ω. As-
sume that Γ : 𝐸∪𝐾 → 𝐸∪𝐾 be a noncyclic
relatively nonexpansive mapping, {𝑡𝑛} and
{𝑡̄𝑛} generated by Algorithm I. {(𝑡𝑛, 𝑡̄𝑛)}
converges weakly to a best proximity pair
of Γ.

Next, we give a strong convergence
of Algorithm I with noncyclic relatively
Suzuki’s nonexpansive mapping.

Theorem 3.11. Let (𝐸, 𝐾) be a nonempty,
compact and convex pair of uniformly con-
vex Banach spaceΩ. LetΓ : 𝐸∪𝐾 → 𝐸∪𝐾
be a noncyclic relatively Suzuki’s nonexpan-
sive mapping, {𝑡𝑛} and {𝑡̄𝑛} be generated
by Algorithm I. Then {(𝑡𝑛, 𝑡̄𝑛)} converges
strongly to a best proximity pair of Γ.

Proof. By Lemma 3.6, we have {(𝐼 −
Γ𝑡𝑛, 𝐼 − Γ𝑡̄𝑛)} converges to (0, 0). Since
(𝐸, 𝐾) is a compact subset of Ω and
{(𝑡𝑛, 𝑡̄𝑛} is a sequences in 𝐸0 × 𝐾0. Then
there exist {𝑡𝑛𝑘 } ⊆ {𝑡𝑛} with converges
strongly to 𝑡★ ∈ 𝐸0, and {𝑡̄𝑛𝑘 } ⊆ {𝑡̄𝑛}
with converges strongly to 𝑡̄∗ ∈ 𝐾0. Since
𝑡★ ∈ 𝐸0, then

∥𝑡★ − P𝑡★∥ = 𝑑 (𝐸, 𝐾). (3.21)

By Lemma 3.4, we have

∥𝑡𝑛𝑘 − Γ𝑡★∥ ≤ 3∥𝑡𝑛𝑘 − Γ𝑡𝑛𝑘 ∥ + ∥𝑡𝑛𝑘 − 𝑡★∥,

for all 𝑘 ∈ N. Letting 𝑛→ ∞, we get

∥𝑡★ − Γ𝑡★∥ = 0,

and hence 𝑡★ = Γ𝑡★. Similarly, 𝑡̄∗ = Γ𝑡̄∗.
Then 𝑡★ ∈ 𝐹𝑖𝑥(Γ) ∩ 𝐸0 and 𝑡̄∗ ∈ 𝐹𝑖𝑥(Γ) ∩
𝐾0. Therefore, by Lemma 3.5(i) lim

𝑛→∞
∥𝑡𝑛 −

P𝑡★∥ and lim
𝑛→∞

∥ 𝑡̄𝑛 − P𝑡∗∥ exist. Hence

lim
𝑛→∞

∥𝑡𝑛 − P𝑡★∥ = lim
𝑘→∞

∥𝑡𝑛𝑘 − P𝑡★∥

= ∥𝑡★ − P𝑡★∥ = 𝑑 (𝐸, 𝐾).

Therefore {𝑡𝑛} with converges
strongly to 𝑡★ ∈ 𝐸0. Similarly, {𝑡̄𝑛} with
converges strongly to 𝑡̄∗ ∈ 𝐾0. Further-
more, by the same argument as the proof of
Theorem 3.8, we can show that

∥𝑡𝑛 − 𝑡̄𝑛∥ = 𝑑 (𝐸, 𝐾) ∀𝑛 ∈ N. (3.22)

Hence,

∥𝑡★ − 𝑡̄∗∥ = lim
𝑛→∞

∥𝑡𝑛 − 𝑡̄𝑛∥ = 𝑑 (𝐴, 𝐵),

and the proof is complete. □

Corollary 3.12. Let (𝐸, 𝐾) be a nonempty,
compact and convex pair of uniformly con-
vex Banach space Ω. Let Γ : 𝐸 ∪ 𝐾 →
𝐸 ∪ 𝐾 be a noncyclic relatively nonexpan-
sive mapping, {𝑡𝑛} and {𝑡̄𝑛} be generated
by Algorithm I. Then {(𝑡𝑛, 𝑡̄𝑛)} converges
strongly to a best proximity pair of Γ.

4. An Example and Numerical Simu-
lation

We present in this section, an il-
lustrative example of noncyclic relatively
Suzuki’s nonexpansivemapping for support
our main results with numerical experiment
via Algroithm I. Also we show that the con-
clusion of Gabeleh [12] is not applicable for
our main result.
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Example 4.1. Let Ω = R2 with the Eu-
clidian norm, 𝐸 = {(𝜓, 𝜇) ∈ R2 : 0 ≤
𝜓 ≤ 1, 1 ≤ 𝜇 ≤ 2} and 𝐷 = {(𝜓, 𝜇) ∈
R2 : 0 ≤ 𝜓 ≤ 1,−2 ≤ 𝜇 ≤ −1}. Then
𝐶0 = {(𝜓, 1) ∈ R2 : 0 ≤ 𝜓 ≤ 1},
𝐷 = {(𝜓,−1) ∈ R2 : 0 ≤ 𝜓 ≤ 1}
and 𝑑 (𝐶, 𝐷) = 2. Define the mapping
Γ : 𝐶 ∪ 𝐷 → 𝐶 ∪ 𝐷 by

Γ(𝜓, 𝜇) =


(1 − 𝜓, 𝜇) if 𝜓 ∈ [0, 16 );

( 𝜓+56 , 𝜇) if 𝜓 ∈ [ 16 , 1],

for all 𝜓, 𝜇 ∈ Ω. Then Γ is noncyclic
mapping. First, we will show that, Γ is a
noncyclic relatively Suzuki’s nonexpansive
mapping.
case I Let (𝜓1, 𝜇1) ∈ 𝐶 such that
𝜓1 ∈ [0, 16 ). Then
1

2
∥(𝜓1, 𝜇1) − Γ(𝜓1, 𝜇1)∥ =

1

2

√
(2𝜓1 − 1)2

=
1

2
∥2𝜓1 − 1∥.

For
1

2
∥(𝜓1, 𝜇1)−Γ(𝜓1, 𝜇1)∥ ≤ ∥(𝜓1, 𝜇1)−(𝜓2, 𝜇2)∥,

that is
1 − 2𝜓1

2
≤
√
(𝜓1 − 𝜓2)2 + (𝜇1 − 𝜇2)2.

(4.1)
Since (𝜇1 − 𝜇2)2 ≥ 0. If (𝜇1 − 𝜇2)2 = 0,
then
1 − 2𝜓1

2
≤

√
(𝜓1 − 𝜓2)2 + (𝜇1 − 𝜇2)2

=
√
(𝜓1 − 𝜓2)2

= ∥𝜓1 − 𝜓2∥. (4.2)

Thus, to show that Eq. (4.1) holds, without
generality we will consider an element 𝜓2 ∈
[0, 1] which satisfies Eq. (4.2). Now, we
divided four case.
(i) If 1−2𝜓1

2 ≤ ∥𝜓1 −𝜓2∥ and 𝜓1 ≤ 𝜓2, then

1 − 2𝜓1

2
≤ 𝜓2 − 𝜓1, i.e,

1

2
≤ 𝜓2 ≤ 1.

Thus, for 𝜓1 ∈ [0, 16 ) and 𝜓2 ∈ ( 12 , 1], we
now have
∥Γ(𝜓1, 𝜇1) − Γ(𝜓2, 𝜇2)∥

= ∥(1 − 𝜓1, 𝜇1) − (𝜓2 + 5

6
, 𝜇2)∥

=

√
(1 − 𝜓1 −

𝜓2 + 5

6
)2 + (𝜇1 − 𝜇2)2

≤ ∥1 − 𝜓1 −
𝜓2 + 5

6
∥ + ∥𝜇1 − 𝜇2∥

= ∥ 1 − 6𝜓1 − 𝜓2

6
∥ + ∥𝜇1 − 𝜇2∥

≤ ∥ 1 − 12𝜓1

12
∥ + ∥𝜇1 − 𝜇2∥

≤ 1

12
+ ∥𝜇1 − 𝜇2∥

≤ 1

3
+ ∥𝜇1 − 𝜇2∥

≤
√
(𝜓1 − 𝜓2)2 + (𝜇1 − 𝜇2)2

= ∥(𝜓1, 𝜇1) − (𝜓2, 𝜇2)∥.

(ii) If 1−2𝜓1
2 ≤ ∥𝜓1−𝜓2∥ and 𝜓1 > 𝜓2, then

1 − 2𝜓1

2
≤ 𝜓1 − 𝜓2,

it follows that

𝜓2 < 2𝜓1−
1

2
and −1

2
< 2𝜓1−

1

2
< −1

6
,

which is impossible in this case.
(iii) If 1−2𝜓1

2 ≥ ∥𝜓1−𝜓2∥ and𝜓1 ≤ 𝜓2, then
1−2𝜓1

2 ≥ 𝜓2 − 𝜓1 it follows that 𝜓2 ≥ 1
2 ,

and hence we must have 𝜓2 ∈ [0, 12 ]. If
𝜓2 ∈ [ 16 ,

1
2 ], we can show Γ is a noncyclic

relatively Suzuki’s nonexpansive mapping
by similarly (i). Suppose 𝜓2 ∈ [0, 16 ), then
we have
∥Γ(𝜓1, 𝜇1) − Γ(𝜓2, 𝜇2)∥

= ∥(1 − 𝜓1, 𝜇1) − (1 − 𝜓2, 𝜇2)∥
= ∥(𝜓2 − 𝜓1, 𝜇1 − 𝜇2)∥
=

√
(𝜓1 − 𝜓2)2 + (𝜇1 − 𝜇2)2

= ∥(𝜓1, 𝑦1) − (𝜓2, 𝜇2)∥.
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(iv) If 1−2𝜓1
2 ≥ ∥𝜓1 − 𝜓2∥ and 𝜓1 > 𝜓2,

then 1−2𝜓1
2 ≥ 𝜓1 − 𝜓2 it follows that

𝜓2 ≥ 2𝜓1−
1

2
and −1

2
< 2𝜓1−

1

2
< −1

3
.

Thus, we must have 𝜓2 ∈ [ 16 , 1], we obtain
Γ is a noncyclic relatively Suzuki’s nonex-
pansive mapping by similarly in (i).
case II Let (𝜓1, 𝜇1) ∈ 𝐶 such that 𝜓1 ∈
[ 16 , 1]. Then
1
2 ∥(𝜓1, 𝜇1) − Γ(𝜓1, 𝜇1)∥

=
1

2

√
(𝜓1 −

𝜓1 + 5

6
)2

=
5 − 5𝜓1

12
.

For
1

2
∥(𝜓1, 𝜇1)−Γ(𝜓1, 𝜇1)∥ ≤ ∥(𝜓1, 𝜇1)−(𝜓2, 𝜇2)∥,

that is
5 − 5𝜓1

12
≤
√
(𝜓1 − 𝜓2)2 + (𝜇1 − 𝜇2)2.

We will consider four case.
(i) If 5−5𝜓1

12 ≤ ∥𝜓1 − 𝜓2∥ and 𝜓1 ≤ 𝜓2,
then 5−5𝜓1

12 ≤ 𝜓2 − 𝜓1. which implies that
5+7𝜓1
12 ≤ 𝜓2 and 𝜓2 ∈ [ 3772 , 1]. Hence, for

𝜓1 ∈ [ 16 , 1] and 𝜓2 ∈ [ 3772 , 1], we have
∥Γ(𝜓1, 𝜇1) − Γ(𝜓2, 𝜇2)∥

= ∥(𝜓1 + 5

6
, 𝜇1) − (𝜓2 + 5

6
, 𝜇2)∥

=

√
(𝜓1 + 5

6
− 𝜓2 + 5

6
)2 + (𝜇1 − 𝜇2)2

=

√
(𝜓1 − 𝜓2

6
)2 + (𝜇1 − 𝜇2)2

≤
√
(𝜓1 − 𝜓2)2 + (𝜇1 − 𝜇2)2

= ∥(𝜓1, 𝜇1) − (𝜓2, 𝜇2)∥.

(ii) If 5−5𝜓1
12 ≤ ∥𝜓1−𝜓2∥ and 𝜓1 > 𝜓2, then

5−5𝜓1
12 < 𝜓1 − 𝜓2. it follows that

𝜓2 <
17𝜓1 − 5

72
,

and
−13
12

<
17𝜓1 − 5

72
< 1,

which is impossible in this cases.
(iii) If 5−5𝜓1

12 ≥ ∥𝜓1 − 𝜓2∥ and 𝜓1 ≤ 𝜓2,
then 5−5𝜓1

12 > 𝜓2 − 𝜓1 implies that

𝜓2 <
7𝜓1 + 5

12
,

and
37

72
<

17𝜓1 − 5

72
< 1.

Thus 𝜓2 ∈ [0, 16 ), then we have
∥Γ(𝜓1, 𝜇1) − Γ(𝜓2, 𝜇2)∥

= ∥(𝜓1 + 5

6
, 𝜇1) − (1 − 𝜓2, 𝜇2)∥

=

√
(𝜓1 + 5

6
− (1 − 𝜓2))2 + (𝜇1 − 𝜇2)2

=

√
(𝜓1 − 1 + 6𝜓2

6
)2 + (𝜇1 − 𝜇2)2

<

√
(𝜓1 − 6𝜓2 + 6𝜓2

6
)2 + (𝜇1 − 𝜇2)2,

(∵ 0 < 𝜓2 < 1/6)

<

√
(𝜓1

6
)2 + (𝜇1 − 𝜇2)2

≤
√
(𝜓1 − 𝜓2)2 + (𝜇1 − 𝜇2)2

= ∥(𝜓1, 𝜇1) − (𝜓2, 𝜇2)∥.

(iv) If 5−5𝜓1
12 > ∥𝜓1 − 𝜓2∥ and 𝜓1 > 𝜓2,

then 5−5𝜓1
12 < 𝜓1 − 𝜓2 implies that

𝜓2 <
17𝜓1 − 5

12
,

and
−13
72

≤ 17𝜓1 − 5

12
≤ 1,

which is impossible in this case. Then𝑇 is a
noncyclic relatively Suzuki’s nonexpansive
mapping for the case considered. Figs. 1-2
show that Case I and Case II hold.
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Fig. 1. The Red and Blue surfaces represent Case II’s LHS and RHS, respectively.

Fig. 2. The Red and Blue surfaces represent Case II’s LHS and RHS, respectively.
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Therefore, by both cases Γ is a
noncyclic relatively Suzuki’s nonexpansive
mapping. Further, there is (1, 1) ∈ 𝐶0 and
(1,−1) ∈ 𝐷0 such that

Γ(1, 1) = (𝜓 + 5

6
, 1) = (1, 1),

Γ(1,−1) = (𝜓 + 5

6
,−1) = (1,−1),

and
∥(1, 1) − (1,−1)∥ =

√
(1 − 1)2 + (1 − (−1))2

= 2.

That is ((1, 1), (1,−1)) ∈ 𝑃𝑟𝑜𝑥𝐶×𝐷 . How-
ever, Γ is not noncyclic relatively nonex-
pansive mapping, by setting (𝜓1, 𝜇1) =
( 1
30 , 1) ∈ 𝐶 and (𝜓2, 𝜇2) = ( 16 ,−1) ∈ 𝐷,

we have
∥Γ(𝜓1, 𝜇1) − Γ(𝜓2, 𝜇2)∥

=

√(126
30

)2 + 22 >

√( 4
30

)2 + 22

= ∥𝜓 − 𝜇∥.
So, the conclusion of Gabeleh [12] cannot
applied this example.

Now, we shall give a numerical ex-
periment and convergence behavior of Al-
grorithm I involving noncyclic relatively
Suzuki’s nonexpansive mapping. We set
𝜙𝑛 = 𝜗𝑛 = 𝜁𝑛 = 0.5 + 1

𝑛+2 . With initial
point 𝑡1 = (0, 1) and 𝑡1 = (0.5, 1). Tables
1-2 shows the numerical approximations for
Γ’s best proximity pair ((1, 1); (1, 1)).

5. Conclusions
In this work we presented a new con-

cept of a noncyclic relatively Suzuki’s non-
expansive and used this concept for prov-
ing the convergence of a best proximity pair
in uniformly convex Banach space and an
illustrative example of noncyclic relatively
Suzuki’s nonexpansivemapping for support
our main results. Also we show that the
conclusion of Gabeleh [12] is not applica-
ble for our main result.

Table 1. Convergence of sequence for 𝑡1 =
(0, 1).

𝑛 𝑡𝑛 𝑡̄𝑛
1 (0,1) (0,-1)
2 (0.978545,1) (0.978545,-1)
3 (0.999288,1) (0.999288,-1)
4 (0.999971,1) (0.999971,-1)
5 (0.999999,1) (0.999999,-1)
6 (1,1) (1,-1)
7 (1,1) (1,-1)

Table 2. Convergence of sequence for 𝑡1 =
(0.5, 1).

𝑛 𝑡𝑛 𝑡̄𝑛
1 (0.5,1) (0.5,-1)
2 (0.989273,1) (0.989273,-1)
3 (0.999644,1) (0.999644,-1)
4 (0.999985,1) (0.999985,-1)
5 (0.999999,1) (0.999999,-1)
6 (1,1) (1,-1)
7 (1,1) (1,-1)

Acknowledgements
The first author would like to thank

the Research and Development Institute,
Nakhon Pathom Rajabhat University, Thai-
land for financial support. Also, the third
author was supported by Faculty of Lib-
eral Arts and Sciences, Kasetsart Univer-
sity, Kamphaeng-Saen Campus.

References
[1] Fan K. Extensions of two fixed point the-

orems of F.E. Browder. Math. Z. 1969;
112: 234-40.

[2] Prolla JB. Fixed point theorems for set
valuedmappings and existence of best ap-
proximations. Numer. Funct. Anal. Op-
tim. 1982-1983; 5: 449-55.

[3] Reich S. Approximate selections, best ap-
proximations, fixed points and invariant
sets. J. Math. Anal. Appl. 1978; 62: 104-
13.

27



N. Onjai-Uea et al. | Science & Technology Asia | Vol.29 No.1 January - March 2024

[4] Mongkolkeha C, Kumam P. Some com-
mon best proximity points for proximity
commuting mappings. Optimization Let-
ters. 2013; 7: 1825-36.

[5] Karpagam SS, Agrawal S. Best proximity
point theorems for p-cyclic Meir-Keeler
contractions. Fixed Point Theory Appl.
2009; Art. ID 197308.

[6] Sadiq Basha S. Best proximity point the-
orems: An exploration of a common
solution to approximation and optimiza-
tion problems. Applied Mathematics and
Computation. 2012;210 (19):9770-80.

[7] Kutbi MA, Chandok S, Sintunavarat W.
Optimal solutions for nonlinear proximal
𝐶𝑁 -contraction mapping in metric space.
Journal of Inequalities and Applications.
2014;193.

[8] Espnola R, Fernández-Len A. On best
proximity points in metric and Banach
spaces. Canad. J. Math. 2011;63:533-50.

[9] Eldred A, Kirk WA, Veeramani P.
Proximal normal structure and relatively
nonexpansive mappings. Stud. Math.
2005;171(3) 3: 283-93.

[10] Abkar A, Gabeleh M. Global optimal so-
lutions of noncyclic mappings in met-
ric spaces. J. Optim. Theory Appl. 2012;
11(153): 298-305.

[11] Gabeleh M. Strong and weak conver-
gence of Ishikawa iterations for best prox-
imity pairs. Open Mathematics. 2020;
18(1):10-21.

[12] Gabeleh M, Hans-Peter A. Künzi. Equiv-
alence of the existence of best proxim-
ity points and best proximity pairs for
cyclic and noncyclic nonexpansive map-
pings. Demonstratio Mathematica. 2020;
53: 38-43.

[13] Suparatulatorn R, Suantai S. A new hy-
brid algorithm for global minimization of
best proximity points in Hilbert spaces.
Carpathian Journal of Mathematics. 2019
; 35(1): 95-102

[14] Thakur BS, Thakur D, Postolache M. A
new iteration scheme for approximating
fixed points of nonexpansive mappings.
Filomat. 2016;30(10):2711-20.

[15] Eldred AA, Veeramani P. Existence and
convergence of best proximity points. J.
Math. Anal. Appl. 2006;323:1001-6.

[16] Gabeleh M, Otafudu OO. Generalized
pointwise noncyclic relatively nonexpan-
sive mappings in strictly convex Banach
spaces. J. Nonlinear Convex Anal. 2016;
17:1117-28.

[17] Anthony Eldred A, Kirk WA, Veeramani
P. Proximal normal structure and rel-
atively nonexpansive mappings, Studia
Math. 2005; 171(3): 283-93.

[18] GabelehM. Common best proximity pairs
in strictly convex Banach spaces. Geor-
gian Math. J. 2017; 24(3): 363-72.

[19] Schu J. Weak and strong convergence to
fixed points of asymptotically nonexpan-
sive mappings. Bull. Aust. Math. Soc.
1991;43(1): 153-9.

[20] Suzuki T. Fixed point theorems and con-
vergence theorems for some generalized
nonexpansive mapping. J. Math. Anal.
Appl. 2008; 340 :1088-95.

[21] Fernandes-Leon A, Gabeleh M. Best
proximity pair theorems for noncyclic
mappings in Banach and metric spaces.
Fixed Point Theory. 2016; 17: 63-84.

28


	Introduction
	Preliminaries
	Main Results
	An Example and Numerical Simulation
	Conclusions

