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ABSTRACT
Let 𝐾 be an imaginary quadratic field whose ring of integers 𝑂𝐾 is a Euclidean do-

main. In the earlier work, the so-called base-𝛽 representation for nonzero elements of 𝑂𝐾
was constructed and the irreducibility criterion for polynomials in 𝑂𝐾 [𝑥] was established,
namely if 𝜋 = 𝛼𝑛𝛽

𝑛 + 𝛼𝑛−1𝛽𝑛−1 + · · · + 𝛼1𝛽 + 𝛼0 =: 𝑓 (𝛽) is a base-𝛽 representation of a
prime element 𝜋 ∈ 𝑂𝐾 and the digits 𝛼𝑛−1 and 𝛼𝑛 satisfy some natural restrictions, then the
polynomial 𝑓 (𝑥) is irreducible in𝑂𝐾 [𝑥]. A generalization of this criterion was also verified
by considering 𝜔𝜋 (𝜔 ∈ 𝑂𝐾 \{0}) instead of 𝜋. In this paper, we extend these results to any
imaginary quadratic field 𝐾 .

Keywords: Gauss’s lemma; Imaginary quadratic field; Irreducible element; Irreducible
polynomial; Ring of integers

1. Introduction
One of the popular topics in the de-

velopment of number theory is the rela-
tionship between prime numbers and irre-
ducible polynomials. The problem of deter-
mining the irreducibility of a polynomial in
Z[𝑥] has been extensively studied and has
become an interesting topic in mathemat-
ics. There are many irreducibility criteria

for polynomials in Z[𝑥]. Here, we are inter-
ested in an elegant result of A. Cohn, given
by Pólya and Szegö [1]: if

𝑝 = 𝑎𝑛10
𝑛 + 𝑎𝑛−110𝑛−1 + · · · + 𝑎110 + 𝑎0

is the base-10 representation of a prime
number 𝑝, then the polynomial 𝑓 (𝑥) =
𝑎𝑛𝑥

𝑛+𝑎𝑛−1𝑥𝑛−1+· · ·+𝑎1𝑥+𝑎0 is irreducible
in Z[𝑥]. For example, one can immediately
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infer that 𝑓 (𝑥) = 5𝑥4 + 4𝑥3 + 3𝑥2 + 2𝑥 + 3 is
irreducible in Z[𝑥] due to the decimal rep-
resentation of the prime number 54323. In
1981, Brillhart et al. [2] generalized this re-
sult to any arbitrary base 𝑏. On the same
matter, Murty [3] provided another proof of
this result using a conceptually simpler ar-
gument than the one in [2]. In 1982, Filaseta
[4] generalized this result in another way by
considering 𝑤𝑝 instead of 𝑝: if

𝑤𝑝 = 𝑏𝑚𝑏
𝑚 + 𝑏𝑚−1𝑏

𝑚−1 + · · · + 𝑏1𝑏 + 𝑏0

is the base-𝑏 representation of 𝑤𝑝, where
𝑤 and 𝑏 are positive integers, 𝑤 < 𝑏, and
𝑝 is a prime number, then the polynomial
𝑓 (𝑥) = 𝑏𝑚𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + · · · + 𝑏1𝑥 + 𝑏0
is irreducible over Q.

The irreducibility criteria for polyno-
mials in Z[𝑥] mentioned earlier motivate
us to study and establish irreducibility cri-
teria for polynomials in 𝑂𝐾 [𝑥], where 𝐾
is any imaginary quadratic field. First of
all, let us summarize some information on
a quadratic field taken from [5] as follows:
for any quadratic field 𝐾 , there exists a
unique square-free integer 𝑚 ≠ 1 such that

𝐾 = Q
(√
𝑚

)
=

{
𝑟 + 𝑠

√
𝑚 | 𝑟, 𝑠 ∈ Q

}
.

The field 𝐾 is said to be real if 𝑚 > 0 and
imaginary if𝑚 < 0. The set of algebraic in-
tegers that lie in 𝐾 is denoted by𝑂𝐾 , called
the ring of integers of 𝐾 . In fact,

𝑂𝐾 = {𝑎 + 𝑏𝜎𝑚 | 𝑎, 𝑏 ∈ Z} ,

where

𝜎𝑚 :=


√
𝑚 if 𝑚 . 1 (mod 4),

1 + √
𝑚

2
if 𝑚 ≡ 1 (mod 4).

In particular, when 𝑚 = −1, one can see
that 𝑂𝐾 = Z[𝑖], the ring of Gaussian inte-
gers. Note that 𝐾 is the quotient field of

𝑂𝐾 , which is an integral domain and the
set of units in the polynomial ring 𝑂𝐾 [𝑥]
is𝑈 (𝑂𝐾 ), the group of units in 𝑂𝐾 .

For 𝛼, 𝛽 ∈ 𝑂𝐾 with 𝛼 ≠ 0, we say
that 𝛼 divides 𝛽, denoted by 𝛼 | 𝛽, if there
exists 𝛿 ∈ 𝑂𝐾 such that 𝛽 = 𝛼𝛿. We write
𝛼 ∤ 𝛽 to indicate that 𝛽 is not divisible by 𝛼.
A polynomial 𝑝(𝑥) ∈ 𝑂𝐾 [𝑥] is irreducible
in 𝑂𝐾 [𝑥] if it is an irreducible element of
the ring𝑂𝐾 [𝑥]; in other words, 𝑝(𝑥) is nei-
ther a zero polynomial nor a unit in𝑂𝐾 and
if, whenever 𝑝(𝑥) = 𝑓 (𝑥)𝑔(𝑥) with 𝑓 (𝑥)
and 𝑔(𝑥) in𝑂𝐾 [𝑥], then either 𝑓 (𝑥) or 𝑔(𝑥)
is a unit in 𝑂𝐾 . Polynomials that are not ir-
reducible are said to be reducible. In addi-
tion, if𝑂𝐾 is a unique factorization domain
and 𝑓 (𝑥) is irreducible in𝑂𝐾 [𝑥], then 𝑓 (𝑥)
is irreducible over 𝐾 [6].

For 𝛽 = 𝑎 + 𝑏𝜎𝑚 ∈ 𝑂𝐾 , we denote
the norm of 𝛽 by 𝑁 (𝛽) =
𝑎2 − 𝑚𝑏2 if 𝑚 . 1 (mod 4),

𝑎2 + 𝑎𝑏 + 𝑏2
(
1 − 𝑚
4

)
if 𝑚 ≡ 1 (mod 4).

We note from [5] that if 𝑁 (𝛽) = ±𝑝, where
𝑝 is a rational prime, then 𝛽 is an irreducible
element of 𝑂𝐾 . One can see that a prime
element of 𝑂𝐾 is always irreducible, while
the converse holds if𝑂𝐾 is a unique factor-
ization domain. Moreover, if 𝐾 is an imag-
inary quadratic field, then |𝛽 |2 = 𝑁 (𝛽) ∈ N
for all 𝛽 ∈ 𝑂𝐾 \{0} and |𝛽 | = 1 for all
𝛽 ∈ 𝑈 (𝑂𝐾 ) [5].

In 2017, Singthongla et al. [8]
constructed the so-called base-𝛽 represen-
tation for nonzero elements of 𝑂𝐾 and
applied it to establish the result of A.
Cohn in 𝑂𝐾 [𝑥], where 𝐾 = Q

(√
𝑚

)
is an imaginary quadratic field such that
𝑂𝐾 is a Euclidean domain, namely when
𝑚 = −1,−2,−3,−7,−11 [5]. They also
determined the base-𝛽(C) representation
for nonzero Gaussian integers and estab-
lished irreducibility criteria for polynomi-
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als in Z[𝑖] [𝑥], where C =
{
𝑥 + 𝑦𝑖 |

𝑥 = 0, 1, . . . ,
(
(𝑎2 + 𝑏2)/𝑑

)
− 1 and 𝑦 =

0, 1, . . . , 𝑑 − 1
}
is a complete residue sys-

tem modulo 𝛽 ∈ Z[𝑖] [7]. In their work, the
following results were proved:

Theorem 1.1. Let 𝐾 = Q
(√
𝑚

)
where 𝑚 =

−1,−2,−3,−7,−11, and let

𝐴𝑚 =


√
1 − 𝑚
2

if 𝑚 = −1,−2,
√
4 − 𝑚
4

if 𝑚 = −3,−7,−11.

Let 𝛽 ∈ 𝑂𝐾 be such that |𝛽 | > 1+𝐴𝑚. Then
any 𝜂 ∈ 𝑂𝐾 \{0} has a base-𝛽 representa-
tion in the form

𝜂 = 𝛼𝑛𝛽
𝑛 + 𝛼𝑛−1𝛽𝑛−1 + · · · + 𝛼1𝛽 + 𝛼0,

where 𝑛 ≥ 0, 𝛼𝑛 ∈ 𝑂𝐾 \{0}, |𝛼𝑛 | < |𝛽 |,
and 𝛼𝑖 ∈ 𝑂𝐾 with 0 ≤ |𝛼𝑖 | ≤ 𝐴𝑚 |𝛽 | for all
𝑖 ∈ {0, 1, . . . , 𝑛 − 1}.

Theorem 1.2. Let 𝐾 = Q
(√
𝑚

)
where 𝑚 =

−1,−2,−3,−7,−11, and let 𝐵𝑚 =

(
6 +

√
2 +

√
6 + 12

√
2
)
/4 ≈ 3.05

if 𝑚 = −1,(
6 +

√
3 +

√
7 + 12

√
3
)
/4 ≈ 3.2508

if 𝑚 = −2,(
12 +

√
7 +

√
23 + 24

√
7
)
/8 ≈ 2.99327

if 𝑚 = −3,(
12 +

√
11 +

√
27 + 24

√
11

)
/8 ≈ 3.20516

if 𝑚 = −7,(
12 +

√
15 +

√
31 + 24

√
15

)
/8 ≈ 3.37579

if 𝑚 = −11.

Let 𝛽 ∈ 𝑂𝐾 be such that |𝛽 | ≥ 𝐵𝑚 and
Re(𝛽) ≥ 1. For a prime element 𝜋 of 𝑂𝐾 ,
if

𝜋 = 𝛼𝑛𝛽
𝑛+𝛼𝑛−1𝛽𝑛−1+· · ·+𝛼1𝛽+𝛼0 =: 𝑓 (𝛽)

is its base-𝛽 representation with 𝑛 ≥ 1
satisfying the conditions Re(𝛼𝑛) ≥ 1,
Re(𝛼𝑛−1) ≥ 0, Im(𝛼𝑛−1) ≥ 0 and
Re(𝛼𝑛−1) Im(𝛼𝑛) ≥ Re(𝛼𝑛) Im(𝛼𝑛−1),
then 𝑓 (𝑥) is irreducible in 𝑂𝐾 [𝑥].

Denote C′ := {𝑥 + 𝑦𝑖 | 𝑥 =
0, 1, . . . ,max{|𝑎 |, |𝑏 |} − 1 and 𝑦 =
0, 1, . . . , 𝑑 − 1} ⊆ C.

Theorem 1.3. Let 𝛽 ∈ {2 ± 2𝑖, 1 ± 3𝑖,
3 ± 𝑖} or 𝛽 = 𝑎 + 𝑏𝑖 ∈ Z[𝑖] be such that
|𝛽 | ≥ 2 +

√
2 and 𝑎 ≥ 1. For a Gaussian

prime 𝜋, if

𝜋 = 𝛼𝑛𝛽
𝑛+𝛼𝑛−1𝛽𝑛−1+· · ·+𝛼1𝛽+𝛼0 =: 𝑓 (𝛽),

with 𝑛 ≥ 1, Re(𝛼𝑛) ≥ 1, and
𝛼0, 𝛼1, . . . , 𝛼𝑛−1 ∈ C′ satisfying
Re(𝛼𝑛−1) Im(𝛼𝑛) ≥ Re(𝛼𝑛) Im(𝛼𝑛−1),
then 𝑓 (𝑥) is irreducible in Z[𝑖] [𝑥].

Theorem 1.4. If 𝜋 is a Gaussian prime such
that

𝜋 = 𝛼𝑛3
𝑛 + 𝛼𝑛−13𝑛−1 + · · · + 𝛼13 + 𝛼0,

where 𝑛 ≥ 3, Re(𝛼𝑛) ≥ 1, and
𝛼0, 𝛼1, . . . , 𝛼𝑛−1 ∈ C′ satisfying the condi-
tions

Re(𝛼𝑛−1) Im(𝛼𝑛) ≥ Re(𝛼𝑛) Im(𝛼𝑛−1),

Re(𝛼𝑛−2) Im(𝛼𝑛) ≥ Re(𝛼𝑛) Im(𝛼𝑛−2),

Re(𝛼𝑛−2) Im(𝛼𝑛−1) ≥ Re(𝛼𝑛−1) Im(𝛼𝑛−2),

then the polynomial 𝑓 (𝑥) = 𝛼𝑛𝑥
𝑛 +

𝛼𝑛−1𝑥𝑛−1 + · · · + 𝛼1𝑥 + 𝛼0 is irreducible in
Z[𝑖] [𝑥].

Afterward, Kanasri et al. [9] proved
the following theorem, which is a general-
ization of Theorem 1.2 when considering
𝜔𝜋 (𝜔 ∈ 𝑂𝐾 \{0}) instead of 𝜋.
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Theorem 1.5. Let 𝐾 = Q
(√
𝑚

)
where 𝑚 =

−1,−2,−3,−7,−11, 𝜔 ∈ 𝑂𝐾 \{0}, and let
𝐵𝑚(𝜔) =

(
2(2|𝜔| + 1) +

√
2 +

√
6 + 4(2|𝜔 | + 1)

√
2

)
/4

if 𝑚 = −1,(
2(2|𝜔| + 1) +

√
3 +

√
7 + 4(2|𝜔 | + 1)

√
3

)
/4

if 𝑚 = −2,(
4(2|𝜔| + 1) +

√
7 +

√
23 + 8(2|𝜔 | + 1)

√
7

)
/8

if 𝑚 = −3,(
4(2|𝜔| + 1) +

√
11 +

√
27 + 8(2|𝜔| + 1)

√
11

)
/8

if 𝑚 = −7,(
4(2|𝜔| + 1) +

√
15 +

√
31 + 8(2|𝜔| + 1)

√
15

)
/8

if 𝑚 = −11.

Let 𝛽 ∈ 𝑂𝐾 be such that |𝛽 | ≥ 𝐵𝑚(𝜔) and
Re(𝛽) ≥ |𝜔 |. For a prime element 𝜋 of𝑂𝐾 ,
if
𝜔𝜋 = 𝛼𝑛𝛽

𝑛 +𝛼𝑛−1𝛽𝑛−1+ · · ·+𝛼1𝛽+𝛼0 =: 𝑓 (𝛽)

is its base-𝛽 representation with 𝑛 ≥ 1
satisfying the conditions Re(𝛼𝑛) ≥ 1,
Re(𝛼𝑛−1) ≥ 0, Im(𝛼𝑛−1) ≥ 0 and
Re(𝛼𝑛−1) Im(𝛼𝑛) ≥ Re(𝛼𝑛) Im(𝛼𝑛−1),
then 𝑓 (𝑥) is irreducible over 𝐾 .

For any quadratic field 𝐾 = Q
(√
𝑚

)
,

Tadee et al. [10] proved for the case 𝑚 .
1 (mod 4) that the set
C =

{
𝑥 + 𝑦𝜎𝑚 | 𝑥 = 0, 1, . . . , ( |𝑁 (𝛽) |/𝑑) − 1

and 𝑦 = 0, 1, . . . , 𝑑 − 1
}

(1.1)

is a complete residue system modulo 𝛽,
abbreviated by 𝐶𝑅𝑆(𝛽), where 𝛽 = 𝑎 +
𝑏𝜎𝑚 ∈ 𝑂𝐾 with 𝑑 = gcd (𝑎, 𝑏). In
2021, Phetnun et al. [11] verified that
Eq. (1.1) is also a 𝐶𝑅𝑆(𝛽) for the case 𝑚 ≡
1 (mod 4) and the set C′ := {𝑥 + 𝑦𝜎𝑚 |
𝑥 = 0, 1, . . . ,max{|𝑎 |, |𝑏 |} − 1 and 𝑦 =
0, 1, . . . , 𝑑 − 1} ⊆ C for any 𝑚 < 0. More-
over, they determined the so-called base-
𝛽(C) representation for nonzero elements

of 𝑂𝐾 and extended Theorem 1.3 to any
imaginary quadratic field using such a rep-
resentation (Theorems 3-4 in [11]). We note
that 𝜂 ∈ 𝑂𝐾 \{0} has a base-𝛽(C) represen-
tation if

𝜂 = 𝛼𝑛𝛽
𝑛+𝛼𝑛−1𝛽𝑛−1+· · ·+𝛼1𝛽+𝛼0, (1.2)

for some 𝑛 ≥ 1, 𝛼𝑛 ∈ 𝑂𝐾 \{0} and 𝛼𝑖 ∈
C (𝑖 = 0, 1, . . . , 𝑛 − 1). If 𝛼𝑖 ∈ C′ (𝑖 =
0, 1, . . . , 𝑛 − 1), then Eq. (1.2) is called a
base-𝛽(C ′) representation of 𝜂.

Recently, Phetnun and Kanasri [12]
established further irreducibility criteria for
polynomials in𝑂𝐾 [𝑥], where 𝐾 is an imag-
inary quadratic field, which extended The-
orem 1.4 to any imaginary quadratic field.

In similar fashion as the results in
[11, 12], we hence aim to extend Theorems
1.1-1.2, and 1.5 to any imaginary quadratic
field.

2. Base-𝛽 Representations
In this section, we construct a base-𝛽

representation for nonzero elements of𝑂𝐾 ,
where 𝐾 is an imaginary quadratic field.
We start with the division algorithm for el-
ements of 𝑂𝐾 .

Proposition 2.1. Let 𝐾 = Q
(√
𝑚

)
be

an imaginary quadratic field and let 𝛽 ∈
𝑂𝐾 \{0} be fixed. For 𝛼 ∈ 𝑂𝐾 , there ex-
ist 𝜆, 𝜌 ∈ 𝑂𝐾 such that 𝛼 = 𝜆𝛽 + 𝜌 with
0 ≤ |𝜌 | ≤ 𝐴𝑚 |𝛽 |, where

𝐴𝑚 :=


√
1 − 𝑚
2

if 𝑚 . 1 (mod 4),
√
4 − 𝑚
4

if 𝑚 ≡ 1 (mod 4).
(2.1)

Proof. Assume that 𝛼/𝛽 = 𝑟 + 𝑠√𝑚, where
𝑟, 𝑠 ∈ Q. We consider two possible cases.
Case 1: 𝑚 . 1 (mod 4). Let 𝑎 =
⌊𝑟 + (1/2)⌋ and 𝑏 = ⌊𝑠 + (1/2)⌋, where ⌊·⌋
is the floor function. Then |𝑟 − 𝑎 | ≤ 1/2

4
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and |𝑠 − 𝑏 | ≤ 1/2. Now, we let 𝜆 = 𝑎+𝑏𝜎𝑚
and 𝜌 = 𝛼 − 𝜆𝛽. Then 𝜆, 𝜌 ∈ 𝑂𝐾 , 𝛼 =
𝜆𝛽 + 𝜌, and

0 ≤ |𝜌 | = |𝛽 |
����𝛼𝛽 − 𝜆

����
= |𝛽 |

��(𝑟 − 𝑎) + (𝑠 − 𝑏)
√
𝑚

��
= |𝛽 |

√
(𝑟 − 𝑎)2 − 𝑚 (𝑠 − 𝑏)2

≤ |𝛽 |
√

1 − 𝑚
4

= 𝐴𝑚 |𝛽 |.

Case 2: 𝑚 ≡ 1 (mod 4). Let 𝑎 =
⌊2𝑠 + (1/2)⌋ and 𝑏 = ⌊𝑟 − (𝑎/2) + (1/2)⌋.
It follows that |2𝑠 − 𝑎 | ≤ 1/2 and
|𝑟 − (𝑎/2) − 𝑏 | ≤ 1/2. Now, we let 𝜆 =
𝑏 + 𝑎𝜎𝑚 and 𝜌 = 𝛼 − 𝜆𝛽. Then 𝜆, 𝜌 ∈ 𝑂𝐾 ,
𝛼 = 𝜆𝛽 + 𝜌, and

0 ≤ |𝜌 | = |𝛽 |
����𝛼𝛽 − 𝜆

����
= |𝛽 |

���(𝑟 − 𝑎

2
− 𝑏

)
+

(
𝑠 − 𝑎

2

) √
𝑚
���

= |𝛽 |
√(

𝑟 − 𝑎

2
− 𝑏

)2
− 𝑚

(
𝑠 − 𝑎

2

)2
≤ |𝛽 |

√
4 − 𝑚
16

= 𝐴𝑚 |𝛽 |.

This completes the proof. □

Our first main result reads:

Theorem 2.2. Let𝐾 = Q
(√
𝑚

)
be an imag-

inary quadratic field and let 𝛽 ∈ 𝑂𝐾 be
such that |𝛽 | ≥ 2. Then any 𝜂 ∈ 𝑂𝐾 \{0}
has a base-𝛽 representation in the form

𝜂 = 𝛼𝑛𝛽
𝑛 + 𝛼𝑛−1𝛽𝑛−1 + · · · + 𝛼1𝛽 + 𝛼0,

where 𝑛 ≥ 0, 𝛼𝑖 ∈ 𝑂𝐾 with 𝛼𝑛 ≠ 0 and
0 ≤ |𝛼𝑖 | ≤ 𝐴𝑚 |𝛽 | for all 𝑖 ∈ {0, 1, . . . , 𝑛},
where 𝐴𝑚 is defined as in Eq. (2.1).

Proof. If |𝜂 | ≤ 𝐴𝑚 |𝛽 |, then we are done.
Now, assume that |𝜂 | > 𝐴𝑚 |𝛽 |. It follows
from Proposition 2.1 that

𝜂 = 𝛿0𝛽 + 𝛼0, 0 ≤ |𝛼0 | ≤ 𝐴𝑚 |𝛽 |. (2.2)

Clearly, 𝛿0 ≠ 0. We next claim that |𝜂 | >
|𝛿0 |. Suppose not, we have |𝛿0 | ≥ |𝜂 | =
|𝛿0𝛽 + 𝛼0 | ≥ |𝛿0 | |𝛽 | − |𝛼0 | and so |𝛼0 | ≥
|𝛿0 | ( |𝛽 | − 1) . Since |𝛽 | ≥ 2, we conse-
quently have |𝛿0 | ≥ |𝜂 | > 𝐴𝑚 |𝛽 | ≥ |𝛼0 | ≥
|𝛿0 | ( |𝛽 | − 1) ≥ |𝛿0 |, which is a contradic-
tion.

Returning to Eq. (2.2), if |𝛿0 | ≤
𝐴𝑚 |𝛽 |, then Eq. (2.2) is a base-𝛽 represen-
tation of 𝜂 and so we are done. On the other
hand, if |𝛿0 | > 𝐴𝑚 |𝛽 |, then we continue by
dividing 𝛿0 by 𝛽 and using the claim to ob-
tain

𝛿0 = 𝛿1𝛽+𝛼1, 0 ≤ |𝛼1 | ≤ 𝐴𝑚 |𝛽 | and |𝛿0 | > |𝛿1 |.
(2.3)

Again, it is clear that 𝛿1 ≠ 0. It follows
from Eqs. (2.2)- (2.3) that

𝜂 = 𝛿1𝛽
2+𝛼1𝛽+𝛼0, 0 ≤ |𝛼𝑖 | ≤ 𝐴𝑚 |𝛽 | (𝑖 = 0, 1).

(2.4)

If |𝛿1 | ≤ 𝐴𝑚 |𝛽 |, then the process stops
again and Eq. (2.4) is a base-𝛽 representa-
tion of 𝜂. While if |𝛿1 | > 𝐴𝑚 |𝛽 |, then we
continue by dividing 𝛿1 by 𝛽. If this process
does not stop, then we obtain an infinite se-
quence (𝛿𝑖)𝑖≥0 of elements of𝑂𝐾 such that
|𝛿𝑖 | > 𝐴𝑚 |𝛽 | > 0 for all 𝑖 ≥ 0 satisfying

𝛿𝑖 = 𝛿𝑖+1𝛽 + 𝛼𝑖+1, 0 ≤ |𝛼𝑖+1 | ≤ 𝐴𝑚 |𝛽 | and
|𝛿𝑖 | > |𝛿𝑖+1 | (𝑖 ≥ 0).

It follows that ( |𝛿𝑖 |2)𝑖≥0 is a strictly de-
creasing sequence of positive integers,
which is a contradiction because there are
finitely many positive integers between
|𝛿0 |2 and 0. Thus there exists the small-
est nonnegative integer 𝑘 such that |𝛿𝑘 | ≤
𝐴𝑚 |𝛽 | and

𝜂 = 𝛿𝑘 𝛽
𝑘+1 + 𝛼𝑘 𝛽𝑘 + · · · + 𝛼1𝛽 + 𝛼0.

5
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If 𝛿𝑘 = 0, then |𝛿𝑘−1 | = |𝛿𝑘 𝛽 + 𝛼𝑘 | =
|𝛼𝑘 | ≤ 𝐴𝑚 |𝛽 |, contradicting the property of
𝑘 . Thus 𝛿𝑘 ≠ 0 and so

𝜂 = 𝛼𝑘+1𝛽
𝑘+1 + 𝛼𝑘 𝛽𝑘 + · · · + 𝛼1𝛽 + 𝛼0,

where 𝛼𝑘+1 := 𝛿𝑘 and 0 ≤ |𝛼𝑖 | ≤ 𝐴𝑚 |𝛽 | for
all 𝑖 ∈ {0, 1, . . . , 𝑘 + 1}, as desired. □

For 𝑚 ∈ {−1,−2,−3,−7,−11}, we
have that |𝛼𝑛 | ≤ 𝐴𝑚 |𝛽 | < |𝛽 |, and the con-
dition |𝛽 | ≥ 2 in Theorem 2.2 can be re-
duced to |𝛽 | > 1 + 𝐴𝑚. This implies that
Theorem 1.1 can be extended to any imagi-
nary quadratic field by Theorem 2.2.

According to Theorem 2.2, we illus-
trate the process for constructing a base-𝛽
representation in the following examples.

Example 2.3. Let 𝐾 = Q(
√
−2), 𝛽 = 4, and

𝜂 = 2615 + 1281
√
−2. Then 𝐴−2 =

√
3/2

and |𝜂 | >
(√

3/2
)
|𝛽 | (≈ 3.46). By the proof

of Theorem 2.2, we have the following

𝜂 = (654 + 320
√
−2)𝛽 + (−1 +

√
−2),

| − 1 +
√
−2| ≤

(√
3/2

)
|𝛽 |;

654 + 320
√
−2 = (164 + 80

√
−2)𝛽 − 2,

| − 2| ≤
(√

3/2
)
|𝛽 |;

164 + 80
√
−2 = (41 + 20

√
−2)𝛽 + 0,

|0| ≤
(√

3/2
)
|𝛽 |;

41 + 20
√
−2 = (10 + 5

√
−2)𝛽 + 1,

|1| ≤
(√

3/2
)
|𝛽 |;

10 + 5
√
−2 = (3 +

√
−2)𝛽 + (−2 +

√
−2),

| − 2 +
√
−2| ≤

(√
3/2

)
|𝛽 |.

One can see that 3+
√
−2 is the first quotient

such that |3 +
√
−2| <

(√
3/2

)
|𝛽 |, showing

the process stops and thus

𝜂 = (3 +
√
−2)𝛽5 + (−2 +

√
−2)𝛽4+

𝛽3 − 2𝛽 + (−1 +
√
−2)

is a base-𝛽 representation of 𝜂.

Example 2.4. Let 𝐾 = Q(
√
−15), 𝛽 =

2 + 𝜎−15, and 𝜂 = −236 + 59𝜎−15. Then
𝐴−15 =

√
19/4 and |𝜂 | >

(√
19/4

)
|𝛽 | (≈

3.45). By the proof of Theorem 2.2, we
have the following

𝜂 = (−47 + 35𝜎−15)𝛽 + (−2 + 𝜎−15),
| − 2 + 𝜎−15 | ≤

(√
19/4

)
|𝛽 |;

− 47 + 35𝜎−15 = (12𝜎−15)𝛽 + (1 − 𝜎−15),
|1 − 𝜎−15 | ≤

(√
19/4

)
|𝛽 |;

12𝜎−15 = (5 + 2𝜎−15)𝛽 + (−2 + 𝜎−15),
| − 2 + 𝜎−15 | ≤

(√
19/4

)
|𝛽 |;

5 + 2𝜎−15 = 2𝛽 + 1, |1| ≤
(√

19/4
)
|𝛽 |.

Since 2 is the first quotient such that |2| <(√
19/4

)
|𝛽 |, the process stops and so

𝜂 = 2𝛽4 + 𝛽3 + (−2 + 𝜎−15)𝛽2+
(1 − 𝜎−15)𝛽 + (−2 + 𝜎−15)

is a base-𝛽 representation of 𝜂.

From Example 2.3, we have that

𝜂 = (3 +
√
−2)𝛽5 + (−2 +

√
−2)𝛽4+

𝛽3 − 2𝛽 + (−1 +
√
−2)

is a base-𝛽 representation of 𝜂. In another
way, we can verify that

𝜂 = (2 +
√
−2)𝛽5 + (3 +

√
−2)𝛽4−

3𝛽3 − 2𝛽 + (−1 +
√
−2) (2.5)

is also a base-𝛽 representation of 𝜂. This
shows that a base-𝛽 representation of 𝜂 in
𝑂𝐾 is not unique.

3. An Irreducibility Criterion for
Polynomials over Any Imaginary
Quadratic Field

In this section, we extend Theorem
1.2 to any imaginary quadratic field 𝐾 . We
use irreducible elements instead of prime el-
ements of 𝑂𝐾 to make a more general re-
sult. We first recall the following useful
lemma from [8].

6
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Lemma 3.1. Let 𝑓 (𝑥) = 𝛼𝑛𝑥𝑛 +𝛼𝑛−1𝑥𝑛−1+
· · ·+𝛼1𝑥+𝛼0 ∈ C[𝑥] be such that 𝑛 ≥ 2 and
|𝛼𝑖 | ≤ 𝑀 (0 ≤ 𝑖 ≤ 𝑛 − 2) for some positive
real number 𝑀 . If 𝑓 (𝑥) satisfies

(i) Re(𝛼𝑛) ≥ 1, Re(𝛼𝑛−1) ≥ 0, and
Im(𝛼𝑛−1) ≥ 0,

(ii) Re(𝛼𝑛−1) Im(𝛼𝑛) ≥ Re(𝛼𝑛) Im(𝛼𝑛−1),

then any complex zero 𝛼 of 𝑓 (𝑥) satisfies
eitherRe(𝛼) < 0 or |𝛼 | <

(
1+

√
1 + 4𝑀

)
/2.

We now proceed to our second main
result and start with a lemma, which shows
that Lemma 3.1 also holds for a linear poly-
nomial in C[𝑥].

Lemma 3.2. If 𝑓 (𝑥) = 𝛼1𝑥 + 𝛼0 is a lin-
ear polynomial inC[𝑥] satisfying the condi-
tions (i) and (ii) of Lemma 3.1, then a com-
plex zero 𝛼 of 𝑓 (𝑥) satisfies either 𝛼 = 0 or
Re(𝛼) < 0.

Proof. It is clear that 𝛼 = −𝛼0/𝛼1 is a
complex zero of 𝑓 (𝑥). If 𝛼0 = 0, then
𝛼 = 0. Now, we assume that 𝛼0 ≠ 0 and
let 𝛼1 = 𝑎1 + 𝑏1𝑖, 𝛼0 = 𝑎0 + 𝑏0𝑖. Thus,

𝛼 = −𝑎0 + 𝑏0𝑖
𝑎1 + 𝑏1𝑖

= − (𝑎0𝑎1 + 𝑏0𝑏1) + (𝑎1𝑏0 − 𝑎0𝑏1)𝑖
𝑎21 + 𝑏21

,

soRe(𝛼) = −(𝑎0𝑎1+𝑏0𝑏1)/(𝑎21+𝑏21). Note
that 𝑎21 + 𝑏21 > 0 because 𝛼1 ≠ 0. By the
assumption, we have 𝑎1 ≥ 1, 𝑎0 ≥ 0, 𝑏0 ≥
0, and 𝑎0𝑏1 ≥ 𝑎1𝑏0. If 𝑎0 = 0, then 𝑏0 = 0,
which is impossible because 𝛼0 ≠ 0. Thus
𝑎0 ≥ 1 and also 𝑏1 ≥ 0. It follows that
𝑎0𝑎1 + 𝑏0𝑏1 > 0, yielding Re(𝛼) < 0, as
desired. □

Theorem 3.3. Let𝐾 = Q
(√
𝑚

)
be an imag-

inary quadratic field and 𝐵𝑚 =

(
6 +

√
1 − 𝑚 +

√
5 − 𝑚 + 12

√
1 − 𝑚

)
/4

if 𝑚 . 1 (mod 4),(
12 +

√
4 − 𝑚 +

√
20 − 𝑚 + 24

√
4 − 𝑚

)
/8

if 𝑚 ≡ 1 (mod 4).

Let 𝛽 ∈ 𝑂𝐾 be such that |𝛽 | ≥ 𝐵𝑚 and
Re(𝛽) ≥ 1. For an irreducible element 𝜋
of 𝑂𝐾 , if

𝜋 = 𝛼𝑛𝛽
𝑛+𝛼𝑛−1𝛽𝑛−1+· · ·+𝛼1𝛽+𝛼0 =: 𝑓 (𝛽)

is its base-𝛽 representation with 𝑛 ≥ 1 sat-
isfying the conditions (i) and (ii) of Lemma
3.1, then 𝑓 (𝑥) is irreducible in 𝑂𝐾 [𝑥].

Proof. Suppose to the contrary that
𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥), where 𝑔(𝑥), ℎ(𝑥) ∈
𝑂𝐾 [𝑥]\𝑈 (𝑂𝐾 ). We first show that either
deg 𝑔(𝑥) ≥ 1 and |𝑔(𝛽) | = 1 or
deg ℎ(𝑥) ≥ 1 and |ℎ(𝛽) | = 1. Clearly,
deg 𝑓 (𝑥) ≥ 1 implies that 𝑔(𝑥) or ℎ(𝑥)
is a positive degree polynomial. If ei-
ther deg 𝑔(𝑥) = 0 or deg ℎ(𝑥) = 0,
we may assume that ℎ(𝑥) = 𝛼 ∈ 𝑂𝐾 .
Then 𝑓 (𝑥) = 𝛼𝑔(𝑥) and so 𝜋 = 𝛼𝑔(𝛽).
Since 𝜋 is irreducible and 𝛼 ∉ 𝑈 (𝑂𝐾 ),
we obtain 𝑔(𝛽) ∈ 𝑈 (𝑂𝐾 ) and thus,
|𝑔(𝛽) | = 1. Otherwise, both deg 𝑔(𝑥) ≥ 1
and deg ℎ(𝑥) ≥ 1. Since 𝜋 = 𝑔(𝛽)ℎ(𝛽)
and using the irreducibility of 𝜋 again, we
deduce that either 𝑔(𝛽) or ℎ(𝛽) is a unit.
Hence, either |𝑔(𝛽) | = 1 or |ℎ(𝛽) | = 1.

We may assume without loss of gen-
erality that deg 𝑔(𝑥) ≥ 1 and |𝑔(𝛽) | = 1.
We next show that

|𝛽 | −
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

≥ 1, (3.1)

where 𝐴𝑚 is defined as in Eq. (2.1). We
treat two possible cases.

7
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Case 1: 𝑚 . 1 (mod 4). Since |𝛽 | ≥ 𝐵𝑚,
we get

|𝛽 |2 − (6 +
√
1 − 𝑚) |𝛽 |
2

+ 2 =(
|𝛽 | − 6 +

√
1 − 𝑚 +

√
5 − 𝑚 + 12

√
1 − 𝑚

4

)
·(

|𝛽 | − 6 +
√
1 − 𝑚 −

√
5 − 𝑚 + 12

√
1 − 𝑚

4

)
≥ 0, implying

(2|𝛽 | − 3)2 ≥ 1 + 2
√
1 − 𝑚 |𝛽 |.

This shows that

|𝛽 | −
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

=

|𝛽 | −
1 +

√
1 + 2

√
1 − 𝑚 |𝛽 |

2
≥ 1.

Case 2: 𝑚 ≡ 1 (mod 4). Since |𝛽 | ≥ 𝐵𝑚,
we obtain

|𝛽 |2 − (12 +
√
4 − 𝑚) |𝛽 |
4

+ 2 =(
|𝛽 | − 12 +

√
4 − 𝑚 +

√
20 − 𝑚 + 24

√
4 − 𝑚

8

)
·(

|𝛽 | − 12 +
√
4 − 𝑚 −

√
20 − 𝑚 + 24

√
4 − 𝑚

8

)
≥ 0,

showing

(2|𝛽 | − 3)2 ≥ 1 +
√
4 − 𝑚 |𝛽 |.

It follows that

|𝛽 | −
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

=

|𝛽 | −
1 +

√
1 +

√
4 − 𝑚 |𝛽 |

2
≥ 1.

From both cases, we obtain Eq. (3.1).

Nowwe have deg 𝑔(𝑥) ≥ 1 and it can
be expressed in the form

𝑔(𝑥) = 𝜀
∏
𝑖

(𝑥 − 𝛾𝑖),

where 𝜀 ∈ 𝑂𝐾 is the leading coefficient
of 𝑔(𝑥) and the product is over the set
of complex zeros of 𝑔(𝑥). By Theorem
2.2, we have |𝛼𝑖 | ≤ 𝐴𝑚 |𝛽 | for all 𝑖 ∈
{0, 1, . . . , 𝑛}. It follows from Lemmas 3.1-
3.2 that any complex zero 𝛾 of 𝑔(𝑥) satisfies
either Re(𝛾) < 0 or

|𝛾 | <
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

. (3.2)

(In the case deg 𝑓 (𝑥) = 1, we have either
𝛾 = 0 or Re(𝛾) < 0). If Re(𝛾) < 0, then
|𝛽− 𝛾 | ≥ Re(𝛽− 𝛾) = Re(𝛽) −Re(𝛾) > 1.
In the latter case, we obtain by Eqs. (3.1)-
(3.2) that

|𝛽−𝛾 | ≥ |𝛽 |− |𝛾 | > |𝛽 |−
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

≥ 1.

Since |𝜀 | ≥ 1, we get

1 = |𝑔(𝛽) | = |𝜀 |
∏
𝑖

|𝛽 − 𝛾𝑖 | ≥
∏
𝑖

|𝛽 − 𝛾𝑖 | > 1,

which is a contradiction. This completes the
proof. □

Note that 𝑂𝐾 is a unique factoriza-
tion domain for𝑚 ∈ {−1,−2,−3,−7,−11}.
Thus, an irreducible element is a prime ele-
ment in 𝑂𝐾 . This shows that Theorem 1.2
can be extended to any imaginary quadratic
field by Theorem 3.3.

By applying Theorem 3.3, we can
find irreducible polynomials in 𝑂𝐾 [𝑥] as
the following examples.

Example 3.4. Let 𝐾 = Q(
√
−2) and 𝛽 = 4.

Then |𝛽 | = 4 >
(
6 +

√
3 +

√
7 + 12

√
3
)
/4 =

𝐵−2 and Re(𝛽) = 4 > 1. Let 𝜋 = 2615 +

8
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1281
√
−2 ∈ 𝑂𝐾 . Since 𝑁 (𝜋) = 10120147

is a rational prime, we deduce that 𝜋 is an
irreducible element. By Eq. (2.5), we have

𝜋 = (2 +
√
−2)𝛽5 + (3 +

√
−2)𝛽4−

3𝛽3 − 2𝛽 + (−1 +
√
−2)

is its base-𝛽 representation with 𝑛 = 5 >
1 satisfying the conditions (i) and (ii) of
Lemma 3.1. By Theorem 3.3, we obtain
that

𝑓 (𝑥) = (2 +
√
−2)𝑥5 + (3 +

√
−2)𝑥4−

3𝑥3 − 2𝑥 + (−1 +
√
−2)

is irreducible in 𝑂𝐾 [𝑥]. Note that it is ir-
reducible over 𝐾 because 𝑂𝐾 is a unique
factorization domain.

Example 3.5. Let 𝐾 = Q(
√
−15) and

𝛽 = 5. Then |𝛽 | = 5 >
(
12 +

√
19 +√

35 + 24
√
19

)
/8 = 𝐵−15 and Re(𝛽) = 5 >

1. Let 𝜋 = 56759+16248𝜎−15 ∈ 𝑂𝐾 . Since
𝑁 (𝜋) = 5199794329 is a rational prime, we
deduce that 𝜋 is an irreducible element. One
can verify that

𝜋 = (3 + 𝜎−15)𝛽6 + 4𝛽5 + (−5 + 𝜎−15)𝛽4+
4𝛽3 + 𝛽 + (4 − 2𝜎−15) (3.3)

is its base-𝛽 representation with 𝑛 = 6 >
1 satisfying the conditions (i) and (ii) of
Lemma 3.1. By Theorem 3.3, we deduce
that

𝑓 (𝑥) = (3 + 𝜎−15)𝑥6 + 4𝑥5 + (−5 + 𝜎−15)𝑥4+
4𝑥3 + 𝑥 + (4 − 2𝜎−15)

is irreducible in 𝑂𝐾 [𝑥].

From Example 3.4, we have that

C′ =
{
𝑥 + 𝑦

√
−2 | 𝑥, 𝑦 = 0, 1, 2, 3

}
.

It is important to emphasize that we can-
not apply Theorem 3 in [11] to conclude
the irreducibility of the polynomial 𝑓 (𝑥).
This is because the representation of 𝜋 in
Eq. (2.5) is not a base-𝛽(C ′) representa-
tion, even though |𝛽 | = 4 > 2 +

√
3 and

𝑎 = 4 > 1 +
√
3.

Similarly, in Example 3.5, we have

C′ = {𝑥 + 𝑦𝜎−15 | 𝑥, 𝑦 = 0, 1, 2, 3, 4} .

Since the representation of 𝜋 in Eq. (3.3) is
not a base-𝛽(C ′) representation, Theorem
4 in [11] cannot be applied to conclude the
irreducibility of the polynomial 𝑓 (𝑥).

4. A Generalization of the Irre-
ducibility Criterion

Let 𝐾 = Q
(√
𝑚

)
be an imaginary

quadratic field such that its ring of inte-
gers 𝑂𝐾 is a unique factorization domain.
Then 𝑚 = −1,−2,−3,−7,−11,−19,−43,
−67,−163 [13]. For a nonconstant poly-
nomial 𝑓 (𝑥) ∈ 𝑂𝐾 [𝑥], the greatest com-
mon divisor of the nonzero coefficients of
𝑓 (𝑥) is called the content of 𝑓 (𝑥), which
is denoted by 𝑐

(
𝑓 (𝑥)

)
. Moreover, 𝑓 (𝑥) is

called a primitive polynomial if its content
is a unit. We now recall the following es-
sential lemma from [6].

Theorem 4.1. (Gauss’s Lemma). Let 𝑅 be
a unique factorization domain. Let 𝑓 (𝑥)
and 𝑔(𝑥) be two nonzero polynomials in
𝑅[𝑥]. Then

𝑐
(
𝑓 (𝑥)𝑔(𝑥)

)
= 𝑢𝑐

(
𝑓 (𝑥)

)
𝑐
(
𝑔(𝑥)

)
,

where 𝑢 is a unit in 𝑅.

It is well known that every algebraic
number is of the form 𝑟/𝑠, where 𝑟 is an al-
gebraic integer and 𝑠 is a nonzero rational
integer. Thus, for a nonconstant polyno-
mial 𝑓 (𝑥) ∈ 𝑂𝐾 [𝑥], if 𝑓 (𝑥) = 𝑔1(𝑥)ℎ1(𝑥),
where 𝑔1(𝑥) and ℎ1(𝑥) are positive degree

9
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polynomials in 𝐾 [𝑥], then we may take
𝑔2(𝑥) = 𝑎𝑔1(𝑥) and ℎ2(𝑥) = 𝑏ℎ1(𝑥)
for some nonzero rational integers 𝑎 and 𝑏
and nonconstant polynomials 𝑔2(𝑥), ℎ2(𝑥)
in 𝑂𝐾 [𝑥]. Hence 𝑎𝑏 𝑓 (𝑥) = 𝑔2(𝑥)ℎ2(𝑥)
and so

𝑐
(
𝑎𝑏 𝑓 (𝑥)

)
= 𝑢𝑐

(
𝑔2(𝑥)

)
𝑐
(
ℎ2(𝑥)

)
, (4.1)

by Theorem 4.1, where 𝑢 ∈ 𝑈 (𝑂𝐾 ). Let 𝜋
be a prime divisor of 𝑎𝑏 in𝑂𝐾 . One can see
that 𝜋 divides 𝑐

(
𝑎𝑏 𝑓 (𝑥)

)
. Since 𝜋 is a prime

element of 𝑂𝐾 , it follows from Eq. (4.1)
that 𝜋 divides 𝑐

(
𝑔2(𝑥)

)
or 𝑐

(
ℎ2(𝑥)

)
. Thus

𝜋 divides 𝑔2(𝑥) or ℎ2(𝑥), yielding

𝑎𝑏

𝜋
𝑓 (𝑥) = 𝑔3(𝑥)ℎ3(𝑥),

for some nonconstant polynomials 𝑔3(𝑥)
and ℎ3(𝑥) in 𝑂𝐾 [𝑥]. Continuing in the
same manner, we finally get 𝑓 (𝑥) =
𝑔(𝑥)ℎ(𝑥), where 𝑔(𝑥) and ℎ(𝑥) are positive
degree polynomials in 𝑂𝐾 [𝑥]. Hence, we
deduce that for a nonconstant polynomial
𝑓 (𝑥) ∈ 𝑂𝐾 [𝑥], if 𝑓 (𝑥) is reducible over
𝐾 , then it is reducible in 𝑂𝐾 [𝑥]. Indeed,
if 𝑓 (𝑥) is primitive, then 𝑓 (𝑥) is irreducible
in 𝑂𝐾 [𝑥] if and only if 𝑓 (𝑥) is irreducible
over 𝐾 [14].

For an imaginary quadratic field 𝐾
and a nonconstant polynomial 𝑓 (𝑥) ∈
𝑂𝐾 [𝑥], we say that 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥) in
𝑂𝐾 [𝑥] is a proper factorization if both 𝑔(𝑥)
and ℎ(𝑥) have a smaller degree than 𝑓 (𝑥).
We now proceed to the last main result,
which extends Theorem 1.5 to any imagi-
nary quadratic field 𝐾 .

Theorem 4.2. Let𝐾 = Q
(√
𝑚

)
be an imag-

inary quadratic field. Let 𝛽 ∈ 𝑂𝐾 and
𝜔 ∈ 𝑂𝐾 \{0} be such that Re(𝛽) ≥ |𝜔| and

|𝛽 | ≥ 𝐵𝑚(𝜔), where 𝐵𝑚(𝜔) :=

(
2(2|𝜔 | + 1) +

√
1 − 𝑚+√

5 − 𝑚 + 4(2|𝜔 | + 1)
√
1 − 𝑚

)
/4

if 𝑚 . 1 (mod 4),(
4(2|𝜔 | + 1) +

√
4 − 𝑚+√

20 − 𝑚 + 8(2|𝜔 | + 1)
√
4 − 𝑚

)
/8

if 𝑚 ≡ 1 (mod 4).

For a prime element 𝜋 of 𝑂𝐾 , if

𝜔𝜋 = 𝛼𝑛𝛽
𝑛 +𝛼𝑛−1𝛽𝑛−1+ · · ·+𝛼1𝛽+𝛼0 =: 𝑓 (𝛽)

is its base-𝛽 representation with 𝑛 ≥ 2 sat-
isfying the conditions (i) and (ii) of Lemma
3.1, then 𝑓 (𝑥) has no proper factorization
in 𝑂𝐾 [𝑥]. Moreover,

(i) if 𝛿 ∤ 𝑓 (𝑥) for all 𝛿 ∈ 𝑂𝐾 \𝑈 (𝑂𝐾 ),
then 𝑓 (𝑥) is irreducible in 𝑂𝐾 [𝑥].

(ii) If 𝑂𝐾 is a unique factorization do-
main, then 𝑓 (𝑥) is irreducible over𝐾 .

Proof. Suppose to the contrary that 𝑓 (𝑥)
has proper factorization in 𝑂𝐾 [𝑥]. Then
𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥) for some nonconstant
polynomials 𝑔(𝑥) and ℎ(𝑥) in 𝑂𝐾 [𝑥], so
𝜔𝜋 = 𝑔(𝛽)ℎ(𝛽). Since 𝜋 is a prime el-
ement, either 𝜋 | 𝑔(𝛽) and ℎ(𝛽) | 𝜔 or
𝜋 | ℎ(𝛽) and 𝑔(𝛽) | 𝜔. This implies that
either |𝜔 | ≥ |ℎ(𝛽) | or |𝜔 | ≥ |𝑔(𝛽) |. With-
out loss of generality, we may assume that
|𝜔| ≥ |𝑔(𝛽) |.

We next show that

|𝛽 | −
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

≥ |𝜔 |, (4.2)

where 𝐴𝑚 is defined as in Eq. (2.1). Con-
sider two possible cases.

10
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Case 1: 𝑚 . 1 (mod 4). Since |𝛽 | ≥
𝐵𝑚(𝜔), we have

|𝛽 |2 −

[
2(2|𝜔 | + 1) +

√
1 − 𝑚

]
|𝛽 |

2
+(

|𝜔 |2 + |𝜔 |
)
=

(
|𝛽 | −

(
2(2|𝜔 | + 1) +

√
1 − 𝑚+√

5 − 𝑚 + 4(2|𝜔 | + 1)
√
1 − 𝑚

)
/4

)
·(

|𝛽 | −
(
2(2|𝜔 | + 1) +

√
1 − 𝑚−√

5 − 𝑚 + 4(2|𝜔 | + 1)
√
1 − 𝑚

)
/4

)
≥ 0,

implying [2|𝛽 | − (2|𝜔| + 1)]2 ≥ 1 +
2
√
1 − 𝑚 |𝛽 |. This shows that

|𝛽 | −
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

=

|𝛽 | −
1 +

√
1 + 2

√
1 − 𝑚 |𝛽 |

2
≥ |𝜔 |.

Case 2: 𝑚 ≡ 1 (mod 4). Since |𝛽 | ≥
𝐵𝑚(𝜔), we have

|𝛽 |2 −

[
4(2|𝜔 | + 1) +

√
4 − 𝑚

]
|𝛽 |

4
+(

|𝜔 |2 + |𝜔|
)
=

(
|𝛽 | −

(
4(2|𝜔 | + 1)+

√
4 − 𝑚 +

√
20 − 𝑚 + 8(2|𝜔 | + 1)

√
4 − 𝑚

)
/8

)
·
(
|𝛽 | −

(
4(2|𝜔 | + 1) +

√
4 − 𝑚−√

20 − 𝑚 + 8(2|𝜔 | + 1)
√
4 − 𝑚

)
/8

)
≥ 0,

showing [2|𝛽 | − (2|𝜔 | + 1)]2 ≥ 1 +√
4 − 𝑚 |𝛽 |. It follows that

|𝛽 | −
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

=

|𝛽 | −
1 +

√
1 +

√
4 − 𝑚 |𝛽 |

2
≥ |𝜔 |.

From both cases, we obtain Eq. (4.2).
Now, we have that deg 𝑔(𝑥) ≥ 1, so

it can be expressed in the form

𝑔(𝑥) = 𝜀
∏
𝑖

(𝑥 − 𝛾𝑖),

where 𝜀 ∈ 𝑂𝐾 is the leading coefficient of
𝑔(𝑥) and the product is over the set of com-
plex zeros of 𝑔(𝑥). By Theorem 2.2, we
have |𝛼𝑖 | ≤ 𝐴𝑚 |𝛽 | for all 𝑖 ∈ {0, 1, . . . , 𝑛}.
It follows from Lemma 3.1 that any com-
plex zero 𝛾 of 𝑔(𝑥) satisfies either Re(𝛾) <
0 or

|𝛾 | <
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

. (4.3)

If Re(𝛾) < 0, then |𝛽 − 𝛾 | ≥ Re(𝛽 − 𝛾) =
Re(𝛽) −Re(𝛾) > |𝜔 |. In the latter case, we
obtain by Eqs. (4.2)- (4.3) that

|𝛽 − 𝛾 | ≥ |𝛽 | − |𝛾 |

> |𝛽 | −
1 +

√
1 + 4𝐴𝑚 |𝛽 |
2

≥ |𝜔 |.

From both cases, we deduce that

|𝜔 | ≥ |𝑔(𝛽) |
= |𝜀 |

∏
𝑖

|𝛽 − 𝛾𝑖 |

≥
∏
𝑖

|𝛽 − 𝛾𝑖 |

> |𝜔 |,

which is a contradiction.
Finally, it is clear that (i) holds. By

the explanation mentioned earlier, we can
infer that if 𝑓 (𝑥) has no proper factorization
in 𝑂𝐾 [𝑥], where 𝑂𝐾 is a unique factoriza-
tion domain, then it is irreducible over 𝐾 .
This proves (ii). □

11
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We end this paper by the following
examples, which illustrate the use of Theo-
rem 4.2.

Example 4.3. Let 𝐾 = Q(
√
−1), 𝛽 =

12 − 9𝑖, 𝜔 = 1 + 𝑖, and 𝜋 = −82212 −
21517𝑖. Then Re(𝛽) = 12 >

√
2 = |𝜔 |

and |𝛽 | = 15 >
(
2(2

√
2 + 1) +

√
2 +√

6 + 4(2
√
2 + 1)

√
2
)
/4 = 𝐵−1(1 + 𝑖). Note

that 𝑂𝐾 is a unique factorization domain
and 𝜋 is a prime element because 𝑁 (𝜋) =
7221794233 is a rational prime. One can
verify that

𝜔𝜋 = −60695 − 103729𝑖

= (2 + 𝑖)𝛽4 + 2𝛽3 + (1 − 𝑖)𝛽2−
𝑖𝛽 + (1 − 𝑖)

is its base-𝛽 representation with 𝑛 = 4 >
2 satisfying the conditions (i) and (ii) of
Lemma 3.1. By Theorem 4.2, we obtain
that

𝑓 (𝑥) = (2+𝑖)𝑥4+2𝑥3+(1−𝑖)𝑥2−𝑖𝑥+(1−𝑖)

has no proper factorization in 𝑂𝐾 [𝑥] and
so is irreducible over 𝐾 by Theorem 4.2(ii).
Since−𝑖 is a unit inZ[𝑖], it follows that 𝑓 (𝑥)
is primitive and so is irreducible in 𝑂𝐾 [𝑥]
by Theorem 4.2(i).

Example 4.4. Let 𝐾 = Q(
√
−19), 𝛽 =

17 + 5𝜎−19, 𝜔 = 2, and 𝜋 = −59062661 +
16019945𝜎−19. Then Re(𝛽) = 19.5 >
2 = |𝜔 | and |𝛽 | =

√
499 > (20 +√

23 +
√
39 + 40

√
23)/8 = 𝐵−19(2). Note

that 𝑂𝐾 is a unique factorization domain
and 𝜋 is a prime element because 𝑁 (𝜋) =
3825410532642401 is a rational prime.
One can verify that

𝜔𝜋 = −118125322 + 32039890𝜎−19

= 22𝛽5 + 6𝛽4 + 4𝛽3 + 10𝛽2 + 8𝛽 + 20

is its base-𝛽 representation with 𝑛 = 5 >
2 satisfying the conditions (i) and (ii) of
Lemma 3.1. By Theorem 4.2, we conclude
that

𝑓 (𝑥) = 22𝑥5 + 6𝑥4 + 4𝑥3 + 10𝑥2 + 8𝑥 + 20

has no proper factorization in 𝑂𝐾 [𝑥] and
so is irreducible over 𝐾 by Theorem 4.2(ii).
Note that 𝑓 (𝑥) is reducible in 𝑂𝐾 [𝑥] be-
cause 𝑓 (𝑥) = 2(11𝑥5 + 3𝑥4 + 2𝑥3 + 5𝑥2 +
4𝑥 + 10).

By substituting 𝜔 ∈ 𝑈 (𝑂𝐾 ) into
Theorem 4.2, we obtain that the polynomial
𝑓 (𝑥) has no proper factorization in 𝑂𝐾 [𝑥].
Since 𝜋 is also irreducible, the polynomial
𝑓 (𝑥) is primitive by Theorem 3.3, and thus,
it is irreducible in 𝑂𝐾 [𝑥]. This means that
Theorem 4.2 is a generalization of Theorem
3.3 by considering 𝜔𝜋 instead of 𝜋, where
𝜔 ∈ 𝑂𝐾 \{0} and 𝜋 is a prime element.

5. Conclusion
Let 𝐾 be an imaginary quadratic field

with the ring of integers 𝑂𝐾 . In this work,
we construct the base-𝛽 representation for
any nonzero element of 𝑂𝐾 . Moreover, we
establish further irreducibility criteria for
polynomials in 𝑂𝐾 [𝑥]. These results ex-
tend the existing results in the literature.
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