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ABSTRACT

Let K be an imaginary quadratic field whose ring of integers Ok is a Euclidean do-
main. In the earlier work, the so-called base-f representation for nonzero elements of Og
was constructed and the irreducibility criterion for polynomials in Ok [x] was established,
namely if 7 = @, 8" + @187+ + @1+ @y = f(B) is a base-f representation of a
prime element 7 € Ok and the digits ;-1 and «,, satisfy some natural restrictions, then the
polynomial f(x) is irreducible in Ok [x]. A generalization of this criterion was also verified
by considering wr (w € Ok \{0}) instead of x. In this paper, we extend these results to any
imaginary quadratic field K.

Keywords: Gauss’s lemma; Imaginary quadratic field; Irreducible element; Irreducible
polynomial; Ring of integers

1. Introduction for polynomials in Z[x]. Here, we are inter-
One of the popular topics in the de- ested in an elegant result of A. Cohn, given

velopment of number theory is the rela- by Pélya and Szegé [[I]: if

tionship between prime numbers and irre-

=a, 10" 10t 1
ducible polynomials. The problem of deter- p = anl07+ang 10774 +ar 10+ a

mining the irreducibility of a polynomial in is the base-10 representation of a prime
Z|x] has been extensively studied and has number p, then the polynomial f(x) =
become an interesting topic in mathemat- ApX" +ap_1 X"+ - -+aix+ag is irreducible
ics. There are many irreducibility criteria in Z[x]. For example, one can immediately
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infer that f(x) = 5x% +4x3 +3x2 +2x + 3 is
irreducible in Z[x] due to the decimal rep-
resentation of the prime number 54323. In
1981, Brillhart et al. [2] generalized this re-
sult to any arbitrary base b. On the same
matter, Murty [3] provided another proof of
this result using a conceptually simpler ar-
gument than the one in [2]. In 1982, Filaseta
[4] generalized this result in another way by
considering wp instead of p: if

WP = byb™ + by b 4+ b1b + by

is the base-b representation of wp, where
w and b are positive integers, w < b, and
p is a prime number, then the polynomial
F(X) = bpx™ + b1 X+ -+ bix + by
is irreducible over Q.

The irreducibility criteria for polyno-
mials in Z[x] mentioned earlier motivate
us to study and establish irreducibility cri-
teria for polynomials in Ok [x], where K
is any imaginary quadratic field. First of
all, let us summarize some information on
a quadratic field taken from [5] as follows:
for any quadratic field K, there exists a
unique square-free integer m # 1 such that

K:Q(\/}?z):{r+sxfl71|r,seQ}.

The field K is said to be real if m > 0 and
imaginary if m < 0. The set of algebraic in-
tegers that lie in K is denoted by Ok, called
the ring of integers of K. In fact,

Ok ={a+boy, |a,bel},

where
\m if m# 1 (mod 4),
Om =3 1+
" 2‘% if m =1 (mod 4).
In particular, when m = —1, one can see

that Og = Z[i], the ring of Gaussian inte-
gers. Note that K is the quotient field of

Ok, which is an integral domain and the
set of units in the polynomial ring Ok [x]
is U(Ok), the group of units in Og.

For a,8 € Ok with @ # 0, we say
that « divides (3, denoted by « | B, if there
exists 0 € Ok such that 8 = a5. We write
a {1 B to indicate that 8 is not divisible by a.
A polynomial p(x) € Ok [x] is irreducible
in Ok [x] if it is an irreducible element of
the ring Ok [x]; in other words, p(x) is nei-
ther a zero polynomial nor a unit in Og and
if, whenever p(x) = f(x)g(x) with f(x)
and g(x) in Ok [x], then either f(x) or g(x)
is a unit in O g . Polynomials that are not ir-
reducible are said to be reducible. In addi-
tion, if Ok is a unique factorization domain
and f(x) is irreducible in Ok [x], then f(x)
is irreducible over K [§].

For B8 = a + boy, € Ok, we denote
the norm of B by N(B) =

a® —mb? if m 1 (mod 4),
1—
a® +ab + b? (Tm) if m=1 (mod 4).

We note from [5] that if N(8) = +p, where
p is arational prime, then £ is an irreducible
element of Og. One can see that a prime
element of Ok is always irreducible, while
the converse holds if Ok is a unique factor-
ization domain. Moreover, if K is an imag-
inary quadratic field, then |82 = N(B8) € N
for all B € Og\{0} and |B] = 1 for all
B € U(Ok) [5]-

In 2017, Singthongla et al. [8]
constructed the so-called base-f3 represen-
tation for nonzero elements of Og and
applied it to establish the result of A.
Cohn in Ogk[x], where K = Q(ym)
is an imaginary quadratic field such that
Ok is a Euclidean domain, namely when
m = -1,-2,-3,-7,—-11 [§]. They also
determined the base-B(C) representation
for nonzero Gaussian integers and estab-
lished irreducibility criteria for polynomi-
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als in Z[i][x], where C = {x + yi |
x =0,1,...,((a>+b*/d) —1and y =
0,1,...,d — 1} is a complete residue sys-
tem modulo B8 € Z[{] [[7]. In their work, the
following results were proved:

Theorem 1.1. Let K = Q (\/m) where m =
-1,-2,-3,-7,-11, and let

V1i-m
2

if m=-1,-2,
An =
V4 —-m

4
Let B € Ok besuch that |B| > 1+A,,. Then

any n € Og\{0} has a base-B representa-
tion in the form

if m=-3,-7,-1L

-1
n=a,B"+a,18" "+ +a18 + ap,

wheren > 0, @, € Og\{0}, |an| < |B],
and a; € Ok with 0 < |a;| < Ap|B| for all
ie{0,1,...,n—1).

Theorem 1.2. Let K = Q (\/m) where m =
-1,-2,-3,-7,-11, and let B,,, =

(6 +V2+6+ 12«/5) /4~ 3.05
if m=-1,
(6 +V3+VT+ 12«/3) /4 ~ 3.2508
if m=-2,
(12 +VT+V23 + 24\/7) /8 ~ 2.99327
if m=-3,
(12 FVIT+V27 + 24\/ﬁ) /8 ~ 3.20516
if m=-T1,
(12 VIS 31+ 24\/5) /8 ~ 3.37579
if m=-11.

Let B € Ok be such that |B| > B, and
Re(B) = 1. For a prime element n of Ok,

if

T = apf a1 B+ e fran =t f(B)

is its base-f representation with n > 1
satisfying the conditions Re(a,) = 1,
Re(a,-1) = 0, Im(ay,—1) > 0 and
Re(ap-1) Im(an) = Re(an) Im(ap-1),
then f(x) is irreducible in O [x].

Denote C' = {x + yi | x
0,1,...,max{|al,|b|]} — 1 and y =
0,1,...,d-1}cC.

Theorem 1.3. Let B € {2+2i,1=+3i,
3+i}orB = a+ bi € Z[i] be such that
1Bl = 2+ V2 and a > 1. For a Gaussian
prime m, if

= B tan-1 B+ e frag = f(B),

with n > 1, Re(a,) = 1, and
o, A1, ... Upei € C’ satisfying
Re(an—l) Im(a'n) 2 Re(a'n) Im(an—l);
then f(x) is irreducible in Z[i] [x].

Theorem 1.4. If 7 is a Gaussian prime such
that

T=ap3" + 13"+ + 13 + o,

where n > 3, Re(a,) = 1, and

g, A1, . . ., a1 € C’ satisfying the condi-

tions
Re(an-1) Im(a,) > Re(a,) Im(ap-1),

Re(an-2) Im(a,) > Re(a,) Im(ay-2),
Re(an—Q) Im(a'n—l) 2 Re(a'n—l) Im(an—2)a

then the polynomial f(x) = apx" +
WXL+t ayx + g is irreducible in

Z[i][x].

Afterward, Kanasri et al. [9] proved
the following theorem, which is a general-
ization of Theorem when considering
wr (w € Og\{0}) instead of x.
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Theorem 1.5. Let K = Q (\/m) where m =
-1,-2,-3,-7,-11, w € Og\{0}, and let
Bpn(w) =

(2(2|w| + 1)+ V2 ++/6 +4(2w| + 1)\/5) /4

if m=-1,

(2(2|u)| + 1)+ V3 +4/7+42w| + 1)\/§) /4

if m=-2,

(4(2|w| + 1) +V7+ \/23 +8(2|w| + 1)«/7) /8
if m=-3,

(4(2|w| +1)+VI1+ \/27 +8(2lw| + 1)\/ﬁ) /8
lf m= -1,

(4(2|w| +1)+ V15 + \/31 +8(2|w| + 1)«/%) /8
if m=-11.

Let B € Ok be such that |B| = By, (w) and
Re(B) = |w|. Foraprime element  of Ok,
if

wn = @B+ @1 f 4+ e fran = f(B)

is its base-B representation with n > 1

satisfying the conditions Re(a,) = 1,
Re(ay-1) = 0, Im(ay-1) = 0 and
Re(ap-1) Im(an) = Re(an) Im(an-1),
then f(x) is irreducible over K.

For any quadratic field K = Q (vm),
Tadee et al. [|10] proved for the case m #
1 (mod 4) that the set

C={x+yom|x=0,1,....(IN(B)I/d) -1
andy=0,1,...,d -1} (1.1)

is a complete residue system modulo 5,
abbreviated by CRS(8), where 8 = a +
bo, € Ok with d = ged(a,b). In
2021, Phetnun et al. [[11] verified that
Eq. (L.1)) is also a CRS(B) for the case m =
1 (mod 4) and the set C’ = {x + yoy,; |
x = 0,1,...,max{|al,|p|} — 1 and y =
0,1,...,d —1} € C for any m < 0. More-
over, they determined the so-called base-
B(C) representation for nonzero elements

of Ok and extended Theorem to any
imaginary quadratic field using such a rep-
resentation (Theorems 3-4 in [[11]). We note
thatn € Ok \{0} has a base-B(C) represen-
tation if

n= B +an 1+ +a fran, (1.2)

for some n > 1, a, € Og\{0} and a; €
C@iE=01....n-1). Ifa; € C’" (i =
0,1,...,n — 1), then Eq. (.2) is called a
base-B(C’) representation of n.

Recently, Phetnun and Kanasri [[12]
established further irreducibility criteria for
polynomials in Ok [x], where K is an imag-
inary quadratic field, which extended The-
orem [1.4 to any imaginary quadratic field.

In similar fashion as the results in
[11,12], we hence aim to extend Theorems
[.1-1.2, and [I.§ to any imaginary quadratic
field.

2. Base-5 Representations

In this section, we construct a base-f8
representation for nonzero elements of Ok,
where K is an imaginary quadratic field.
We start with the division algorithm for el-
ements of Ok .

Proposition 2.1. Ler K = Q(ym) be
an imaginary quadratic field and let § €
O \{0} be fixed. For a € Ok, there ex-
ist A,p € Ok such that « = AB + p with
0 < |p| < AnlBl, where

=
2m if m £ 1 (mod4),
Ay =
'44_’" if m=1(mod 4).

2.1)

Proof. Assume that /B = r + sy/m, where
r,s € Q. We consider two possible cases.

Case I: m # 1 (mod 4). Leta =
lr+(1/2)] and b = s + (1/2)], where |-]
is the floor function. Then |r —a| < 1/2
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and |s — b| < 1/2. Now, weletd = a+boy,
and p = @ — AB. Then A,p € Ok, a =
AB + p, and

0S|p|=|ﬁ|%—ﬁ‘
= 1B1|(r - a) + (s — b)Vm]
= 1B\ - @)? = m (s - b)?

1-m

< 1Bl 0

Case 2. m = 1 (mod 4). Leta =
|25+ (1/2)] and b = |r — (a/2) + (1/2)].
It follows that |2s—a|] < 1/2 and
|r —(a/2) —=b| < 1/2. Now, we let 1 =
b+aoy, and p =a - AB. Then 4, p € Ok,
a=AB+p,and

OS|p|=|ﬁ|’%—ﬂ‘
ol -5-0)+(-3)

{5 - mls-5)

4—-m
< 1B 6

:Am|:3|-

This completes the proof. O
Our first main result reads:

Theorem 2.2. Let K = Q (\m) be an imag-
inary quadratic field and let § € Ok be
such that |B| = 2. Then any n € Og\{0}
has a base-f3 representation in the form

n=a,B"+ an_lﬂn_l + -+ a18 + ag,

where n > 0, a; € Ok with a,, # 0 and
0 < |a;| £ AplB| foralli € {0,1,...,n},
where Ay, is defined as in Eq. (2.1).

Proof. 1f |n| < A,|B|, then we are done.
Now, assume that || > A,,|8|. It follows
from Proposition 2. 1| that

n=200B+ag, 0<l|ag| < AnlBl. (2.2)

Clearly, 59 # 0. We next claim that |n|
|60]. Suppose not, we have |5y| > |n|
|60B + aol = [60lIB| — laol and so |ayg|
|60] (|B] = 1) . Since |B] = 2, we conse-
quently have [6o] = 7l > AnlBl > lag| >
|60] (|B] = 1) = |d¢|, which is a contradic-
tion.

Returning to Eq. (R.2), if |6y <
Anm|Bl, then Eq. (2.2) is a base-f represen-
tation of 7 and so we are done. On the other
hand, if |89| > A;u|B|, then we continue by
dividing ¢ by 8 and using the claim to ob-
tain
00 = 018+a1, 0 < lay] < Amlﬁl and |6g| > |61].

2.3)

\

v

Again, it is clear that 61 # 0. It follows
from Egs. (2.2)- (2.3) that

n = 6182 a1 Brag, 0 < |a;i| < AnlBl (i=0,1).
(2.4)

If |61] < A,,|B|, then the process stops
again and Eq. (R.4) is a base-g representa-
tion of . While if |61| > A,,|B]|, then we
continue by dividing ¢; by S. If this process
does not stop, then we obtain an infinite se-
quence (6;);>0 of elements of Ok such that
|6;] > A,|B] > 0 foralli > 0 satisfying

0; =0ix1B+ @iy, 0 < lviv1] < Amlﬂ| and
6:] > |0i41] (i 2 0).

It follows that (|6;]%)iso is a strictly de-
creasing sequence of positive integers,
which is a contradiction because there are
finitely many positive integers between
|60|> and 0. Thus there exists the small-
est nonnegative integer k such that |6;| <
Am|B| and

n= 5kﬂk+1 +a/kﬁk + - +C¥1ﬁ+a’0.
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If 6 = 0, then |0x—1| = |6xB + ai| =
|ax| < A8, contradicting the property of
k. Thus 6 # 0 and so

k+1

k
n=a 1B+t + -+ a1+ ao,

where @y, := 8 and 0 < |;| < A,y|B| for

alli € {0,1,...,k + 1}, as desired. ]

Form € {-1,-2,-3,-7,-11}, we
have that |a,| < A,4|B8] < |B|, and the con-
dition |8| > 2 in Theorem can be re-
duced to |B| > 1 + A,,. This implies that
Theorem [L.1f can be extended to any imagi-
nary quadratic field by Theorem 2.2.

According to Theorem 2.2, we illus-
trate the process for constructing a base-f
representation in the following examples.

Example 2.3. Let K = Q(V=2), 8 =4, and
n = 2615 + 1281V—=2. Then A_, = V3/2
and || > (V3/2)|B8| (~ 3.46). By the proof
of Theorem , we have the following

n = (654 + 320V-2)B + (-1 + V=2),
|- 1+V=2] < (V3/2)I8];
654 + 320V-2 = (164 + 80V-2)8 — 2,
| - 2] < (V3/2)I8];
164 + 80V-2 = (41 + 20V=2)8 + 0,
0] < (V3/2)18;
41+20V-2 = (10 +5V-2)8 + 1,
111 < (V3/2)18];
10+5V=2= 3+ V-2)B+ (-2 + V-2),
| -2+ V=2| < (V3/2)|8].
One can see that 3+V—-2 is the first quotient

such that |3 + V=2| < (V3/2)|8], showing
the process stops and thus

n=(3+V=2)B%+ (-2 +V-2)p*+
B =28+ (-1+V-2)

is a base-f3 representation of 7.

Example 2.4. Let K = Q(V-15), B =
2+ 0_15, and n = -236 + 590_15. Then
Ais = VI9/4 and || > (VIO/4)IB| (=
3.45). By the proof of Theorem R.2, we
have the following

n=(-47+350_15)8+ (-2 + 0_15),

| -2+ 015 < (V19/4)|Bl;

=47+ 35015 = (120-15)B + (1 — 0_15),
11— o015 < (V19/4)|B];

12015 = (5+20_15)B + (-2 + 0_15),

| - 2+0-15] < (V19/4)|8];

542015 =28 +1, |1] < (V19/4)|8].

Since 2 is the first quotient such that |2| <
(\/E /4)|Bl, the process stops and so

n=26"+p+ (-2 +0.15)5%+
(1-0-15)B+ (=2+0-15)
is a base-f representation of 7.
From Example 2.3, we have that
n=(3+V-2)p°+(-2+V-2)8%+
B> =28+ (-1 +V-2)

is a base-g representation of . In another
way, we can verify that

n=(2+V=2)p%+ (3+V=2)p*-
368° - 28+ (-1 + V-2) (2.5)

is also a base-f representation of 7. This
shows that a base-f representation of 7 in
Ok is not unique.

3. An Irreducibility Criterion for
Polynomials over Any Imaginary
Quadratic Field

In this section, we extend Theorem
to any imaginary quadratic field K. We
use irreducible elements instead of prime el-
ements of Og to make a more general re-
sult. We first recall the following useful
lemma from [§].
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Lemma3.1. Let f(x) = apx" +a,_1x" 1+

- +a1x+aq € Clx] be such thatn > 2 and
lai| < M (0 <i < n—2) for some positive
real number M. If f(x) satisfies

(i) Re(an) = 1, Re(ay-1) = 0, and
Im(ay,-1) =0,

(i) Re(an-1) Im(an) > Re(an) Im(ap-1),

then any complex zero a of f(x) satisfies
either Re(a) < Oor|a| < (1+4V1+4M)/2.

We now proceed to our second main
result and start with a lemma, which shows
that Lemma B3.1| also holds for a linear poly-
nomial in C[x].

Lemma 3.2, If f(x) = a1x + ag is a lin-
ear polynomial in C[x] satisfying the condi-
tions (i) and (ii) of Lemma B, then a com-
plex zero « of f(x) satisfies either a = 0 or
Re(a) < 0.

Proof. 1t is clear that @ = —ap/a; is a
complex zero of f(x). If @g = 0, then
a = 0. Now, we assume that g # 0 and
let @1 = a1 + b1i, ag = ag + bpi. Thus,

ap + b()i
_al + bli
__(aga1 +boby) + (ai1bg — agb1)i
B a% + b%

’

so Re(a) = —(apa1 +bob1)/(a%+bf). Note
that a? + b? > 0 because @1 # 0. By the
assumption, we have a; > 1, a9 > 0, by >
0, and agb1 = a1bg. If ag = 0, then by = 0,
which is impossible because ag # 0. Thus
ap > 1 and also b1 > 0. It follows that
apai + boby > 0, yielding Re(a) < 0, as
desired. O

Theorem 3.3. Let K = Q (y/m) be an imag-
inary quadratic field and B, =

(6+ T=m+\5—m+12VT=m) /4
if m# 1 (mod4),

(12+\/4—m+\/20—m+24\/4—m)/8
if m=1(mod4).

Let B € Ok be such that |B| > By, and
Re(B) = 1. For an irreducible element n

of Ok, if
T = apf a1 B+ e fran = f(B)

is its base-f3 representation with n > 1 sat-
isfying the conditions (i) and (ii) of Lemma
B.4, then f(x) is irreducible in O [x].

Proof. Suppose to the contrary that
f(x) = gx)h(x), where g(x),h(x) €
Ok [x]\U(Ok). We first show that either
degg(x) = 1 and |g(B)] = 1 or
degh(x) > 1 and |h(B)| = 1. Clearly,
deg f(x) = 1 implies that g(x) or h(x)

is a positive degree polynomial. If ei-
ther degg(x) = 0 or degh(x) = 0,
we may assume that h(x) = a € Ok.

Then f(x) = ag(x) and so 7 = ag(B).
Since m is irreducible and @ ¢ U(Og),
we obtain g(B8) € U(Og) and thus,
|g(B)] = 1. Otherwise, both deg g(x) > 1
and deg h(x) = 1. Since 7 = g(B)h(B)
and using the irreducibility of 7 again, we
deduce that either g(8) or h(B) is a unit.
Hence, either [g(B)| = 1 or |h(B)| = 1.

We may assume without loss of gen-
erality that degg(x) > 1 and |g(B)| = 1.
We next show that

1++/1+4A,,|B] S

5 >
where A,, is defined as in Eq. (.1). We
treat two possible cases.

1Bl - 1, (3.1
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Case I: m # 1 (mod 4). Since |B| = B,
we get

|IB|2_ (6+ Vlz_m)lﬁl +9 =
(|IB|_6+\/1—m+\/5—m+12\/1—m).
4

(|ﬁ|_6+\/l—m—\/5—m+12\/1—m)
4

> 0, implying

(28] - 3)% = 1+ 2V1 — m|B|.
This shows that

8] - 1++/1+4A,,|8]| 3
5 =

1++4/1+2V1 —m|B|

— >1
18] 5 >

Case 2: m = 1 (mod 4). Since |B| = B,
we obtain

|ﬁ|2_ (12+ Vi_m)lﬁl +2:
(Iﬂl— 12+\/4—m+\/20—m+24\/4—m).
8

(w'_12+\/4—m—\/20—m+24\/4—m) -

8

showing
(218l - 3)? = 1+ V4 —m|B|.
It follows that

1++/1+4A,,|8]

1Bl =
2
8 1++4/1+V4—m|B| .
_ >
5 >

From both cases, we obtain Eq. (B.1]).

Now we have deg g(x) > 1anditcan
be expressed in the form

g(x) = srl(x — i)

where € € Ok is the leading coefficient
of g(x) and the product is over the set
of complex zeros of g(x). By Theorem
2.2, we have |o;] < A,,|B| forall i €
{0,1,...,n}. It follows from Lemmas B.1-
B.2 that any complex zero y of g(x) satisfies
either Re(y) < 0 or

1+4+/1+4A,|8]

2

lyl < (3.2)

(In the case deg f(x) = 1, we have either
v = 0 or Re(y) < 0). If Re(y) < 0, then

|8—7v| 2 Re(B~-7) = Re(B) —Re(y) > 1.
In the latter case, we obtain by Egs. (B.1))-

(B.2) that
1++/1+4A,8]| S

> 1.
2

1B=yl =z Bl=Iy] > IB]-

Since |g]| > 1, we get

L=lg@)=lel[ [1B=vl =] [I1B-l>1,

which is a contradiction. This completes the
proof. O

Note that Ok is a unique factoriza-
tion domain form € {-1,-2,-3,-7,-11}.
Thus, an irreducible element is a prime ele-
ment in Og. This shows that Theorem
can be extended to any imaginary quadratic
field by Theorem B.3.

By applying Theorem B.3, we can
find irreducible polynomials in Ok [x] as
the following examples.

Example 3.4. Let K = Q(V-2) and 8 = 4.
Then || = 4 > (6+\/§+ «/7+12«/§)/4 -
B_5and Re(B) =4 > 1. Let r = 2615 +
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1281V-2 € Ok. Since N(x) = 10120147
is a rational prime, we deduce that 7 is an
irreducible element. By Eq. (2.3), we have

r=02+V-2)8°+ (3+V=2)p'-
368° - 28+ (-1 +V=2)

is its base-f representation with n = 5 >
1 satisfying the conditions (i) and (ii) of
Lemma B.Il. By Theorem B.3, we obtain
that

f(x) = (2+V=-2)x" + (3+ V=2)x-
3x% = 2x + (-1 + V=2)

is irreducible in Ok [x]. Note that it is ir-
reducible over K because Ok is a unique
factorization domain.

Example 3.5. Let K = Q(V-15) and
B =5 Then |8 = 5 > (12+«/E+

V35 + 24@) /8 = B_y5 and Re(f) = 5 >
1. Let m = 56759+162480—_15 € Ok . Since
N(m) = 5199794329 is a rational prime, we
deduce that 7 is an irreducible element. One
can verify that

= 3+0_15)B% +4B° + (-5 + 0_15) B*+
AB3 + B+ (4 —20_15) (3.3)

is its base-f representation with n = 6 >
1 satisfying the conditions (i) and (ii) of
Lemma . By Theorem @, we deduce
that

F(x) =B+ 01525 +4x° + (=5 + o_15)x*+

4)63 +Xx+ (4 - 20'_15)
is irreducible in O [x].

From Example B.4, we have that

C’:{x+y\/—_2|x,y:0,1,2,3}.

It is important to emphasize that we can-
not apply Theorem 3 in [[11]] to conclude
the irreducibility of the polynomial f(x).
This is because the representation of 7 in
Eq. (2.3) is not a base-B8(C’) representa-
tion, even though |B] = 4 > 2 + V3 and
a=4>1+V3.
Similarly, in Example B.3, we have

C'={x+yo_15|x,y=0,1,2,3,4}.

Since the representation of 7 in Eq. (B.3) is
not a base-B(C’) representation, Theorem
4 in [[11] cannot be applied to conclude the
irreducibility of the polynomial f(x).

4. A Generalization of the Irre-
ducibility Criterion

Let K = Q(+m) be an imaginary
quadratic field such that its ring of inte-
gers Ok is a unique factorization domain.
Then m = -1,-2,-3,-7,-11,-19,-43,
—67,-163 [[13]. For a nonconstant poly-
nomial f(x) € Og|[x], the greatest com-
mon divisor of the nonzero coefficients of
f(x) is called the content of f(x), which
is denoted by c(f(x)). Moreover, f(x) is
called a primitive polynomial if its content
is a unit. We now recall the following es-
sential lemma from [(].

Theorem 4.1. (Gauss’s Lemma). Let R be
a unique factorization domain. Let f(x)
and g(x) be two nonzero polynomials in
R[x]. Then

c(f(x)g(x)) = uc(f(x))c(gx)),
where u is a unit in R.

It is well known that every algebraic
number is of the form r /s, where r is an al-
gebraic integer and s is a nonzero rational
integer. Thus, for a nonconstant polyno-
mial f(x) € Ok [x], if f(x) = g1(x)h1(x),
where g1(x) and /1 (x) are positive degree
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polynomials in K[x], then we may take
g2(x) = agi(x) and ha(x) = bhi(x)
for some nonzero rational integers a and b
and nonconstant polynomials go(x), ha(x)
in Ok [x]. Hence abf(x) = ga(x)ha(x)
and so

clabf(x)) = uc(g2(x))c(ha2(x)), (4.1)

by Theorem [.1, where u € U(Ok). Let &
be a prime divisor of ab in O g . One can see
that r divides c(ab f (x)). Since r is a prime
element of Ok, it follows from Eq. (#.1))
that 7 divides c(g2(x)) or ¢(h2(x)). Thus
7 divides go(x) or hy(x), yielding

D 1) = g (s ),

for some nonconstant polynomials gs3(x)
and h3(x) in Og[x]. Continuing in the
same manner, we finally get f(x) =
g(x)h(x), where g(x) and h(x) are positive
degree polynomials in Ok [x]. Hence, we
deduce that for a nonconstant polynomial
f(x) € Ogklx], if f(x) is reducible over
K, then it is reducible in Ok [x]. Indeed,
if f(x) is primitive, then f(x) is irreducible
in Ok [x] if and only if f(x) is irreducible
over K []14].

For an imaginary quadratic field K
and a nonconstant polynomial f(x) €
Ok [x], we say that f(x) = g(x)h(x) in
Ok [x] is a proper factorization if both g(x)
and A(x) have a smaller degree than f(x).
We now proceed to the last main result,
which extends Theorem to any imagi-
nary quadratic field K.

Theorem 4.2. Let K = Q (\m) be an imag-
inary quadratic field. Let B € Ok and
w € O \{0} be such that Re(B) > |w| and

10

|B] = B, (w), where B,,(w) :=

(2(2|w| +1)+ V1 —m+

V5 —m+4(2lw] + DVI = m)/4
if m# 1 (mod 4),

(4(2|w| +1)+ V4 — m+

V20 = m+ 82| + 1)VI= m)/8
if m=1(mod4).

For a prime element r of Ok, if

wn = @B+ -1 f - +arfran = F(B)

is its base-f3 representation with n > 2 sat-
isfying the conditions (i) and (ii) of Lemma
B4, then f(x) has no proper factorization
in Ok [x]. Moreover,

(1) if 6 + f(x) forall 6 € Oxk\U(Ok),
then f(x) is irreducible in O [x].

(ii) If Ok is a unique factorization do-
main, then f(x) is irreducible over K.

Proof. Suppose to the contrary that f(x)
has proper factorization in Ok [x]. Then
f(x) = g(x)h(x) for some nonconstant
polynomials g(x) and A(x) in Ok [x], so
wn = g(B)h(B). Since & is a prime el-
ement, either 7 | g(B) and h(B) | w or
7 | h(B) and g(B) | w. This implies that
either |w| > |h(B)| or |w| = |g(B)|. With-
out loss of generality, we may assume that
lw| = |8(B)I.
We next show that

1++/1+4A,,|8]| S

5 >
where A,, is defined as in Eq. (2.1). Con-
sider two possible cases.

18l - lwl,  (42)
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Case 1: m % 1 (mod 4). Since |8] >
B, (w), we have

[2(2|a)| +1)+ VI m] 18]
+
2

1BI° -

(|w* +|wl|) = (|,8| - (2(2|a)| +1)+ V1 —m+

\/5 —m+4(2w| + 1)@)/4)-

(|/3| - (2(2|w| +1)+V1-m-

\/5 -m+4Q2|w|+1)V1 - m)/4) >0,

implying [28] - Qlw|+1D]*> > 1 +
2V1 — m|B|. This shows that

1++/1+4A,,|8]

Bl - — = =
1++/1+2V1 - m|B|
81 - > > o]
Case 2: m = 1 (mod 4). Since |B] =

B, (w), we have

|[4lwl+ 1) +VI=m] |8
BI” - I +

(o +lwl) = (I,BI - (4(2le + 1)+

V4 —-m+ \/2() -m+8(2|w|+1)V4 —m)/S)

. (|,8| - (4(2|w| +1)+ V4 —m-

\/20 -m+8(2|w|+1)V4 - m)/S) >0,

showing [2(8] - Qlw|+1)]? > 1 +

V4 — m|B|. It follows that

1+ /1 +4A,,|8|

Bl - — 1 =

11

1++/1+V4—m|p|

181 - >

From both cases, we obtain Eq. (4.2).
Now, we have that deg g(x) > 1, so
it can be expressed in the form

g(x) = sﬂ(x — ),

> |wl.

where € € Ok is the leading coefficient of
g(x) and the product is over the set of com-
plex zeros of g(x). By Theorem R.2, we
have |a;| < A,,|B| foralli € {0,1,...,n}.
It follows from Lemma that any com-
plex zero y of g(x) satisfies either Re(y) <
0 or

1++/1+4A,,|8]|

< .
|yl 5

If Re(y) < 0, then |[B—7y| = Re(B—-v) =
Re(B) — Re(y) > |w|. In the latter case, we
obtain by Egs. (#.2)- (4.3) that

(4.3)

1B=vl=IBl- Iyl
> 18] - 1++/1+4A,,|8|
2
> |w].

From both cases, we deduce that

lwl = [g(B)]

=|s|]f[|/3—w|
> [ [1g-vil

> |wl,

which is a contradiction.

Finally, it is clear that (i) holds. By
the explanation mentioned earlier, we can
infer that if f(x) has no proper factorization
in Ok [x], where Ok is a unique factoriza-
tion domain, then it is irreducible over K.
This proves (ii). O
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We end this paper by the following
examples, which illustrate the use of Theo-

rem .2,

Example 4.3. Let K = Q(V-1), B =
12-9, w = 1+1i,and 7 = —82212 —
21517i. Then Re(B) = 12 > V2 = |w]

and |8] = 15 > (2(2x/§+ 1) + V2 +
\/6 +4(2V2 + 1)«/5)/4 = B_1(1+1i). Note

that Ok is a unique factorization domain
and 7 is a prime element because N(r) =
7221794233 is a rational prime. One can
verify that

wr = —60695 — 103729i
=2+)Br+28%+ (1 -i)p*-
iB+(1-1)

is its base-f representation with n = 4 >
2 satisfying the conditions (i) and (ii) of
Lemma B.Il. By Theorem K.2, we obtain
that

F(x) = +i)x* +2x3 + (1=i)x® —ix+(1-i)

has no proper factorization in Ok [x] and
so is irreducible over K by Theorem H.2[(ii).
Since —i isaunitin Z[i], it follows that f(x)
is primitive and so is irreducible in Ok [x]

by Theorem &.2(i).

Example 4.4. Let K = Q(V-19), 8 =
17+ 50_19, w = 2, and 7 = —59062661 +
160199450_19. Then Re(B) = 19.5 >
2 = |w| and |B] = V499 > (20 +
V23 + V39 +40V23)/8 = B_19(2). Note
that Ok is a unique factorization domain
and 7 is a prime element because N(r) =
3825410532642401 is a rational prime.
One can verify that

wn = —118125322 + 32039890019
=228% + 68 + 483 + 1082 + 88 + 20

12

is its base-f representation with n = 5 >
2 satisfying the conditions (i) and (ii) of
Lemma B.1. By Theorem §.2, we conclude
that

F(x) = 22x% + 6x* + 4x3 + 10x2 + 8x + 20

has no proper factorization in Ok [x] and
so is irreducible over K by Theorem B.2(ii).
Note that f(x) is reducible in Ok [x] be-
cause f(x) = 2(11x° + 3x* + 2x3 + 5x? +
4x + 10).

By substituting w € U(Og) into
Theorem §.2, we obtain that the polynomial
f(x) has no proper factorization in Ok [x].
Since 7 is also irreducible, the polynomial
£ (x) is primitive by Theorem B.3, and thus,
it is irreducible in Ok [x]. This means that
Theorem §.2)is a generalization of Theorem
B.3 by considering wr instead of 7, where
w € Ok \{0} and 7 is a prime element.

5. Conclusion

Let K be an imaginary quadratic field
with the ring of integers Ok . In this work,
we construct the base-S representation for
any nonzero element of Ox. Moreover, we
establish further irreducibility criteria for
polynomials in Ok [x]. These results ex-
tend the existing results in the literature.
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