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ABSTRACT

This article focuses on studying a type of non-local and local backward problem in-
volving impulsive fractional differential equations. The equations include a special type of
derivative called the y—Caputo fractional derivative. The use of Krasnoselskii’s fixed-point
theorem and Banach’s contraction principle helps us prove that there is only one solution and
it definitely exists. In addition, we found some results about the stability of Hyers-Ulam and
generalized Hyers-Ulam equations. Finally, some examples are given to demonstrate that
the results are correct.

Keywords: y—Caputo fractional derative; FDEs; Generalized Hyers-Ulam stability; Local

and non-local backward problem

1. Introduction

Usually, to describe, understand and
analyze a specific phenomenon that sur-
rounds our reality, which is set according
to certain controls, we resort to a set of
rules formulated in mathematical laws, op-
erations and various procedures that can be
deduced through the quantitative or qualita-
tive study of the problem that we summarize

in specific and various mathematical equa-
tions related to the nature of the problem or
phenomenon studied, in order to be more
specific, the type of model chosen, which
is often represented by a set of differential
equations (DEs), partial DEs, or systems of
DEs within a set of conditions whether they
are local or nonlocal initial conditions, final
conditions etc. [[I-5].
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Mathematical models of reality are
the most important types of representation.
Essentially, anything in the physical or bi-
ological world, whether natural or involv-
ing technology and human intervention, is
subject to analysis by the models if it can
be described in terms of mathematical ex-
pressions. Thus, optimization and control
theory can be used to model industrial pro-
cesses, traffic patterns, and sediment trans-
port in streams and other situations; Infor-
mation theory can be used to model mes-
sage transmission, linguistic properties, and
the like; Dimensional analysis and com-
puter simulations can be used to model pat-
terns of atmospheric circulation, stress dis-
tribution in engineering structures, growth
and evolution of terrain, and a host of other
processes in science and engineering.

The accuracy of our understanding
and description of the original problem de-
pends on several fundamental things, in-
cluding the nature and style of the mathe-
matical model chosen, as well as the discov-
ery of new features about the phenomenon.
In other words, the nature of the phe-
nomenon dictates to us the chosen model,
and not vice versa. Fractional calculus
is about using integrals and derivatives of
fractions instead of integer numbers. It is a
good way to describe different kinds of op-
erators that don’t use the numbers [6-10].

Fractional calculus is non integer
mathematical models allows us to describe
the memory and hereditary properties of
various phenomena and effects in natu-
ral and social sciences. For example, we
should note the non-locality of power-law
type, spatial dispersion of power type, fad-
ing memory, frequency dispersion of power
type, intrinsic dissipation, the openness
of systems (interaction with environment),
fractional relaxation-oscillation, fractional
viscoelasticity, fractional diffusion-waves,
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long-range interactions of power-law type,
and many others see [|L1].

Among a several approaches to
fractional derivative which are exist,
for example, Caputo, Caputo-Fabrizio,
Riemann-Liouville  (RL), Hadamard,
Caputo-Hadamard, Erdélyi-Kober, Caputo-
Erdélyi-Kober. We refer the reader to
monographs and papers [[12-15]. There
is a special kind of a kernel dependency.
Therefore, in order to analyze fractional
differential equations (FDEs) in a generic
way, a fractional derivative with respect
to another function, called y—Caputo
derivative, was proposed [|16]. This type of
differentiation depends on a kernel , and for
particular choices of y function, we obtain
some well known fractional derivatives
like Caputo, Caputo-Hadamard or Caputo-
Erdélyi-Kober  fractional  derivatives.
This approach seems also suitable from
the applications point of view [[17-20].
x—Caputo derivative makes possible to
control, in some sense, the process of
modeling of the considered phenomenon
by means of a proper choice of a “trial”
function.

An explanation and a discussion
about interrelations between the properties
of the operator’s kernels and the types of
phenomena are given by [21] in the form
of answer to a raised question in the title
of their paper, we must know that, not all
fractional derivatives and integrals can be
used for modeling the processes with mem-
ory and hereditary properties. For exam-
ple, the Kober and Erdélyi-Kober opera-
tors as well as the Caputo-Fabrizio inte-
gral and derivatives cannot be applied to de-
scribe phenomena with memory or spatial
non-locality. These operators can be ap-
plied only to describe processes with con-
tinuously distributed scaling (dilation) and
lag (delay), respectively [22,23].
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Inrecent years, there have been many
results obtained on the existence, multi-
plicity and uniqueness of solutions of ini-
tial or boundary value problems (BVPs) for
nonlinear FDEs is extensively studied us-
ing various tools of nonlinear analysis as
fixed point (FP) theorems, degree theory
and the method of upper and lower solu-
tions, see [24-26]. The idea behind them is
trying to find solutions of a given BVP by
looking for FPs of a suitable functional de-
fined on an appropriate function space. In
the last 30 years, the FP theory has become
awonderful tool in studying the existence of
solutions to DEs with integral structures, we
refer the reader to the books due to [27,28].

In the other hand, the theory of im-
pulsive DEs can be represented as an ad-
equate mathematical model for describing
many processes and phenomena in the real
world, which are subjected during their
development to short-term external influ-
ences. But, this duration is often negligi-
ble compared with the total duration of the
studied phenomena and processes. Hence,
it can be seen that these external effects
are “instantaneous or not”, i.e. those are
in the form of impulses [29]. Thus, such
processes tend to be more suitably mod-
eled by impulsive DEs, which allow for dis-
continuities in the evolution of the state.
Further, the DEs with impulsive effects of-
ten arise naturally, in chemical technology,
population dynamics, physics, aeronautics,
biotechnology, chemotherapy, optimal con-
trol, ecology, economics, engineering and
describe the dynamics of processes in which
sudden, discontinuous jumps occur [30—
35].

In the literature, there have been
many authors are interested in the solvabil-
ity of fractional BVPs with impulses. Ah-
mad et al. studied the existence of so-
lutions for impulsive anti-periodic BVP of
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fractional order [S]. Recently, Bonanno et
al. in [36], and Rodriguez-Lopez and Ter-
sian in [37], considered the solvability of
the same type of certain Dirichlet’s BVP for
FDEs with impulses, by using variational
methods and a three critical points theo-
rem. Lazreg et al. deal with some impulsive
Caputo-Fabrizio FDEs in b-metric spaces
by the using of @ — ¢-Geraghty-type con-
traction [38].

However, as far as we know, there
are few results on the existence and stabil-
ity of solutions to backward impulsive dif-
ferential equations. In this paper, By using
some well known classical FP theorems, we
establish the existence theory for the con-
sidered problems. Also we develop some
results for Hyers-Ulam (U.H) and general-
ized (G.U.H) stabilities. Pertinent example
is given to verify our results.

The main aim has two parts. We con-
sider the following local backward prob-
lems for nonlinear impulsive FDE,

tDEx(q) = ¢(q,%(q)), @

), = orx(qp)), '
forg € J = [b,c] C (0,00),q # qi, k €
K, = {1, 2, ,m}, with two cases local

and nonlocal of initial value,

x(c) = xe, (1.2)

(1.3)

and we discuss Ulam stability the equa-
tion in the second case, where )éDb’i is the
x —Caputo fractional derivative of order 0 <
v < 1, y € C1(J)) is an increasing function
such that y’(gq) # 0 foreach g € J,

#(¢) =%+ w(x),

b=qo<q1<q2<-"<qm<qme1 =¢,

where Ax|,-4, represent change of right
and left hand limit of the discontinuity
points at gy, it is define as

ax| o =x(qy) — %(qy)-

q9=9k
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% €R,, 01, kekK,,pand win C(J XR)
and C(J), respectively.

The content of the paper is orga-
nized as follows: In Sect. P, some defini-
tions, concepts and preparation results are
given. In Sect. f, we introduce a concept
of a piecewise continuous solution for lo-
cal backward Eq. ([l.1}) and Eq. (.7) and
give existence, uniqueness results of solu-
tions, by using FP theorems. In Sect. H,
we extend a concept of a piecewise contin-
uous solution for local backward Eq. ([L.1))
and Eq. ([.3) and give existence, unique-
ness results of solutions to a nonlocal back-
ward the problem via some FP theorems.
In Sect. B, we give four types of Ulam sta-
bility definitions ot generation of nonlocal
FDEs: U.H, generalized U.H, Ulam-Hyers-
Rassias (U.H.R) and generalized U.H.R sta-
bilities. We present the four types of Ulam
stability results for nonlocal impulsive FDE
in Eq. (I.1) and Eq. ([.3) via the general-
ized Gronwall inequality through the frac-
tional integral with respect to another func-
tion. Some examples are given in Sect. §
to demonstrate the application of our main
results.

2. Preliminaries
Let Eg be a Banach space. We con-
sider spaces C(J),

PC) = {x e CIN\ qi) : #(ap) = (qn),
x(qy) exists, k = 0,1, - m}
together the norm

llgllpc = llxllc = max|x(q)l,
gelJ

C*(J)={xeC() : x(q) 20, ¥g € J},

C"(J) denote the spaces of n times con-
tinuously differentiable functions on J and

LP (b, ¢) denotes the space of Lebesgue in-
tegrable functions on (b, ¢).

Below we formulate some known re-
sults.

Theorem 2.1 (Ascoli-Arzeld). Let K is
compact and W C C(K). Then W is com-
pactifand only if W is closed, bounded, and
equi-continuous.

Theorem 2.2 (PC-type Ascoli-Arzela).
Consider uniformly bounded subset MW C
PC(J) such that,

i) W is equi-continuous in (qr, qr+1), k €
{0} UK,,,, where gy =B, gms1 = ¢;
ii)

W(q) = {x(q) : » €W, N\{q1,-

and

. qm} }

W(g7) = {(q7) : # € W),
W(g;) = {(q;) : » e W,

are relatively compact subset of Ep.
Then W is a relatively compact subset
of PC(J).

Theorem 2.3 (Schaefer). Consider the con-
vex subset W C Eg, which it contains zero

and a completely continuous operator O :
W—-W.If

Q:{mU:;::yOz,Ogygl},

is bounded, then O admits at least one FP
inE B.

Theorem 2.4 (Krasnoselskii). Let® # W C
Eg be a closed convex and Oy, Oy be two
operators satisfying the conditions:

i) O1x+ Qo €W, foru, % € W,

ii) Oy is a contraction mapping;

iii) Oy is compact and continuous.
Then there exist x € W such that,

® = 01}? + 0277,’,

i.e, the operator O1+ 04 admits a FPon W.



N. Benahmed et al. | Science & Technology Asia | Vol.30 No.1 January - March 2025

The RL and y—RL fractional integral
of order v > 0 are defined by,

o) = [ ’

for x € PC(J);

X_Z'Il)/+%(q):‘/b L) " W' Wy (g g,

for » € C(J), respectively, where

()
T'(v)

q(1)da,

x.(q@) = x(q) - x(),

and y € C!(J) is an increasing function
with y’(g) # O forall ¢ € J [9,]10,[16,39].
The y—Caputo fractional derivative of the
function x € C"(J) ofordern—1 <v <n
to the real function x is defined as follows

)= [

W@ = | =@,

where y € C"(J) with y’(g) # 0 for all
q € J, [v] is the largest integer less than or
equal to v [[16,39]. Throughout the paper,
we use n = [v] if v is an integer and n =
[v] + 1 otherwise.

In the following, we present some
properties for left-sided integrals and
derivatives. But, the same properties are
also true for the right-sided ones.

v-1_, Pl
()m(lg)(zl_uj( ( )%)[(”](/l) da,

Lemma 2.5 ([[16,39]). Letvi,vs > 0. Then
VI (YIYa) = 1),

ae. q € J, forx € C(J) or the space
of Lebesgue integrable functions on (b, ¢),
L'(J). Also,

D (¥ Igx(q)) = %(q), 2.1
x € C(J), and for g € J,
Iy (i) 2.2)

n—-1
=%(CI) - Z %X (b) (

k=0
forxeC"(J),n-1<v<n

(@),

29

3. Position of local problem, results
and discussion

In view of impulsive FDE Eq. ([L.1))
and Eq. ([1.2), one can see that problem,

Dgx(q) = w(q),
U>0,q€J, (31)

x(q) =5 €R, Gel,

has a unique solution » € C(J) which is
defined by the integral structure,

x(q) = x4 (3.2)

_/b‘2
+/bq

Lemma 3.1. Suppose w € C(J). A func-
tion x € C(J) is the solution of the given
backward impulsive problem,

, A\ v—1
X—“)(ﬁ(ﬂj)" D" () da
X (@)

o) w(Ad) dA.

DEx(q) = w(q),
q€J.q%#qr
o, = ox(x(ap)), (3.3)
k e K,
%(C) = %(9
if and only if it satisfies,
x(q) = (3.4)
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: Z op(#(q;))

/ K(q, Hw(d) dA,
q € [0,q1],

Z 0p(*(q;))

/ K (g, Hyw(A) dA,
q € (91,921,

: Z op(#(q;))

/ K(g, Hw(d)da,
q € (92, 4sl,

“ ey

xe— . 0p(x(ay)

p=k+1
¢
- / K (g, Hw(d) dA,
b
q € (ka Qk+1), k € Km—l’
C
e / WK (g, 1) dA,
b
q € (gm-c],

where
K(g, ) =
F(lu) [ (Xc(Q))U_l

— (xa (@) ]X'(/l)],
1<q,

(3.5)

(e (@) "'x' ()
T'(v) ’
qg <A

Proof. Assume x satisfies Eq. (B.3). If ¢ €
[b, g1], then we have

tDgixn(q) =w(q), q € [b,q1).
By applying Eq. (2.2)), we have
x(q) = do

(3.6)

30

X (D) (@)vt

(o) w(Ad) dA.

q
/b

Now applying impulsive condition %(g7),
one can see that

x(qy) = do
q1
+/ X D (x,(q)" " w(a) da.
b

(3.7)

Again for g € (q1, g2], then

D %(q) =w(q), q € (q1.92),
with A%|q:q = 01(x(q7)). Lemma B.2 im-
plies that

#(q) = %(q7)

a v-1
_/b X <A>(A;fl(jl>) W) da
T, @)™
+ s TW(/?.) da
=x(qy) + 01 (2(q7))
a v-1
_/ X u)(ﬁgn) W) da
b
q v-1
+ /b KO, (2) da.
Further using Eq. (8.7), we get
#(q) = do+ 01 (%(q7))
q v-1
+ /b X)) da,
Again if g in [g2, g3], then
tDgx(q) =w(q), q € (q2.93),
with A%| _,. = 01(x(gq3)). Again apply-
ing Eq. (B.2) and using impulsive condi-
tion (g5 ) in Eq. (B.8), we can obtain,
x#(q) = #(q3) (3.8)
a2 v-1
_/b X u)()&gg)) w(d)da
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q , v-1
+ /b X—(”)(F*gjf)) w(d)da
=x(q3) + 02 (#(q3))
_/"2 X () (xy(g2)""
b

T'(v)

N /q X (O, (@)
b

w(d)dAa

(o) w(d) da

=do+ 01 (%(q7)) 02 (%(q3))

q v-1
+/ X (&) (x, (@) W) di.
b

I'(v)

Furthermore, by continuing this process, we
obtain for g € [gx, gr+1] as,

k
@) =do+ Y op(#(ap) (9
p=1
T @)
+ /b %w(ﬂ) da,

where k € K,,,. From the boundary (final)
condition of Eq. (B.3) we get

do = — i Op (%(q;)))
p=1

¥

substituting the value of dy in Eq. (B.6),
Eq. (3.8) and Eq. (B.9) lead us to prove the
integral presentation Eq. (B.4). Conversely,
if x(q) satisfies Eq. (B.4), then we can prove
that %(g) is the solution of Eq. (B.3). This
complete the proof. O

X @)

T(v) w(é) da,

3.1 Some qualitative results

Lemma 3.2. Assume that ¢ € C(J X R).
The function x € PC(J) is a solution of
Eq. (L)) and Eq. (1.2), if and only if » is

a solution of the integral equation

x(q) = (3.10)

31

He — Z Qp(%(ql_a))

p=k+1

- /b K(q. (L 2(1)) d,

q € [qu Qk+1),
k € {0} UKm—l,

He
- /b K (g, D, £(1) d,
q € (qm> <],
where K (q, ) is defined in Eq. (B.5).

First, before discuss some qualitative
results, we need to consider the integral op-
erator O : PC(J) — PC(J) as

Ox(q) =

= ). 0p(x(gp)

p=k+1

- /b K(q, DB (L %) A,

q € [qk:qr+1),
k € {0} U Km—l,

(3.11)

%c—/ K(g, )p(A,%(2))dA,
b
q € (qms ],

As we know, a FP of O is a solution
of Eq. (1)) and Eq. (1.2). Now, we discuss
conditions which Eq. (L)) and Eq. ([1.2) has
a unique solution. The following result is
based on the Banach FP theorem.

Theorem 3.3. Assume that the following
assumptions hold:
HI) A A > 0 exists such that

|$(q.%) — ¢(q. )| < Al —#|,

forqg e J, »,% € R;
H?2) There exists a positive constants L
such that

lok () — ok (#)| < wx | —#],
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forx,z eR, k e K. If

m ¢
Zup +A max/ K(g,A)da
s qel Jy

<1, (3.12)

then Eq. (1)) and Eq. (1.2) has a unique
solution in PC(J).

Proof. In view of Eq. (B.11)), for each g € J
and any x, # € C(J), we have,

[0x(9) - 0(q)| (3.13)

< D lep(ap)) - 0p (i)
p=1

¥ /b 16 (A, 2()
— ¢ (1,%(2)) [K(g, ) da.

Hypothesis (H1), (H2) and Eq. (8.13), we
get

0%(q) ~ O#(q)|

< D e(ay) - #(gp)]

p=1
C
+A/ K (g, D) = #()]dA,
b
and so,
max|0%(q) - O;?(q)|
qgelJ

m
< I;up max le(qy,) —#(q),)]

¢
+A max/ 7((q,xl)|%(/1)
qel Jp
—#(2)|da.
Hence,

|0x(q) — Ox(q)||
< (;pp +A I;lgj{/b K(g, ) dxl)

32

X |l = #|| <l = %]

Eq. (8.12) implies that O is a contraction.
Hence, O has a unique FP, indeed Eq. ([L.1])
and Eq. ([1.2) has a unique solution. O

The following result is based via the
Schaefer’s FP theorem.

Theorem 3.4. Assume that ¢ € C(J X R)
and ok, kk € K,,. Then Eq. (1)) and
Eq. (1.2) has at least one solution in PC(J).

Proof. We will divide the proof in to many
steps.

Step 1: Let (x,) be a sequence in PC(J)
such that %, — » on J. Then

|01 (q) — Ox(q)]

< D lopCan(a)) = 0p(e(a;)|
p=1

+ /b |¢ (A, 2 (1))
- ¢ (1,%(2) |K(g, ) da.

Thus, ||Ox, — Ox||, — 0asn — oo and
so, O is continuous.

Step 2: Let S ¢ PC(J) be bounded, i.e
there is » > 0 such that ||%|| < r for all
» € S, and let the functions ¢ : I xS —» R
and o : S — R are bounded by D¢ and Dy
respectively i.e.

Dg = , +1,
0 (q’r}ggxslﬂq %)|

Dy = maxyes |0k (%)|. From Eq. B.11)), for
any x € S and for each g € J, we obtain,

|0x(q)| =
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m

xe— > 0p(x(qy))

p=k+1

- /b (A x(D)K(q. 1) dA’,

q € [qk:qr+1),

v [ oK. cu‘,
b
q € (qM7 C],

< el + D lop(#(q;))]
p=1

% K(g, ) d
+/b 16 (1 2(0)] K (g, ) d
< lxel + YD,

p=1

C
+ Dy max/ K(g,A)dA.
qed Jp

Thus,
m
10%(g)Il < Il + > D)
p=1

C
+ Dy max / K(q, ) dA.
gelJ b

Hence, O(S) is uniformly bounded and this
means that, Ox is maps bounded sets into
the bounded sets in PC(J).

Step 3: Now, we will prove that the
operator O is bounded sets into the equi-
continuous sets of PC(J), for each » € S.
Then For ¢4, g2 € J with

41 <42, qk <41 <42 < qi+1,

k=0,1,---,m, we have,

|0(42) - Ox(d1)| = (3.14)

33

[ (e

~K (1,0 #(4, %) dﬂ‘,

41,92 € (9> qr+1)s

[ (e

~K (1, A) ) $ (4, %(2) ou‘,
q1.42 € (qm- ],

q1
< K(go, A
< /b (K (a2 )
K (G D |$ (A 2()] dA
4o
K(go, dA
+ /q (K (s d)
K (g D] (D) d,

IA

q1
Do( / K (2. D) - K (g1, D) dA
b
g2
. / |7<<42,A>—7<(41,A)|da),
q

= 22 (e @)+ (1 @) |

As ¢ tends to ¢2, the right-hand side of the
inequality Eq. (B.14) tends to zero and the
convergence is independent of each » € S,
which means that O(S) is equi-continuous.
Thus, the compactness of O follows by PC-
type Ascoli-Arzela’s theorem.

Step 4: A priori bounds. Now it remains
to show that the set,

Q(0) =[x e PC) : x=v0(1)},

0 <y < 1, is bounded. Let » = yO(x) and
0<vy<1,qel, then

[x(q)| = A |Ox(q)| =
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m

He — Z Qp(%(QE))

Ii:k-ﬂl
- /b K (q. (L %(D) dz’,

q € [qk: qr+1)s

Y

Y

e / 7<<q,a>¢u,%u>>da’,
b
q € (gm,¢],

< el + ) op((a;))]
p=1

s / K(q. ) 16 (1, 2())] dA
b

m
< lxel + Y D,
p=1

¢
+ Dy max/ K(g,4)dA := D.
q€l Jp

Hence, forevery g € J, ||Ox(q)|| < D. This
shows that the set Q(O) is bounded. As a
consequence of Schaefer’s FP theorem, we
deduce that O has a FP which is a solution

of the Eq. (1)) and Eq. (.2). The proof is
completed. O

4. Nonlocal backward

FDEs

In this section, we generalize the re-
sults of the previous section to nonlocal im-
pulsive FDEs Eq. ([L.1) and Eq. (1.3). Let
us put the following assumptions:
H3) There exists a positive constant 8y and
a function ® € C(J,R") such that,

impulsive

|9(q,%)| < @(q) %] +60, g€l xek;

H4) The functions o € C(R) and there ex-
ists positive constants Gi and 6% such that

lok ()] < 10k || + 20k,

x€R, ke {0} UK,;

34

HS) There exists a positive constant C such
that

lw() —w@E)| < Cllx =%, »%€eR;

H6) There exists positive constants D, K
and r such that |w(x)| < D |x| + K for any
x € R.

Assume that 0 < v < 1, (H1) is sat-
isfied and w € C(R). Before going to dis-
cuss and prove some main results, we have
to define the operator O : PC(J) — PC(J)

which are involved to Eq. ([L.1]) and Eq. ([.3)
as

Ox(q) = 4.1

xe+w(x(@) = ) 0p(x(qy))

p=k+1

. /b "K(g DB, d,

q € [qk: qr+1),

#e+ w(x(q))
- [ K@.po s ar
qbe (gm.T1.
where K (g, 1) defined in Eq. (B.9).

Theorem 4.1. Assume that, all conditions
(H1), (H2), (H3) and (H5) are checked. If

m ¢
C+Zup+/\ max/ K(g,A)da
] q€l Jyp

<1, 4.2)

then Eq. (1) has a unique solution in
PC(J) which can be shown by use of the
same process of the proof of Theorem B.3.

Theorem 4.2. If (H3), (H4) and (H6) are
satisfied, and C < 1 and there exists a pos-
itive constant r such that,

m

4r > max {ZQGP

p=1

(4.3)
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C
+ 09 max/ K(g, ) dAa, |x| +K},
q€l b

then Eq. (11)) and Eq. (1.3) has at least a
solution in PC(J).

Proof. Let us put,

m

max{zlep

p=1
C
+ max / K(g, )P(1) dz,D}
q€l Jo
<4,

and define the operators, 51 and 52 on the
compact set,

S, = {% e PC(D) : |Ix|| < r},

by, .
01(x(q)) = xc + w(x(q),
and
01(x(q)) =
D on(x(qy)
p=k+1

. /b " K(g DB, A,

q € [qk:qr+1),
k € {0} U Km—l,

- /b K(q. DB #() dA,
q € (qmsc].

For all x(gq) € S,, we can write

[01¢x(0)
= e + w(x(q)] < |xc| + |w(x(q)]
|%c| + D ||%|| + K < || + Dr + K

<
r,r ,r
Sz+§+z<r.

Hence 51(Sr) c S,.
then

Let %,% € PC(J),

01(x(q)) - 01(%(q))

= |w(x(q)) — w(%#(q))
< Clx(1) - %(q)l,

as C < 1, then the operator 51 satisfies the
contraction property. Now, since,

00| =

‘ - > op(2(ay)

p=k+1
¢

. /b K(g: D(L.2(1) ou‘,

q € [qk. qi+1),
k=ke {0} UKn1,

‘— /b "K(g (A 2 ou‘,
q € (qm, ],

m

Z p(x(ap))|
p:
+ /b K, ) [6(4,%(D)] dd
< Zlep H%” + 2617
p=1
C
+max/ K(g, )D(Q)dAa |||l
c[EJ b

¢
+ 09 max/ K(g,A)dAa
q€l Jp

< r[ilep
p=1

m

+max/ K(g,)D(1)dA

20p
pr=1

+ 09 max / K(g,A)da
q€l Jyp

+ r

< 7

1
N

we can get

[016x(@)) + 02x(9)|
< [01x(a)| + [O2(x(a)|
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IA

oI~

oI~
Il
~

Then,

01(x(q)) + 02(x(q)) € Sy,

In view of (H1) and that K(g, 1) is con-
tinuous function on J2, it is clear that
the operator 52(%(6])) is continuous and
uniformly bounded on S, by the inequal-
ity Eq. (#.3). Thanks to Theorem B.4
05(x(q)) is equicontinuity. Hence, by the
PC-type Arzela-Ascoli theorem, the oper-
ator 52(&) is relatively compact into S,
which implies that 0, is compact. There-
fore, according to Krasnoselskii’s theorem,
there exists » € S, such that x = O(x), i.e.
Eq. (1)) and Eq. ([.3) has a least one solu-
tion. O

Vx,%€S,.

5. Stability results of nonlinear back-
ward impulsive FDE

FDEs have been extensively ana-
lyzed from different angles. Amonge these,
stability analysis in the Ulam’s type con-
cepts is consider as an important aspect
that gained proper attention from many re-
searchers [[7,16,20,39].

Based on the fundamental definition
of Ulam’s type concepts for some nonlinear
backward impulsive FDEs and generalized
Gronwall inequality through the fractional
integral with respect to another function, the
notion was later modified to more general
types, and their results were successfully
applied to various problems [|]17,18].

In this section, we will adopt a num-
ber of sufficient conditions to review the
H.U type stability results to the considered
Eq. (L.1)-Eq. (L3).

Leto > 0,& > 0and ¢ € PC(J) is
non decreasing. We consider the following
inequalities (Ulam’s type stability concepts

36

for Eq. ([L.1]) and Eq. (.3),
[(D#(q) ~ (4. %(a)] < e,

q€l.q9%*qx,
(5.1
|a%(qx) — ok (#(q7))] < &,
k € K.
[XD&(q) - ¢(q.7(9))| < ¢(q),
q¢€73, 9% qk
|a%(q1) — ok (#(qp))| < o,
k € K,,.
(5.2)
[XD&#(q) - 6(q.7(9))| < e¢(q),
q¢€7J, 9% qk
|a%(qx) = ok (#(qy))| < &0,
k € K,,.
(5.3)

Definition 5.1. The said nonlocal back-
ward impulsive FDE Eq. (L1} and Eq. (.3),
forg € Jis,

D1: H.U stable if there exists a real num-
ber ¢4 ,» > 0 such that for any € > 0, and
for each solution # € PC(J) of the given
systems of inequalities Eq. (B.1)), there ex-
ists a solution » € PC(J) of Eq. ([L.1)) and
Eq. (L3) with [%(q) - #(q)| < ¢p.mé;

D2: Generalized UH (G.U.H) stable
if there exists non-decreasing function
ag.m € PC(J) with @y, (0) = 0 such that
for each solution #x € PC(J) of the given
systems of inequalities Eq. (B.1)), there ex-
ists a solution » € PC(J) of Eq. ([L.1}) and
Eq. (.3)) with

1%(q) = %(q)| < @p.m(e);

D3: U.H.R stable with respect to (¢, @) if
there exists a real number ¢ .., > 0 such
that for each € > 0 and each solution % €
PC(J) of the given systems of inequalities
Eq. (5.3), there exists a solution x € PC(J)
of Eq. (L.1)) and Eq. ([L.3) with,

1%(q) — #(q)| < copmo€|e(q) +0];
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D4: Generalized Ulam-Hyers-Rassias
(G.U.H.R) stable with respect to (¢, o)
if there exists a real number cg .o, > 0
such that for each solution x € PC(J) of
the given systems of inequalities Eq. (5.2),
there exists a solution » € PC(J) of

Eq. ([.1)) and Eq. ([1.3) with,
#(q) = #(q)| < co.m.p|0(q) +0].

Remark 5.2. It is clear that:

(i) Definition D1 implies that Definition D2;
(i) Definition D3 implies that Defini-
tion D4;

(iii) Definition D3 for ¢(q) = B = 1 implies
that Definition D1.

Remark 5.3. A4 function # € PC(J) is a
solution of the given systems of inequalities
Eq. (5.1)) if and only if there exist a function
%o € PC(J) and a sequence %y, k € K,
(which depend on x) such that,

i) 1%.(q)| < & q€eland|z| < & with
k e K,

ii) ©DLx(q) = ¢(q.%(q)) +%:(q), q €

Joa # qk:

iii) ax(qx) = ok (%(qy) + %

One can have similar remarks for the
given systems of inequalities Eq. (5.2) and
Eq. (5.3). So, the Ulam stabilities of non-
local backward impulsive FDEs are some

special types of data dependence of the so-
lutions of impulsive FDEs.

Lemma 5.4. The solution of below mention
problem,

DY %(q) = ¢(q.%(q)) + %o (q),
g€l q#qx;

Ax(qr) = ok (#(qy)) + %k,
k € K,;

x(¢) =%+ w(#(q))-
(5.4)

37

is
x(q) = (5.5)
ne +w(x(q))

—( > ep(iay) +f¢p)

p=k+11

- /b [0, 7(1)
17 (D] K (g, ) dA,
q € [qk:qr+1),

k € {0} U Km—la

e+ 0(#a)
- [ *a.n[sz)
+}?o(/l)]d/1,

q € (qm-cl,

where K (g, ) defined in Eq. (8.3) for all
q,1 €l

Proof. The solution of Eq. (5.4) can be eas-
ily obtained through using Remark 5.3. O

Proposition 5.5. [f the function %z € PC(J)
is a solution of the given systems of inequal-
ities Eq. (B.11), then it is a solution of the fol-
lowing systems of inequalities

#(q) — e — w(%(q))

INIACIC)

p:kz—l
+/ ‘K(q,/l)¢(/l,;?(/l)d/1‘

<

b
C
m+/ K(g,A) d/l]s,
b

q € [qk7 Qk+1)= (56)
k € {0} U Km—l,

#(q) - e - w(#(q))
K(q, % d
+ /b (. DO AW A‘

[«
Ss/ K(g,A)da
b
q € (qm-cl,
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where K(q, 1) is defined by Eq. (B.3).

Proof. The proof of this proposition can be
easily obtained through using Eq. (5.4) in
Lemma 5.4 and Remark 5.3. m|

We have similar remarks for the so-
lutions of the given systems of inequalities

Eq. (6.2) and Eq. (5.3).

Lemma 5.6 ([[16,39] Generalized Gronwall
inequality through the fractional integral
with respect to another function). Lef x1, %o
be two integrable functions and h continu-
ous, with domain [b,c]. Let B € C*(J) an
increasing function such that y'(q) # 0, for
each q € . Assume that

i) %1 and o are nonnegative;

ii) fi in nonnegative and nondecreasing.

If for each q €,

x1(q) < %2(q)
4 ’ v-1
+h(q) / Y (@) () da,
b

then

(T ()]
L(jv)

q
#1(g) < %2(q) + fb

j=0
X x'(A) (x2(9))"" ™ #2(2) da.

Remark 5.7. Under the hypothesis of
Lemma [5.6, let #i(q) = b, for each q € .
Then for each q € 1, we have,

S 6T ()

r'(jv)
7=0

q
%1(q) < x2(q) +/b

X X' () (X, (@) #2(2) da.

Remark 5.8. Under the hypothesis of
Lemma [5.6, let x5 be a nondecreasing func-
tion for each q € [b, ¢]. Then, we have

#(q) < %2(@)E(MOT®) (x,(0)" ),

V(gq,A) € Ix[b,q]. where

(o)

- 1 '
Eu(q) = Z mqj,
Jj=0

with v > 0, is the Mittag-Leffler function.

Remark 5.9. Let »1,x2 be two integrable
functions, and #y, fix are two nonnega-
tive and continuous on functions J. Let
x € CY()) an increasing function such that
x'(q) #0,VYq € 1. Assume that,

i) x1 and »o are nonnegative;

ii) xo and hy, hy are nondecreasing.
Ifforall q €1,

q
#1(9) < %21 () /b Y
+x (X, (@) (D) da
+ha(q) / Y (6, () (1) da,
b
then
#1(q) < %(DE (I (@T @) (1,(0)" )
x 8 (12(OT ) (1,(0)" )
Y(gq,d) € Ix [b,q].

Lemma 5.10. Let x1 € PC()) satisfy the
following inequality

[%1(q)| < %2(7)

q
+by / YW (@) )] da
b
k
+ >y (g
p=1

+ by /b "V (1,(0) " ()] de,

Jfor q € [qk,qk+1), where k € Ky, %o
is nonnegative continuous and nondecreas-
ing onJ, and by, ba, u, > 0 are constants.
Then

[x1(q)| < %2(q) | 1+ (.7




N. Benahmed et al. | Science & Technology Asia | Vol.30 No.1 January - March 2025

us, (blr(v) (. (@))” )
k

X &y (b2l (@) (x,(0))" )]
xE,(biP@) (x,(9)")
x &, (b2l () (x,(9))" ):

V(g,A) € (J\ qx) x [b, q], where
b= max fi s,
Proof. Indeed, from Remark .9, we derive

1 (9] < 2(g)
X &y (11T @) (x,(@)" )
x &, (BT ) (1,(0)"). (58)

v(q’/l) € [b9 C]l] X [b’ Q]a and

lx1(q)| <

k
%2(g) + ) My 1 ()]
p=1

x &y (B0 ) (x,(9)" )

xE, (b2l () (1,(0)" ). (5.9)
¥(g,0) € (J\qx) x [b,q]. By Eq. E.9),
inequality Eq. (5.7) holds for k = 0. By
induction suppose Eq. (5.7) holds for k =

p < m. Then by Eq. (5.9) and since »5(a)
and &,,(g) are nondecreasing,

V(g,) € (T\ {gpn}) x [b,4],

we derive

%1 (q)|
p+1
< (%z(q) > |%1(q;)|)
i=1

x (b0 (1,(9))" )
Xy (BT ) (x,(9)" )

<

P
#2(9) + ) Mpra(q) |1+
i=1

pav(blf(v) (xﬂ(q{))")
1i-1

x &, (bQF(U) (x. ()" )

L
S~———

blr(v) X/],(QI

x|
xa,,(b2r(u) (1, (0) “)
x|

b () (x,(4)) )

x &4 (2T () (1,(0)" )

p
< [+ u) )|+

(bll“(v) (@)
x &, (baT () (1,(0)" )|

x &y (b0 W) (x,(0)" )
X &y (b2T @) (x,(0))" )]
x &, (11T (W) (x,())" )

X &y (B2T() (x,(9)")

= x(q)| 1+

RE (1T () (x,(@)" )

x 8, (ba0 ) (1,(0)" )|

x &, (b0 W) (x,(9)" )

x &y (BT () (x,(6))" )-

This finishes the proof. |

Remark 5.11. Let xy € PC(J) satisfy the
following inequality

l%21(q)| < %2(q)+
a ’ v-1

by / K (@) )] d
b

39
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+ Z Kp |%1(q[_))|

p=k+1

q
+bs /b X (1 (0) b ()] da,

Jor q € [qk, qre1), where k € {0} U K1,
%o 1S nonnegative continuous and nonde-
creasing on J, and by, ba, u, > 0 are con-
stants. Then,

(@] < %a(q) |1+
18y (1T @) (x,(@)" )
x &, (BT ) (1, (0)" )"
(blr(v) “)
)

X &y (BT (@) (x,(0))"

(5.10)

forall (q,2) € (J\ qr) X [b, q], where,

= max {1, Ko, . . ., Hn -

Now, we give the main results, gener-
alized U.H.R. stable results, in this section.

Theorem 5.12. If'the assumption (H1) and
(H5) hold. Suppose there existsm, > 0 such
that,

/b K(q. Do) dd < nye(g). Vg el

Then Eq. (11)) and Eq. (1.3) is G.U.H.R sta-
ble with respect to (x, ¢).

Proof. Let x € PC(J) be a solution of the
given systems of inequalities Eq. (5.1]). De-
note by x € PC(J) the unique solution of
the backward impulsive FDE Eq. ([L.1}) and
Eq. (1.3). By the given systems of differ-
ential inequalities Eq. (5.1]) (see Eq. (5.6) in

Proposition 5.9), for each ¢ € J, we have,

7(q) = % - w(7(q))
+ > 0p(#ay)
p:kg—l

+/b K(g,)op(A,%(2)dA

C
Sm)(+/ K(g, )p(A)da,
b

q € [qk: qr+1)s

~ w(#9))
+ /b K(q. D)L 7(1) dé

< /b K(q. V(D) d.

q € (gm,¢].

%(q) — x¢

Hence, for each g € J, we can write
[2(q) — x(q)| =
— w(x(7))

+ ) 0p(x(gy)

p=k+1

N / «(q,mu,xu))da‘,
b

q € [qr,qr+1),
k € {O} U Km—l,

%#(q) — %

’—m—wMMD

+ / K (g, Do () da,
b
q € (gm,¢],

40
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#(q) — % — w(x(q))

+ i op(#(q,))
p=k+1
+‘/b K(g, )p(A,%(1))dA
+w(#(q)) - w(%(q)
+ > 0p(iay)

p=k+1
m

- D 0p(#(ay))

p=k+1

+ ‘/b K(g,)op(A,%(2)dA

- /b 7<<q,4>¢u,azu)>dz’,

q € [qk,qr+1),
k e {O} U Km—l,

—w(x(q))

+/b K(g,)p(A,%(2))dA
+w(??((61)) —w(x%(q))
+/b K(g,)p(A,%(A)dA

|
X

- /b "K(g (L2 A,
q € (qm-c],

#(q) — e — w(%(q))

+ " 0p(#lgy))

p=k+1
/ K (g, D, 7(1) dz‘
+lw(2(9)) — w(x(q))|

+ Z |op(#(a3)) = 0p(2(q}))]

p=k+1

/ K(q. ﬂ)’qﬁ(ﬂ #(0)
—¢(A, %(/l)’d/l

IA

q € [qr, qr+1),
k e {0} U Km—l,

#(q) — #ne — w(%(q))

/ K(g,D)p(A,%(A) d/l‘
+|w(%(6I)) w(x(q))]
; K(q, V|p(1,%(2)

—¢(4,%()] d/l’,

q € (qm- <],
(m+qe) (x +¢(q)
+C Ift(q) - x(q)|
+Zup [#(q,) - x(q;,)]

y / (g, 1) () — ()] dA,

q € [qr, gr+1),
k € {O} U Km—l,

IA

(m+ny) (x +¢(q))
+C Iﬂ?((q) - x(q)|

y /b %K (q. 1) () — ()] dA,
q € (qm,c].

Hence for each g € 7, it follows
[#(g) - ()| < ¢ (5.11)

41
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(m +’D¢) (x +¢(q)
> 1 gy - #(ty)|
p=1

% +r ) A X' ()

X (@) " ) - 2] dd
vt [ 0@ (a0)"
x |7(2) = %(2)] da,

(5.12)

for g € [qk,qr+1) With k € {0} U K,,,.
Using the systems of inequalities Eq. (5.11])
and Eq. (5.7) in Lemma B.10, we get

|#(q) - %(q)|

(mmy) (x+¢(q))
— [1+

(( (q)”)
<€y o))"
(

)
( (@) U)
")
) X

IA

Eu(¥ (x,(9)

V(q,ﬂ) € (J\ gk
k € {0} UK,,,

< (0+9(q)) Com, e

[b. ¢].

Y g € J, where,

Co,m,p =

(m+n,) (x+e(q))
1-C

|1+ u8u(7 (X/n(‘I))U)

m—k
max XSU()’ (/\/,l(c))u)] .
><8u(7 . (@) )
x&(y (,(0)" ).
k € {0} UK,,
V(q’/l) € (‘]I \ Qk) X [b7 Q]’

and 1 = max{uy, Mo,..., Wn}. Thus,
Eq. (1)) and Eq. (1.3) is G.U.H.R. stable

with respect to (y, ¢). The proof is com-
pleted. O

Remark 5.13. By similar process we can
extend the above results to the case of

Eq. (L)) and Eq. ([L3).

6. Illustrative applications

In this section, we will show the cor-
rectness of the proved theorems with vari-
ous examples. First, we introduce the suit-
able algorithm which we use to illustrate our
method. Algorithm [lf shows the iterative
procedure to estimate numerical values of
all parameters for nonlinear impulsive FDE

Eq. (IL.1)).

Algorithm 1 Iterative procedure to estimate
Eq. (L))

Require: Input v, x, b, ¢, %, q, ¢, k, o,
A, Hk-
I: column « 1;
2: fors=1toy, do
3: ne« 1.
svar « b.
suml < sum(pLg).
while svar <= ¢ do
pm(n, column) « n;
pm(n, column+1) « svar;
pm(n, column + 2 ) « suml +
Wy + A maxgey f; K(g, 1) da;
10: ne—n+l1;
11: svar « svar + ¢/10;
12:  end while
13:  column <« column+3;
14: end for

Ensure: Eq. (B.12).

D PR AN A

Example 6.1. We consider nonlinear local
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impulsive FDE

X _ q
De#(9) = e
q €I=10,7], q # qx.
-1
q=qk 15k+|%(‘]1;)| ’
k € Ks, qx = £k,

A

(6.1)

x(m) =1.

, $€(0,1). Clear x(q) = .
:71-7%(:17Q1:%’Q2:2Tn’
3:?ﬂ,q4:4§,andq5=n. We set

_Q

_ q
$(4:%) = Tramp @l

and oy (») = By using this values,

we obtain,

1
15k+|x]| "

|¢(q’ %) - ¢(CI’ }2)

— q _ q
T | 15+exp(q)+|x| (15+exp(q)+|92|)|

— q llx|—1#]| _
(15+exp(q)+|x|) (15+exp(q)+|%|)
ﬂl%—}?' _ A

S @52 ~ 256 e =%,

|0k (%) = or (%)

|
= | T5k+x] ~ Tok+17]

2] = 1] | le—] _ 1, _ .
S 1562 S 152 T 225 e — %],

Then the conditions (H1) and (H2) holds

with A = %= i = ﬁ,withk e K5. Since

5 x
Zuk+max / K(g,2)dAd  (6.2)
] g€l 0

A 1 i
= mug + X (0
_ _5 6 i
= 255 * Zor o X (D"
0.1328, v = 1/2,
~ 4 0.1416, v=2/3, ; <1.
0.1491, v ="6/7,

By using Algorithm } we obtain all param-
eters which are shown in Table [[. Further

43

in Fig. [, we have plotted the results for the
nonlinear local impulsive FDE Eq. (6.1]) and
three cases of v. The condition Eq. (B.12)
is satisfied. Thus by Theorem B.3, the non-
linear local impulsive FDE Eq. (6.1)) has a
unique solution. Now, let x € PC(J) be a

—B—k":ﬂ?

——,=213

Zf)m +max/ K(g,\)dA
prt o

L L L L L L
0 05 1 15 2 25 3 35

Fig. 1. Representation of Eq. (6.2) for three cases
of v in Example .1].

solution of the inequality Eq. (5.1]). Denote
by » the unique solution to the backward im-
pulsive FDE Eq. (6.1)), then we obtain,

k-1
@) =1+ Y055 (4(05,)

p=0
1 k q5-p+1 v
+F(UL)Z/ (VQ5—p+1_\//_l)
p:() q45-p
* (i)
2V (15+e1+|7(q)|)
k q5-p+1 —v
1 1A
T T Z (\/5 a \//_l)
p=0 q5-p
/.
x —2VL__1q)
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<( r(u)\/_ F(ul)\/_)

11.0090e, v =1/2,
~ < 12.8654e, v =2/3,
14.6319¢, v = 6/7,

Hence for each g € (¢5-%, g5-x+1) and k €
K5, we can write

% — x|l pc
B 1
1- 415 252;{(&1) 256F(ul+1) va
14.1274e, v =1/2,
~ 4 16.7158s, v=2/3, } =cy me.
19.1119¢, v =6/7,

Fig. I shows the curve of c4 ,, the non-

—a—u,-12
19 ——v,=23| |
617

v,
3

Iy
Ewef

15
14
13\\"‘“—‘%

. . . . . .
0 05 1 15 2 25 3 35
qe0,x]

Fig. 2. Representation of ¢, for three cases of v

in Example 1.

linear impulsive FDE Eq. (b.1)) with three
cases of v;. This implies that Eq. (6.1) is
generalized U.H stable.

Example 6.2. We consider nonlinear local
impulsive FDE Eq. (b.1)) in Example
with v = % and four cases of y;(g),

x1(q) =21,
x2(q) =q.
x3(q) =In(q +0.01),

(6.3)

44

x4(q) =g,

as,

X1\2/3 _ q
Do #(9) = Trrepigm@
qEJI[O,”]aqiqk
S S
A%|q=qk T 15k+|x(qp)]’
k € K5a qdk = % k.

x(r)=1

(6.4)
Since

5 x
Zpk +max/ K(g,1)dA
=1 a<7 Jo

A 1
TEmLaG

_ 5 67 2/3
=2 4 RV
225 256r(§) xi(m)
0.3705, x1(q) =24,
0.1972, x2(q) =q,
0.1254, x3(q) =1In(g +1.01),

0.1417,  x4(q) = Vg,

(6.5)

=muy +

< 1.

One can use Algorithm [ for computing all

variables in this example which are shown
in Table P. we have plotted the results for
the nonlinear local impulsive FDE Eq. (6.4)
and four cases of y in Fig. f. The condi-
tion Eq. (B.12) is satisfied. Thus by Theo-
rem .3, the nonlinear local impulsive FDE
Eq. (6.4) has a unique solution. Now, let
% € PC(J) be a solution of the inequality
Eq. (B.1)). Denote by » the unique solution
to the backward impulsive FDE Eq. (6.4),
then we obtain

k-1
#(q) =1+ Y 05 p(x(g5_,))
p=0

k

et [ Gataspe)

p:O q5-p

-1 ﬂ'X,f(/l)
x4
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Table 1. Numerical results of Eq. (6.2) and ¢ ¢,m in Example b.1 for three cases of v.

v = % Ug = % vz = g

4, q Eq. (6.2) Com Eq. 62  com Eq. 62  com

0.0000 0.0222 14.1274 0.0222 16.7158 0.0222 19.1119
0.3142 0.0844 13.3296 0.0777 15.6491 0.0695 17.7865
0.6283 0.0962 13.1765 0.0921 15.4445 0.0859 17.5324
0.9425 0.1041 13.0734 0.1022 15.3068 0.0980 17.3615
1.2566 0.1102 12.9935 0.1102 15.2000 0.1079 17.2289
1.5708 0.1152 12.9273 0.1170 15.1115 0.1165 17.1191
1.8850 0.1196 12.8703 0.1230 15.0353 0.1242 17.0246
2.1991 0.1234 12.8199 0.1283 14.9680 0.1311 16.9411
2.5133 0.1268 12.7747 0.1331 14.9075 0.1375 16.8660
2.8274 0.1300 12.7334 0.1376 14.8524 0.1435 16.7976
3.1416 0.1328 12.6954 0.1417 14.8016 0.1491 16.7346

0.4

0 05 1 15 2 25 3 35

Fig. 3. Representation of Eq. (6.3) for four cases
of y in Example B2

k
36 ;)/q

5-p

q5-p+1

(xi(q)

x; ()

— xi()™ da

5 5

15+et+|%(q)|
T
<Y Fl+ iy [
p=1 p=1 0

— xi()"Pe xl(2)da

5 ax
_Tlﬁ);/() (xi(q)

—xi() e yi(2)da

45

< (5 1y )™

- g (™ Jo

5.0000, x1(gq) =24,

17.8701, x2(q) =g,
5.0000, x3(g)=1In(g+1.01),

13.7875, xa(q) = 3,

Hence, for g € (g5-k, g5-k+1) and k € K5,

—a—y, (@=2°
——x,(a=q

20 X4(@)=In (@ +1.01)
18| =@

0 0.5 1 15 2 25 3 35
qe (0,7

Fig. 4. Representation of ¢, for three cases of v
in Example B.2.

we can write

I = #ll pc
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(5+ lr?f‘rzﬁ?))a
S 1 _5x(x(n)*3 x 3
=35 2&W(§) _2ww(g)(X(n”
7.9432, x1(q) =24,
22.2592, x2(q) =gq,
5.7171, x3(g) =In(g +1.01),
16.0634, x4(q) = n4,
= C¢,n18.

Fig. § shows the curve of ¢ #,m the nonlin-
ear impulsive FDE Eq. (b.4) with four cases
of xi(q). It means that Eq. (6.4) is gener-
alized U.H stable.

Example 6.3. In this example, base on

Eq. (L.1}) and Eq. ([.3), we consider the fol-
lowing backward impulsive FDE
exp(=q) cos(|x%(q)|)

X1 /2 _
D+ #(q) = 50+q ’
qgel=1[0,1],q # gk,

Ax|g=qy = ﬁ [ sin (|%(61;§>|)

(6.6)
+e(ap)l |
k € E§5, qdrk = % k,
x(1) = % + 4—10 cos (|#]),
with for cases of
x1(q) =21, (6.7
x2(q) = q,
x3(q) =In(q +1),
x4(q) = q.

We define

0(q.%) = sz exp(~g) cos ([]).
0k (%) = 1o57 [sin(|x]) + |x[],
w(x) = 4—10 cos(|]).

Then, for %, % € PC(J) we have

exp(=q) cos(|x|)
50+q

|6(q,%) — ¢(q,%)| =

46

_ exp(=q) cos(|%])
50+q

1 .
50 |cos(|x]) — cos(]])]

1

<
S 5

, 1 ,
[oe] = 12]| < 55 | — 4],

and

sin(|x])+|x|
100k

lok(%) — or(#)] <

_ sin(]#])+]#]
100k

1 . . .
< kg Isin (D) - sin(14D)

, 1 ,
+lel = A1l | < &5 1= 4,

() = w(#)] < 5 lcos(|x]) — cos([#])]

1 ,
< 5 % —#].

Hence, the conditions (H1), (H2) and (HS)
holds with A = %, Ui = %, with k € K,
C= %. Thus, by employing Eq. (¢.2), and

using Algorithm , we get

5 1
C+;up+r22§<'/o K(g,A1)da (6.8)

= o+ + %X(C)"
6
=36+ iy (a ()
0.3414, xi(q) =24,
0.2854, x2(q) =q,
0.2627, x3(q) =In(q+1),
0.2854, xa(q) =+/q.

<1 (6.9)

These results are shown in Table [§ and in
Fig.s Ba and Bb, we have plotted the re-
sults for the nonlinear local impulsive FDE
Eq. (6.4) with four cases of y. The con-
dition Eq. (4.2) is satisfied. Thus by The-
orem [.1|, Eq. (6.6) has a unique solution.
Now, let x € PC(J) be a solution of the
inequality Eq. (5.2). Denote by » the
unique solution to the backward impulsive
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Table 2. Numerical results of Eq. (6.3) and ¢ #,m in Example b3 withv = % and for four cases of y;.

x1(q) =21 x2(q) =q Xx3(q) =In(g+1.01) xa(q) =+q
g | EaEI com Eq . 63  coum Eq B3  com Eq . B3  com
0.0000 | 0.1038  8.1804 0.0222  5.2756 0.0260 5.6108 0.0222  4.9426
0.3142 | 0.1165  7.4427 0.0599  5.6733 0.0572 5.6437 0.0777  6.6498
0.6283 | 0.1313  7.4700 0.0821  6.4608 0.0732 5.6607 0.0921  7.7144
0.9425 | 0.1483  7.5018 0.1006  7.4531 0.0846 5.6730 0.1022  8.6471
1.2566 | 0.1680  7.5390 0.1172  8.6222 0.0936 5.6826 0.1102  9.5235
1.5708 | 0.1908  7.5824 0.1324  9.9618 0.1009 5.6906 0.1170  10.3791
1.8850 | 0.2171  7.6332 0.1467  11.4829 0.1072 5.6973 0.1230  11.2394
2.1991 | 0.2476  7.6928 0.1602  13.2186 0.1126 5.7032 0.1283  12.1304
2.5133 | 0.2828  7.7629 0.1730  15.2442 0.1173 5.7083 0.1331  13.0899
2.8274 | 0.3235  7.8455 0.1853  17.7540 0.1216 5.7129 0.1376  14.1997
3.1416 | 0.3705  7.9433 0.1972  22.2592 0.1254 5.7171 0.1417  16.0634

Table 3. Numerical results of Eq. (6.8) and Ny in Example B3 withv = % and for four cases of y;.

x1(q) =24 x2(q9)=q x3(q) =In(q+1) x4(q) =\4q
q Eq. B  ny Eq B9 ny Eq. B8  ng Eq B ny
0.0000 0.2854  1.1284 0.1500  0.0000 0.1500  0.0000 0.1500  0.0000
0.1000 0.2902  1.1682 0.1928  0.3568 0.1918  0.3484 0.2261  0.6345
0.2000 0.2951  1.2094 0.2106  0.5046 0.2078  0.4818 0.2406  0.7546
0.3000 0.3002  1.2520 0.2242  0.6180 0.2194  0.5780 0.2502  0.8351
0.4000 0.3055  1.2962 0.2356  0.7137 0.2285  0.6545 0.2577  0.8974
0.5000 0.3110  1.3419 0.2457  0.7979 0.2362  0.7185 0.2639  0.9489
0.6000 0.3167  1.3892 0.2549  0.8740 0.2428  0.7736 0.2692  0.9931
0.7000 0.3226  1.4382 0.2633  0.9441 0.2486  0.8220 0.2739  1.0321
0.8000 0.3287  1.4889 0.2711  1.0093 0.2538  0.8651 0.2781  1.0672
0.9000 0.3350  1.5414 0.2785  1.0705 0.2585  0.9040 0.2819  1.0990
1.0000 0.3415  1.5958 0.2854  1.1284 0.2627  0.9394 0.2854  1.1284
FDE Egs. ([L.1)-([.3), then we have Example 6.4. Consider nonlocal impul-
) sive FDE
7((q,/l)go(/l) da XT\Y2 g sin(x)++/q
‘/0 L CDb+ %(Q) = [ lfl‘—q ’
q€I=1[0,1],9 # qx,
< max K(g,Ad) / p(1)da
0<q,A<1 0 _exp(—|x(q)|)+]x(q;)]
(i ()72 Axlg=gy = 20k ,
< rEy v@ keKs, qi =1k,
1.5957¢(q), x1(q) =21, x(1) = 1+
11283‘10(q)’ X2(q) =4q, 1_10 (arctan(l;{l) + 1) s
0.9394¢(q), x3(g) =In(q +1), (6.10)
1.1283¢(q), xa(q) = /4, \ivitlgl Xl(lq) = /1 + |q| for three cases v =
= n¢gp(q), 5 1 1o S (0, 1) Clearly, we =1,
_ 1 1 q .
here n, = @(ln@)) /2> 0. The con- &(q, %) = % (Vg sin(x) + 1),
dition of Theorem is satisfied. Thus, o1 (%) = exp(=|x[)+|x|
: : - 20k ’
Eq. (6.6) is G.U.H.R stable with respect to _ arctan((x|)+1
M- w(x) = 0

47
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C+Y 5 ﬂmx/” K(g,\)dA
pt /

—a—y,@=2"
02 o —— 1,0
xg(@)=In (g +1.01)
——,@=a"*

0 01 02 03 04 05 06 07 08 09 1
qe 0,7

(@)

—a— (=2
0.4 / —&—x,(Q=q
/ Xa(@)=In (q+ 1.01)
——,@=a"

0 01 02 03 04 05 06 07 08 09 1
qe 0,7

(b)

Fig. 5. Representation of Eq. (6.8) for four cases of y in Example .3

Also, for », # € R, we have

g sin (%)+\/7 qsin(3)++/q
1+g 1+q
< Alx -4,
where A = 1. Thus,
(g, %) < qlx| +1,
|Qk(%)| 20 P

lw()| < 75 1% + 15,
and for x, %, we have

|w (%)

arctan(|x[)+1 _ arctan(|#|)+1
10 10

—w(#)| =

< 15 Il = 1A |.

Thus, assumption (H3)-(H6) hold by con-
sidering ®(g) = ¢, 00 =1, 10 = 20; = —0
fork € K5, C = 4, and D = K = 15
Thus, thanks to Algorithm i, Eq. (B.3)) im-
plies that

max {iﬁp

p=1

C
+ 0o max/ K(g, ) dAa, || +K}
g€l

A(m+1 vi
< max{ + F((Til)) (\/1 + |q|) , %}

6.11)

vy
= max {% T (\/1 n |q|) , 1.1}

8.3012, vy = 12,
~ max 8.7162, wvo =3/4, , 1.1
8.7698, w3 =1l/12,
8.3012, vy = 12,
=1 8.7162, w9 =3/4,
8.7698, w3 =11/12,
< 4r, (6.12)

here r = 2.5 for all cases v;. in Hence,
Eq. (.3) in Theorem §.2 hold. This im-
plies that Eq. (6.10) has at least a solution
in PC(J). In the other hand,

5
max {Zlep
+max/ K(g,A) D(Q)dA, D}
= max{% + ( 1+|q|) L }

(6.13)

T(vi+1) * 10
1.5918, wvq =1/2,
~max{{ 1.6610, va =3/, . 15
1.6699, w3 =11/12,
1.5918, wvq =1/2,
=1 1.6610, w9 =3/4, (6.14)
1.6699, w3 =11/12,

< 4.

Figs. B- b show the curve of Eq. (6.11))
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4r =10

max {7 o0, + 0 maxes Jy Klg, V) AN In| + K Ay
85 =

B P

—a—u,=12
——v,=34

vy=11/12

0 0.1 02 03 04 05 06 0.7 0.8 09 1
qe0,1)

(@)

125

T
/v/

A

//

—a—u,=12
——v,=3

vy=11/12

ma {710, + 00 masey Jy Kl A dA D}

0

0.1 02 03 04 05 06 07 08 09 1
qe0,1)

(b)

Fig. 6. Representation of Eqs. (B.11))-(6.13) for three cases of v in Example .4.

and Eq. (6.13) for three cases v for nonlin-
ear local impulsive FDE Eq. (6.10). The
condition of Theorem }.2 is satisfied. Thus,
Eq. (6.10) has at least a solution in PC(J).

7. Conclusion

Usually, the DEs are given under the
initial conditions in a forward manner, that
is, starting at ¢ = b. But for other classes of
problems in which the initial state set is un-
known the procedure may be more conve-
nient if one considers backward initial con-
ditions, i.e., at ¢ = ¢. This approach plays a
vital role in many physical areas. A typical
example of such a problem is the backward
heat problem, also known as the terminal
value problem. For application in stochas-
tic DEs, see, for example [40]. However,
as far as we know, there are few results on
the existence and stability of solutions to
backward impulsive differential equations.
In this paper, By using some well known
classical FP theorems, we establish the ex-
istence theory for the considered problems.
Also we develop some results for H.U sta-
bility and generalized stability. Pertinent
examples are given to verify our results.
Comparing the data obtained from the se-
lection of several types of local backward
problems for nonlinear impulsive FDE is

49

very significant.
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Table 5. Algorithm 2: MATLAB lines to calcu-
late all parameters in Example .2 for four cases

of xi(q).

Appendices

Table 4. Algorithm 1: MATLAB lines to cal-
culate all parameters in Example for three

Syms v e;

1
cases of v. 2 upsilon=2/3;

[ symsve; 3 chi=[2"v v log(v+1.01) sqrt(v)];

2 upsilon=[0.5 2/3 6/7]; 4 [xchi ychi]=size(chi);

3 [xupsilon yupsilon]=size(upsilon); 5 mathfrakb=0; mathfrakc=pi;

4 chi=sqri(v); 6  varkappa_mathfrakc=1;

2 mailfrakbzo; }Ilnéitllifrall(C:Pi; 7 q=[pi/5 2*pi/5 3*pi/S 4*pi/5 pil;

varkappa_mathfrakc=1; . .

7 q:[pi})SP2;pi/5 3*pi/5 4*pi/5 pil; S iil[_lvz/(; 54+56]X_ p(v)*abs(e));

8  phi=v/(15+exp(v)+abs(e)); b

9 k=[12345]; 10 [xk yk]=size(k);

10 [xk yk]=size(k); 11 varrho k=1./(k+abs(e));

11 varrho k=1./(k+abs(e)); 12 Lambda=pi/256;

12 Lambda=pi/256; 13 upmu_k=[1/225 1/225 1/225 1/225 1/225];

13 upmu_k=[1/225 1/225 1./225 1/225 1/225]; 14 [xupmu_k yupmu k]=size(upmu_k);

14 [xupmu_k yupmuﬁk]zsme(upmuik); 15 a=mathfrakb; T=pi;

15  a=mathfrakb; T=pi; ’ ’

16  column=1; 16 column=1;

17 for s=l:yupsilon 17 for s=I:ychi

18 n=1; 18 n=l;

19 svar=a; 19 svar=a;

20 sum1=sum(upmu_k); 20 suml=sum(upmu_k);

2! while svar<=T 21 while svar<=T

22 pm(n,column)=n;

23 pm(n,column-+1)=svar; 22 pm(n,column)=n;

24 pm(n,column+2)=suml + ... 23 pm(n,column+1)=svar;

Lambda * (yupmu k+ 1) *... 24 pm(n,column+2)=suml
eval( subs( chi, {v}, {svar} ) )"... + Lambda * (yupmu_k+1)
(upsilon(s) ) / gamma( upsilon(s) + 1); * eval( subs( chi(s), {v},

A T, ) nsion

27 end: gamma(upsilon+1);

28 column=column+3; 25 A=5+yupmu_k * (int( (

29  end; eval( subs( chi(s), {v},
{mathfrakc}) ) - chi(s) )*(
upsilon - 1) * diff(chi(s) ),
’v’,a, svar ) ) - (int ( (eval(
subs( chi(s), {v}, {svar}))
- chi(s) )™(upsilon - 1) *
diff(chi(s)), ’v’,a, mathfrakc))

26 pm(n,column+3)=abs(A);

27 pm(n,column+4)=abs(A)
/(1-1/45 - 5 * mathfrakc *
( eval( subs( chi(s), {v},
{mathfrakc} ) ) ) *(upsilon)
/(256 * gamma( upsilon+1) )
- mathfrakc * (‘eval( subs(
chi(s), {v}, {svar} )))(
upsilon ) / (256 *
gamma( upsilon+1)));

28 n=n+1;

29 svar=svar+pi/10;

30 end;

31 column=column+5;

32 end;

52




N. Benahmed et al. | Science & Technology Asia | Vol.30 No.1 January - March 2025

Table 6. Algorithm 3: MATLAB lines to calcu-
late all parameters in Example .3 for four cases

of xi(q).
1 syms Vv €;
2 upsilon=1/2;
3 chi=[2"v v log(v+1) sqrt(v)];
4 [xchi ychi]=size(chi);
5 mathfrakb=0; mathfrakc=1;
6  varkappa mathfrakc=1;
7 q=[1/52/53/54/51];
8  phi=exp(-v)/(15+exp(v)+abs(e));
9 k=[12345]

10 [xk yk]=size(k);

11 varrho_k=1./(k+abs(e));

12 omega=cos(abs(v))/40;

13 Lambda=1/50;

14 upmu k=[1/50 1/50 1/50 1/50 1/50];

15  [xupmu_k yupmu_k]=size(upmu_k);

16 C=1/20;

17  a=mathfrakb; T=mathfrakc;

18  column=1;

19 for s=1:ychi

20 n=1;

21 svar=a;

22 suml=sum(upmu_k);

23 while svar<=T

24 pm(n,column)=n;

25 pm(n,column+1)=svar;

26 pm(n,column+2)=C + suml
+ Lambda * (yupmu k+ 1)
* eval( subs( chi(s), {v},
{svar}) )*(upsilon ) /
gamma(upsilon + 1);

27 A= (‘eval( subs( chi(s), {v},
{svar})) )*(upsilon) /
gamma( upsilon +1);

28 pm(n,column+3)=A;

29 n=n+1;

30 svar=svar+1/10;

31 end;

32 column=column-+4;

33 end;

53

Table 7. Algorithm 4: MATLAB lines to cal-
culate all parameters in Example [6.4 for three

cases v.

1 symsve;

2 upsilon=[1/2 3/4 11/12];

3 [xupsilon yupsilon]=size(upsilon);

4 chi=sqrt(1+abs(v));

5 mathfrakb=0; mathfrakc=1;

6  varkappa mathfrakc=1;

7 q=[1/52/53/54/51];

8  phi=exp(-v)/(15+exp(v)+abs(e));

9 k=[12345]

10 [xk yk]=size(k);

11 varrho k=1./(k+abs(e));

12 omega=cos(abs(v))/40;

13 Lambda=1;

14 upmu k=[1/50 1/50 1/50 1/50 1/50];

15  [xupmu_k yupmu_k]=size(upmu_k);

16 C=1/20,

17  a=mathfrakb; T=mathfrakc;

18  column=1;

19 for s=1:yupsilon

20 n=1;

21 svar=a;

22 while svar<=T

23 pm(n,column)=n;

24 pm(n,column+1)=svar;

25 pm(n,column+2)=1/4 +
Lambda * (yupmu_k+1)
* eval( subs(chi, {v}, {svar} ) )"
(‘upsilon(s) ) / gamma(
upsilon(s) +1);

26 pm(n,column+3)=1/4 +
eval( subs( chi, {v}, {svar} ) )"
(‘upsilon(s) ) / gamma(
upsilon(s) +1);

27 n=n+l;

28 svar=svar+1/10;

29 end;

30 column=column+4;

31 end;
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