



Some New Results on Fixed Points for ϖ -Distances in Complex-Valued Metric Spaces

Wongvisarut Khuangsatung¹, Anteneh Getachew Gebrie², Cholatis Suanoom^{3,*}

¹Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand

²Department of Mathematics, College of Computational and Natural Science, Debre Berhan University, Debre Berhan 445, Ethiopia

³Program of Mathematics, Faculty of Science and Technology, Kamphaengphet Rajabhat University, Kamphaengphet 62000, Thailand

Received 19 January 2024; Received in revised form 13 April 2024

Accepted 23 May 2024; Available online 25 June 2024

ABSTRACT

In this paper, we introduce the notion of a ϖ -distance in complete complex-valued metric spaces and prove some fixed point theorems for mappings satisfying some appropriate inequalities in complete complex-valued metric spaces. Moreover, we deduce new fixed point results in complete complex-valued metric spaces and provide some examples to illustrate the usability of the obtained results.

Keywords: ϖ -distance; Ω -distance; c -distance; Complex-valued metric spaces; Fixed point; Generalized c -distance; wt -distance; w -distance

1. Introduction

The Banach's contraction mapping principle is widely recognized as the source of a metric fixed point theory. The existence and uniqueness of a fixed point of operators or mappings has been a subject of a great interest since the work of a Banach in 1922 [1]. The concept of nonexpansive mappings has also been widely studied in the following works [2, 3]. This prin-

ciple has been applied in different spaces by mathematicians, for example D-metric spaces, quasimetric spaces, quasi b-metric spaces, b-metric-like spaces, Dislocated quasi-b-metric spaces, and G-metric spaces (see [4-8]) have already been obtained. A new space called the complex valued metric space which is more general than well-known metric spaces has been introduced by Azam et al. [9]. Naturally, this new idea

can be utilized to define complex valued normed spaces and complex valued inner product spaces which, in turn, offer a lot of scope for further investigations. Many authors have studied a fixed point theory in complex valued metric space (see [10-16]).

On the other hand, in 1996, Takahashi et al.[17] introduced the notion of a w -distance on a metric space and proved a nonconvex minimization theorem which generalizes Caristi's fixed-point results and the ϵ -variational principle. After that in 2011, Cho et al. [18] introduced the concept of a c -distance in a cone metric space. For more details about c -distance (see [19, 20] and the references contained therein). The concept of a Ω -distance of G-metric spaces and constructed some fixed point theorems in G-metric spaces by using the notion of a Ω -distance introduced by Saadati et al. [21]. Moreover, the results of Saadati et al. was made clear to shoot up by Shatanawi and Pitea [22]. Recently, a new concept of a wt -distance on b-metric spaces, which is a b-metric version of the w -distance of Takahashi et al. [17] was introduced by Saadati et al. [23] and proved some fixed point results in a partially ordered b-metric space.

Moreover, Mohanta [24] has generalized the results of Saadati et al. [23]. The concept of a generalized c -distance on a cone b-metric space was introduced by Xu et al. [25] which is a generalization of c -distance of Cho et al. [18] and proved some fixed and common fixed point results in ordered cone b-metric spaces using this distance . For more details about generalized c -distance see [26].

The above concept, we introduce the notion of a ϖ -distance in complete complex-valued metric spaces and prove some fixed point theorems for mappings satisfying some appropriate inequalities in complete complex-valued metric spaces.

Moreover, we deduce new fixed point results in complete complex-valued metric spaces and provide some examples to illustrate the usability of the obtained results.

2. Preliminaries

Throughout this paper, we will write $\mathbb{N}_0 = \{0, 1, 2, 3, \dots\}$ and $\mathbb{N} = \{1, 2, 3, \dots\}$. Let \mathbb{C} be the set of complex numbers and $\sigma_1, \sigma_2 \in \mathbb{C}$, we define a partial order \prec and \lesssim on \mathbb{C} as follows:

- (i) $\sigma_1 \prec \sigma_2$ if and only if $\text{Re}(\sigma_1) < \text{Re}(\sigma_2)$ and $\text{Im}(\sigma_1) < \text{Im}(\sigma_2)$
- (ii) $\sigma_1 \lesssim \sigma_2$ if and only if $\text{Re}(\sigma_1) \leq \text{Re}(\sigma_2)$ and $\text{Im}(\sigma_1) \leq \text{Im}(\sigma_2)$.

Now, we recall some property of a complex valued metric space.

Definition 2.1 ([9]). Let X be a nonempty set. Suppose that the mapping $\Gamma : X \times X \rightarrow \mathbb{C}$ satisfies the following conditions:

- (Γ_1) $0 \lesssim \Gamma(\zeta, \eta)$, for all $\zeta, \eta \in X$;
- (Γ_2) $\Gamma(\zeta, \eta) = 0$ if and only if $\zeta = \eta$ for all $\zeta, \eta \in X$;
- (Γ_3) $\Gamma(\zeta, \eta) = \Gamma(\eta, \zeta)$ for all $\zeta, \eta \in X$;
- (Γ_4) $\Gamma(\zeta, \eta) \lesssim \Gamma(\zeta, \sigma) + \Gamma(\sigma, \eta)$, for all $\zeta, \eta, \sigma \in X$.

Then Γ is called a *complex valued metric* on X and (X, Γ) is called a *complex valued metric space*.

Example 2.2 ([9]). Defined $\Gamma : X \times X \rightarrow \mathbb{C}$ as follows:

$$\Gamma(\sigma_1, \sigma_2) = \begin{cases} \frac{2}{3}|\zeta_1 - \zeta_2| + \frac{i}{2}|\zeta_1 - \zeta_2| \\ \quad if \sigma_1, \sigma_2 \in X_1, \\ \frac{1}{2}|\eta_1 - \eta_2| + \frac{i}{3}|\eta_1 - \eta_2| \\ \quad if \sigma_1, \sigma_2 \in X_2, \\ \left(\frac{2}{3}\zeta_1 + \frac{1}{2}\eta_2\right) + i\left(\frac{1}{2}\zeta_1 + \frac{1}{3}\eta_2\right) \\ \quad if \sigma_1 \in X_1, \sigma_2 \in X_2, \\ \left(\frac{1}{2}\eta_1 + \frac{2}{3}\zeta_2\right) + i\left(\frac{1}{3}\eta_1 + \frac{1}{2}\zeta_2\right) \\ \quad if \sigma_1 \in X_2, \sigma_2 \in X_1, \end{cases}$$

Let $X_1 = \{\sigma \in \mathbb{C} : 0 \leq \operatorname{Re}(\sigma) \leq 1, \operatorname{Im}(\sigma) = 0\}$, $X_2 = \{\sigma \in \mathbb{C} : 0 \leq \operatorname{Im}(\sigma) \leq 1, \operatorname{Re}(\sigma) = 0\}$ and let $X = X_1 \cup X_2$. Let $\sigma_1 = \zeta_1 + i\eta_1$, $\sigma_2 = \zeta_2 + i\eta_2 \in X$. Then (X, Γ) is a complete complex valued metric space.

Example 2.3 ([9]). Let $X = C([1, 3], \mathbb{R})$, $a > 0$ and for every $\zeta, \eta \in X$ let $M_{\zeta\eta} = \max_{t \in [1, 3]} |\zeta(t) - \eta(t)|$, $\Gamma(\zeta, \eta) = M_{\zeta\eta} \sqrt{1 + a^2 e^{i \tan^{-1} a}}$. Then (X, Γ) is a complex valued metric space.

Definition 2.4 ([9]). Let (X, Γ) be a complex valued metric space.

(i) A point $\zeta \in X$ is called *interior point* of a set $B \subseteq X$ whenever there exists $0 < r \in \mathbb{C}$ such that $N(\zeta, r) := \{\eta \in X : \Gamma(\zeta, \eta) < r\} \subseteq B$.

(ii) A point $\zeta \in X$ is called *limit point* of a set $B \subseteq X$ whenever for every $0 < r \in \mathbb{C}$ such that $N(\zeta, r) \cap (X - B) \neq \emptyset$.

(iii) A subset $B \subseteq X$ is called *open* whenever each element of B is an interior point of B .

(iv) A subset $B \subseteq X$ is called *closed* whenever each limit point of B belongs to B .

(v) The family $F = \{N(\zeta, r) : \zeta \in X, 0 < r\}$ is a sub-basis for a topology on X . we denote this complex topology τ_c . Indeed, the topology τ_c is Hausdorff.

Definition 2.5 ([9]). Let (X, Γ) be a complex valued metric space and $\{\zeta_n\}$ be a sequence in X and $\zeta \in X$.

(i) If for every $c \in \mathbb{C}$, with $0 < c$ there is $N \in \mathbb{N}$ such that for all $n > N$, $\Gamma(\zeta_n, \zeta) < c$, then $\{\zeta_n\}$ is said to be *convergent*, $\{\zeta_n\}$ converges to ζ and ζ is limit point of $\{\zeta_n\}$. We denote this by $\zeta_n \rightarrow \zeta$ as $n \rightarrow \infty$ or $\lim_{n \rightarrow \infty} \zeta_n = \zeta$.

(ii) If for every $c \in \mathbb{C}$, with $0 < c$ there is $N \in \mathbb{N}$ such that for all $n >$

N , $\Gamma(\zeta_n, \zeta_{n+m}) < c$, where $m \in \mathbb{N}$, then $\{\zeta_n\}$ is said to be *Cauchy sequence*.

(iii) If every Cauchy sequence in X is convergent, then (X, Γ) is said to be a *complete complex valued metric space*.

Lemma 2.6 ([9]). Let (X, Γ) be a complex valued metric space and let $\{\zeta_n\}$ be a sequence in X . Then $\{\zeta_n\}$ converges to ζ if and only if $|\Gamma(\zeta_n, \zeta)| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 2.7 ([9]). Let (X, Γ) be a complex valued metric space and let $\{\zeta_n\}$ be a sequence in X . Then $\{\zeta_n\}$ is a Cauchy sequence if and only if $|\Gamma(\zeta_n, \zeta_{n+m})| \rightarrow 0$ as $n \rightarrow \infty$, where $m \in \mathbb{N}$.

Definition 2.8. Let \mathbb{C} be the set of complex number and $M \subseteq \mathbb{C}$.

(i) f is continuous at $\sigma_0 \in \mathbb{C}$ if and only if for all $\epsilon > 0$, there exists $\delta > 0$, if $|\sigma - \sigma_0| < \delta$, then $|f(\sigma) - f(\sigma_0)| < \epsilon$ for all $\sigma \in \mathbb{C}$.

(ii) f is continuous on M if and only if f is continuous at σ_0 for all $\sigma_0 \in M$.

Remark 2.9 ([14]). We obtained that following statements hold:

(i) If $\sigma_1 \precsim \sigma_2$ and $\sigma_2 \precsim \sigma_3$, then $\sigma_1 \precsim \sigma_3$.

(ii) If $\sigma \in \mathbb{C}$, $a, b \in \mathbb{R}$ and $a \leq b$, then $a\sigma \precsim b\sigma$.

(iii) If $0 \precsim \sigma_1 \precsim \sigma_2$, then $|\sigma_1| \leq |\sigma_2|$.

3. ϖ -distance

In this section, we introduce the notion of ϖ -distance in complete complex-valued metric spaces and prove some lemma in such a space.

Let us recall that a complex-valued function f defined on a complex-valued metric space X is said to be lower semi-continuous at a point σ in X if either $\liminf_{\zeta_n \rightarrow \sigma} f(\zeta_n) = \infty$ or $f(\sigma) \leq$

$\liminf_{\zeta_n \rightarrow \sigma} f(\zeta_n)$, whenever $\zeta_n \in X$ for each $n \in \mathbb{N}$ and $\zeta_n \rightarrow \sigma$

Definition 3.1. Let (X, Γ) be a complex valued metric space. Then a function $p : X \times X \rightarrow \mathbb{C}$ is called a ϖ -distance on X if the following are satisfied:

- (1) $p(\zeta, \eta) \geq 0$ for all $\zeta, \eta \in X$;
- (2) $p(\zeta, \eta) \leq p(\zeta, \sigma) + p(\sigma, \eta)$ for all $\zeta, \eta, \sigma \in X$;
- (3) for all $\zeta \in X$, $p(\zeta, \cdot) : X \rightarrow \mathbb{C}$ is lower semicontinuous i.e., if $\zeta \in X$, $\eta_n \rightarrow \eta \in X$ then $p(\zeta, \eta) \leq \liminf_{n \rightarrow \infty} p(\zeta, \eta_n)$;
- (4) for all $\epsilon > 0$, there exists $\delta > 0$, such that $p(\zeta, \sigma) \leq \delta$ and $p(\sigma, \eta) \leq \delta$ imply $p(\zeta, \eta) \leq \epsilon$, where $\epsilon, \delta \in \mathbb{C}$.

Now, we provide examples of ϖ -distance in complex-valued metric space.

Example 3.2. Let (X, Γ) be a complex valued metric space. Then $p = \Gamma$ is a ϖ -distance on X

Proof. (1), (2) and (3) are clearly. To show (4). Let $\epsilon > 0$. Setting $\delta = \frac{\epsilon}{2}$. Then, we have $\Gamma(\zeta, \eta) \leq \Gamma(\zeta, \sigma) + \Gamma(\sigma, \eta) = p(\zeta, \sigma) + p(\sigma, \eta) \leq \epsilon$, where $p(\zeta, \sigma) \leq \delta$ and $p(\sigma, \eta) \leq \delta$. \square

Example 3.3. Let (X, Γ) be a complex valued metric space. Then a function $p : X \times X \rightarrow \mathbb{C}$ defined by $p(\zeta, \eta) = c$ for every $\zeta, \eta \in X$, p is a ϖ -distance on X , where $c \in \mathbb{C}$ and $c > 0$.

Proof. (1), (2) and (3) clear. To show (4), let $\epsilon > 0$. Setting $\delta = \frac{\epsilon}{2}$. Then, $p(\zeta, \sigma) \leq \delta$ and $p(\sigma, \eta) \leq \delta$ imply $\Gamma(\zeta, \eta) \leq \epsilon$. \square

Example 3.4. Let X be a normed linear space with $\|\cdot\|$ and let $\Gamma(\zeta, \eta) = \|\zeta - \eta\| + i\|\zeta - \eta\|$, for all $\zeta, \eta \in X$. Then a function $p : X \times X \rightarrow \mathbb{C}$ defined by $p(\zeta, \eta) = (\|\zeta\| + \|\eta\|) + (\|\zeta\| + \|\eta\|)i$ for every $\zeta, \eta \in X$, p is a ϖ -distance on X

Proof. Let $\zeta, \eta, \sigma \in X$. Then,

$$\begin{aligned} p(\zeta, \eta) &= (\|\zeta\| + \|\eta\|) + (\|\zeta\| + \|\eta\|)i \\ &\leq p(\zeta, \sigma) + p(\sigma, \eta). \end{aligned}$$

(1), (2) and (3) clear. To show (4), let $\epsilon > 0$. Setting $\delta = \frac{\epsilon}{2}$. Then,

$$\begin{aligned} \Gamma(\zeta, \eta) &= \|\zeta - \eta\| + i\|\zeta - \eta\| \\ &\leq (\|\zeta\| + \|\eta\|) + (\|\zeta\| + \|\eta\|)i \\ &\leq p(\zeta, \sigma) + p(\sigma, \eta) \leq \epsilon. \end{aligned}$$

\square

Example 3.5. Let (X, Γ) be a complex valued metric space, and let \mathfrak{I} be continuous mapping from X into itself. Then a function $p : X \times X \rightarrow \mathbb{C}$ defined by $p(\zeta, \eta) = \max\{\Gamma(\mathfrak{I}\zeta, \eta), \Gamma(\mathfrak{I}\zeta, \mathfrak{I}\eta)\}$ for every $\zeta, \eta \in X$, p is a ϖ -distance on X .

Proof. We see that (1) holds. We show (2). Let $\zeta, \eta, \sigma \in X$. If $\Gamma(\mathfrak{I}\zeta, \sigma) \geq \Gamma(\mathfrak{I}\zeta, \mathfrak{I}\eta)$, then

$$\begin{aligned} p(\zeta, \sigma) &\leq \Gamma(\mathfrak{I}\zeta, \sigma) \\ &\leq \Gamma(\mathfrak{I}\zeta, \mathfrak{I}\eta) + \Gamma(\mathfrak{I}\eta, \sigma) \\ &\leq \max\{\Gamma(\mathfrak{I}\zeta, \eta), \Gamma(\mathfrak{I}\zeta, \mathfrak{I}\eta)\} \\ &\quad + \max\{\Gamma(\mathfrak{I}\eta, \sigma), \Gamma(\mathfrak{I}\eta, \mathfrak{I}\sigma)\} \\ &= p(\zeta, \eta) + p(\eta, \sigma). \end{aligned}$$

On the other hand, we have

$$\begin{aligned} p(\zeta, \sigma) &\leq \Gamma(\mathfrak{I}\zeta, \mathfrak{I}\sigma) \\ &\leq \Gamma(\mathfrak{I}\zeta, \mathfrak{I}\eta) + \Gamma(\mathfrak{I}\eta, \mathfrak{I}\sigma) \\ &\leq \max\{\Gamma(\mathfrak{I}\zeta, \eta), \Gamma(\mathfrak{I}\zeta, \mathfrak{I}\eta)\} \\ &\quad + \max\{\Gamma(\mathfrak{I}\eta, \sigma), \Gamma(\mathfrak{I}\eta, \mathfrak{I}\sigma)\} \\ &= p(\zeta, \eta) + p(\eta, \sigma). \end{aligned}$$

Hence (2) holds. Since \mathfrak{I} is continuous, we have for all $\zeta \in X$, $p(\zeta, \cdot) : X \rightarrow \mathbb{C}$ is lower semicontinuous. Let $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{2}$. Therefore, if $p(\zeta, \sigma) \leq \delta$ and $p(\sigma, \eta) \leq \delta$, then $p(\zeta, \mathfrak{I}\sigma) \leq \delta$ and $p(\mathfrak{I}\sigma, \eta) \leq \delta$. Hence $\Gamma(\zeta, \eta) \leq \Gamma(\mathfrak{I}\sigma, \zeta) + \Gamma(\mathfrak{I}\sigma, \eta) \leq \epsilon$. \square

Next, we prove some basis lemma for ϖ -distance in complex-valued metric space.

Lemma 3.6. Let (X, Γ) be a complex valued metric spaces, and let p be an ϖ -distance on X . Let $\{\zeta_n\}, \{\eta_n\}$ be sequences in X , $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in \mathbb{C} with $\alpha_n \geq 0$ and $\beta_n \geq 0$, $\{\alpha_n\}$ and $\{\beta_n\}$ convergent to zero and let $\zeta, \eta, \sigma, a \in X$. Then we have the following:

- (i) if $p(\zeta_n, \eta_n) \leq \alpha_n$ and $p(\zeta_n, \sigma) \leq \beta_n$ for all $n \in \mathbb{N}$, then $\eta_n \rightarrow \sigma$;
- (ii) if $p(\zeta_n, \eta) \leq \alpha_n$ and $p(\zeta_n, \sigma) \leq \beta_n$ for all $n \in \mathbb{N}$, then $\eta = \sigma$.

In paticular, if $p(\zeta, \eta) = 0$ and $p(\zeta, \sigma) = 0$, then $\eta = \sigma$;

- (iii) if $p(\zeta_n, \zeta_m) \leq \alpha_n$ for all $n, m \in \mathbb{N}$ with $m \geq n$, then $\{\zeta_n\}$ is a Cauchy sequence;
- (iv) if $p(\eta, \zeta_n) \leq \alpha_n$ for all $n \in \mathbb{N}$, then $\{\zeta_n\}$ is a Cauchy sequence.

Proof. First, we show (i). Let $\epsilon > 0$. From the definition of ϖ -distance, there exists a $\delta > 0$ such that $p(\mu, \nu) \leq \delta$ and $p(\mu, \sigma) \leq \delta$ imply $d(\nu, \sigma) \leq \epsilon$. Since $\{\alpha_n\}$ and $\{\beta_n\}$ are converging to zero, we have $n_0 \in \mathbb{N}$ such that $\alpha_n \leq \delta$ and $\beta_n \leq \delta$ for all $n \geq n_0$. Then we get, for any $n \geq n_0$,

$$\begin{aligned} p(\zeta_n, \eta_n) &\leq \alpha_n \leq \delta, \\ p(\zeta_n, \sigma) &\leq \beta_n \leq \delta. \end{aligned}$$

So, $d(\eta_n, \sigma) \leq \epsilon$, and then $\{\eta_n\}$ converges to σ . (ii) holds, because using (i).

Now, to show that (iii) is true. Let $\epsilon > 0$. As in the proof of (ii), choose $\delta > 0$, and then $n_0 \in \mathbb{N}$. Then, for any $m, n \geq n_0 + 1$

$$\begin{aligned} p(\zeta_{n_0}, \zeta_n) &\leq \alpha_{n_0} \leq \delta, \\ p(\zeta_{n_0}, \zeta_m) &\leq \alpha_{n_0} \leq \delta. \end{aligned}$$

So, $\Gamma(\zeta_n, \zeta_m) \leq \epsilon$. Therefore ζ_n is a Cauchy sequence. As in proof of (iii), we can prove (iv). \square

4. Fixed point theorems

In this section, we will prove some fixed point theorems for mappings satisfying some appropriate inequalities in complete complex-valued metric spaces. Moreover, we deduce new fixed point results in complete complex-valued metric spaces and provide some examples to illustrate the usability of the obtained results. We suppose (X, \leq) is a partially ordered set and \mathfrak{I} is a mapping of X into itself. We say that \mathfrak{I} is non-decreasing if for $\zeta, \eta \in X$, $\zeta \leq \eta$ implies $\mathfrak{I}\zeta \leq \mathfrak{I}\eta$.

Theorem 4.1. Let (X, Γ) be a complete complex-valued metric spaces. Assume that \mathfrak{I} is a mapping from X into itself and a function $p : X \times X \rightarrow [0, \infty)$ is ϖ -distance on X . Suppose that the following conditions are satisfied.

- (i) (X, \leq) is a partially ordered set and \mathfrak{I} non-decreasing mapping;
- (ii) for any fixed $\zeta \in X$ with $\zeta \leq \mathfrak{I}\zeta$

$$\inf_{\eta \in X} \{p(\zeta, \eta) + p(\zeta, \mathfrak{I}\zeta)\} > 0, \quad (4.1)$$

with $\eta \neq \mathfrak{I}\eta$;

- (iii) there exists an $\zeta_0 \in X$ with $\zeta_0 \leq \mathfrak{I}\zeta_0$;
- (iv) there exists $\alpha, \beta \in [0, \frac{1}{2})$ such that

$$\begin{aligned} p(\mathfrak{I}\zeta, \mathfrak{I}^2\eta) &\leq \alpha p(\zeta, \mathfrak{I}\eta) \\ &+ \beta \frac{p(\zeta, \mathfrak{I}\zeta)p(\mathfrak{I}\eta, \mathfrak{I}^2\eta)}{1 + p(\zeta, \mathfrak{I}\eta)}, \end{aligned} \quad (4.2)$$

for all $\zeta \leq \mathfrak{I}\zeta$ and any $\eta \in X$ and $\alpha + \beta < 1$.

Then \mathfrak{I} has a fixed point. Moreover, if $\nu = \mathfrak{I}\nu$, then $p(\nu, \nu) = 0$.

Proof. Let ζ_0 be an arbitrary point in X , we define $\zeta_{n+1} = \mathfrak{I}\zeta_n$, for all $n \in \mathbb{N}_0$. If $\mathfrak{I}\zeta_0 = \zeta_0$, then the proof is complete. On the other

hand, suppose that $\mathfrak{I}\zeta_0 \neq \zeta_0$. Since $\zeta_0 \leq \mathfrak{I}\zeta_0$ and \mathfrak{I} is non-decreasing, we have

$$\zeta_0 \leq \zeta_1 \leq \zeta_2 \leq \zeta_3 \leq \dots \leq \zeta_n \leq \zeta_{n+1} \leq \dots$$

Using the inequality (4.2) and $p(\zeta_n, \mathfrak{I}\zeta_n) < 1 + p(\zeta_n, \mathfrak{I}\zeta_n)$, we obtain that

$$\begin{aligned} p(\zeta_{n+1}, \zeta_{n+2}) &= p(\mathfrak{I}\zeta_n, \mathfrak{I}^2\zeta_n) \\ &\lesssim \alpha p(\zeta_n, \mathfrak{I}\zeta_n) + \\ &\quad \beta \frac{p(\zeta_n, \mathfrak{I}\zeta_n)p(\mathfrak{I}\zeta_n, \mathfrak{I}^2\zeta_n)}{1 + p(\zeta_n, \mathfrak{I}\zeta_n)} \\ &\lesssim \alpha p(\zeta_n, \zeta_{n+1}) + \\ &\quad \beta p(\zeta_{n+1}, \zeta_{n+2}). \end{aligned} \quad (4.3)$$

Thus,

$$\begin{aligned} p(\zeta_{n+1}, \zeta_{n+2}) &\lesssim \gamma p(\zeta_n, \zeta_{n+1}) \\ &\lesssim \gamma^2 p(\zeta_{n-1}, \zeta_n) \\ &\quad \vdots \\ &\lesssim \gamma^{n+1} p(\zeta_0, \zeta_1), \end{aligned} \quad (4.4)$$

where $\gamma = \frac{\alpha}{1-\beta}$. Then, for any $n \in \mathbb{N}_0$ with $m > n$, using the triangle inequality, we obtain that

$$\begin{aligned} p(\zeta_n, \zeta_m) &\lesssim p(\zeta_n, \zeta_{n+1}) + p(\zeta_{n+1}, \zeta_{n+2}) + \\ &\quad \dots + p(\zeta_{m-1}, \zeta_m) \\ &\lesssim \gamma^n p(\zeta_0, \zeta_1) + \gamma^{n+1} p(\zeta_0, \zeta_1) + \\ &\quad \dots + \gamma^{m-1} p(\zeta_0, \zeta_1) \\ &\lesssim (\gamma^n + \gamma^{n+1} + \dots + \gamma^{m-1}) p(\zeta_0, \zeta_1) \\ &\lesssim \left(\frac{\gamma^n}{1-\gamma}\right) p(\zeta_0, \zeta_1). \end{aligned}$$

By using Lemma 3.6, we obtain that $\{\zeta_n\}$ is a Cauchy sequence in X . Since X is complete, there exists $\eta \in X$ such that $\zeta_n \rightarrow \eta$. For any $n \in \mathbb{N}_0$. Then since $\{\zeta_n\}$ converges to η in (X, Γ) and $p(\zeta_n, \cdot)$ is lower semi-continuous, we obtain that $p(\zeta_n, \eta) \leq \liminf_{m \rightarrow \infty} p(\zeta_n, \zeta_m) \leq \frac{\gamma^n}{1-\gamma} p(\zeta_0, \zeta_1)$. Now, we show that η is a fixed point of \mathfrak{I} ,

(i.e. $\mathfrak{I}\eta = \eta$). If $\mathfrak{I}\eta \neq \eta$, then by using condition (4.1) and $\zeta_n \leq \zeta_{n+1}$, we get

$$\begin{aligned} 0 &< \inf_{\eta \in X} \{p(\zeta_n, \eta) + p(\zeta_n, \zeta_{n+1})\} \\ &\leq \inf_{\eta \in X} \left\{ \frac{\gamma^n}{1-\gamma} p(\zeta_0, \zeta_1) + \gamma^n p(\zeta_0, \zeta_1) \right\}. \end{aligned}$$

It implies that $0 < 0$, which is a contradiction. Therefore $\eta = \mathfrak{I}\eta$. Moreover, by the inequality (4.2), we have $p(\eta, \eta) = 0$. \square

Now, we will prove the unique fixed point as follows:

Corollary 4.2. Let (X, Γ) be a complete complex-valued metric space. Assume that the function $p : X \times X \rightarrow [0, \infty)$ is ϖ -distance on X and \mathfrak{I} is a mapping from X into itself are satisfying the conditions (i) – (iv) in Theorem 4.1 and $X \neq F(\mathfrak{I})$. Then \mathfrak{I} has a unique fixed point. Moreover, if $\nu = \mathfrak{I}\nu$, then $p(\nu, \nu) = 0$.

Proof. We will show that \mathfrak{I} has a unique fixed point. Assume that σ, η in X are a fixed point of \mathfrak{I} . If $\sigma \neq \eta$, then by assumption and using condition (4.1), there exists $\varsigma \in X$ such that $\mathfrak{I}\varsigma \neq \varsigma$, we get

$$0 < \inf_{\varsigma \in X} \{p(\eta, \varsigma) + p(\eta, \mathfrak{I}\eta)\}$$

and

$$0 < \inf_{\varsigma \in X} \{p(\sigma, \varsigma) + p(\sigma, \mathfrak{I}\sigma)\}.$$

Thus, we obtain that

$$\begin{aligned} 0 &< \inf_{\varsigma \in X} \{p(\eta, \varsigma) + p(\eta, \mathfrak{I}\eta)\} \\ &\quad + \inf_{\varsigma \in X} \{p(\sigma, \varsigma) + p(\sigma, \mathfrak{I}\sigma)\} \\ &\leq p(\eta, \mathfrak{I}\eta) + p(\sigma, \mathfrak{I}\sigma) = 0, \end{aligned} \quad (4.5)$$

which a contradiction. Hence $\sigma = \eta$. Therefore \mathfrak{I} has a unique fixed point. \square

Corollary 4.3. Let (X, Γ) be a complete complex-valued metric spaces. Assume that the function $p : X \times X \rightarrow [0, \infty)$ is ϖ -distance on X and \mathfrak{I} is a mapping from X into itself are satisfied the conditions (i)–(iv) in Theorem 4.1 and, if $p(\zeta, \eta) = 0$, then $\zeta = \eta$ for all $\zeta, \eta \in X$.

Then \mathfrak{I} has a unique fixed point. Moreover, if $v = \mathfrak{I}v$, then $p(v, v) = 0$.

Proof. We will to show that \mathfrak{I} has unique fixed point. Assume that σ, η in X are a fixed point of \mathfrak{I} . If $\sigma \neq \eta$, then using inequality (4.2), we have

$$\begin{aligned} p(\eta, \sigma) &= p(\mathfrak{I}\eta, \mathfrak{I}^2\sigma) \\ &\leq \alpha p(\eta, \mathfrak{I}\sigma) \\ &+ \beta \frac{p(\eta, \mathfrak{I}\eta)p(\mathfrak{I}\sigma, \mathfrak{I}^2\sigma)}{1 + p(\eta, \mathfrak{I}\sigma)} \\ &= \alpha p(\eta, \sigma). \end{aligned}$$

Since $0 \leq \alpha < 1$, we have $\sigma = \eta$. Therefore \mathfrak{I} has unique fixed point. \square

Example 4.4. Let $X = \mathbb{C}$, and let $|\cdot|$ be an absolute value of \mathbb{R} . Defined

$$p(\zeta, \eta) = |Re(\eta)| + i|Im(\eta)|,$$

for all $\zeta, \eta \in X$. Then p is ϖ -distance on X , by Example 3.3. Consider the function $\mathfrak{I} : X \rightarrow X$ defined by $\mathfrak{I}\zeta = \frac{\zeta}{2}$. Thus,

$$\begin{aligned} p(\mathfrak{I}\zeta, \mathfrak{I}^2\eta) &= |\mathfrak{I}^2\eta| = |Re(\frac{\eta}{4})| + i|Im(\frac{\eta}{4})| \\ &= \frac{1}{2}(|Re(\frac{\eta}{2})| + i|Im(\frac{\eta}{2})|) \\ &\leq \frac{1}{2}(|Re(\frac{\eta}{2})| + i|Im(\frac{\eta}{2})|) + \\ &\quad \frac{1}{3} \frac{(|Re(\frac{\zeta}{2})| + i|Im(\frac{\zeta}{2})|)(|Re(\frac{\eta}{4})| + i|Im(\frac{\eta}{4})|)}{1 + (|Re(\frac{\eta}{2})| + i|Im(\frac{\eta}{2})|)} \\ &= \alpha p(\zeta, \mathfrak{I}\eta) + \beta \frac{p(\zeta, \mathfrak{I}\zeta)p(\mathfrak{I}\eta, \mathfrak{I}^2\eta)}{1 + p(\zeta, \mathfrak{I}\eta)}, \end{aligned}$$

where $\alpha = \frac{1}{2}$ and $\beta = \frac{1}{3}$. Then the conditions of Theorem 4.1 hold and the fixed

point of \mathfrak{I} is $0 + 0i$ and $P(0, 0) = 0$. Moreover, \mathfrak{I} has a unique fixed point, because $X \neq F(\mathfrak{I})$.

Next, we will replace the inequality (4.2) by the inequality (4.7), which have a same the result of theorem 4.1 and prove the fixed point theorem as follows:

Theorem 4.5. Let (X, Γ) be a complete complex-valued metric spaces. Assume that \mathfrak{I} is a mapping from X into itself and a function $p : X \times X \rightarrow [0, \infty)$ is ϖ -distance on X . Suppose that the following conditions are satisfied.

(i) (X, \leq) is a partially ordered set and \mathfrak{I} non-decreasing mapping;

(ii) for any fixed $\zeta \in X$ with $\zeta \leq \mathfrak{I}\zeta$

$$\inf_{\eta \in X} \{p(\zeta, \eta) + p(\zeta, \mathfrak{I}\eta)\} > 0, \quad (4.6)$$

with $\eta \neq \mathfrak{I}\eta$;

(iii) there exists an $\zeta_0 \in X$ with $\zeta_0 \leq \mathfrak{I}\zeta_0$;

(iv) there exists $\alpha, \beta \in [0, \frac{1}{2})$ such that

$$p(\mathfrak{I}\zeta, \mathfrak{I}^2\eta) \leq \alpha p(\zeta, \mathfrak{I}\eta) + \beta \frac{p(\zeta, \mathfrak{I}\zeta)p(\eta, \mathfrak{I}^2\eta)}{1 + p(\zeta, \mathfrak{I}\eta)}, \quad (4.7)$$

for all $\zeta \leq \mathfrak{I}\zeta$ and any $\eta \in X$ and $\alpha + 2\beta < 1$. Then \mathfrak{I} has a fixed point. Moreover, if $v = \mathfrak{I}v$, then $p(v, v) = 0$.

Proof. Let ζ_0 be an arbitrary point in X , we define $\zeta_{n+1} = \mathfrak{I}\zeta_n$, for all $n \in \mathbb{N}_0$. If $\mathfrak{I}\zeta_0 = \zeta_0$, then the proof is complete. On the other hand, suppose that $\mathfrak{I}\zeta_0 \neq \zeta_0$. Since $\zeta_0 \leq \mathfrak{I}\zeta_0$ and \mathfrak{I} is non-decreasing, we have

$$\zeta_0 \leq \zeta_1 \leq \zeta_2 \leq \zeta_3 \leq \dots \leq \zeta_n \leq \zeta_{n+1} \leq \dots$$

Using the inequality (4.7) and $p(\zeta_n, \mathfrak{I}\zeta_n) < 1 + p(\zeta_n, \mathfrak{I}\zeta_n)$, we obtain that

$$p(\zeta_{n+1}, \zeta_{n+2}) = p(\mathfrak{I}\zeta_n, \mathfrak{I}^2\zeta_n)$$

$$\begin{aligned}
 &\lesssim \alpha p(\zeta_n, \mathfrak{I}\zeta_n) + \beta \frac{p(\zeta_n, \mathfrak{I}\zeta_n)p(\zeta_n, \mathfrak{I}^2\zeta_n)}{1 + p(\zeta_n, \mathfrak{I}\zeta_n)} \\
 &\leq \alpha p(\zeta_n, \zeta_{n+1}) + \beta p(\zeta_n, \zeta_{n+2}), \\
 &\leq \alpha p(\zeta_n, \zeta_{n+1}) + \beta p(\zeta_n, \zeta_{n+1}) + \\
 &\quad \beta p(\zeta_{n+1}, \zeta_{n+2}). \tag{4.8}
 \end{aligned}$$

Thus,

$$\begin{aligned}
 p(\zeta_{n+1}, \zeta_{n+2}) &\lesssim \gamma p(\zeta_n, \zeta_{n+1}) \\
 &\lesssim \gamma^2 p(\zeta_{n-1}, \zeta_n) \\
 &\lesssim \vdots \\
 &\lesssim \gamma^{n+1} p(\zeta_0, \zeta_1), \tag{4.9}
 \end{aligned}$$

where $\gamma = \frac{\alpha+\beta}{1-\beta}$. Then, for any $n \in \mathbb{N}_0$ with $m > n$, using the triangle inequality, we obtain that

$$\begin{aligned}
 p(\zeta_n, \zeta_m) &\lesssim p(\zeta_n, \zeta_{n+1}) + p(\zeta_{n+1}, \zeta_{n+2}) + \\
 &\quad \dots + p(\zeta_{m-1}, \zeta_m) \\
 &\lesssim \gamma^n p(\zeta_0, \zeta_1) + \gamma^{n+1} p(\zeta_0, \zeta_1) + \\
 &\quad \dots + \gamma^{m-1} p(\zeta_0, \zeta_1) \\
 &\lesssim (\gamma^n + \gamma^{n+1} + \dots + \gamma^{m-1}) p(\zeta_0, \zeta_1) \\
 &\lesssim \left(\frac{\gamma^n}{1-\gamma}\right) p(\zeta_0, \zeta_1). \tag{4.10}
 \end{aligned}$$

By using Lemma 3.6, we obtain that $\{\zeta_n\}$ is a Cauchy sequence in X . As in proof of Theorem 4.1, we obtain that \mathfrak{I} has a fixed point. Moreover, if $v = \mathfrak{I}v$, then $p(v, v) = 0$. \square

Corollary 4.6. Let (X, Γ) be a complete complex-valued metric space. Assume that the function $p : X \times X \rightarrow [0, \infty)$ is ϖ -distance on X and \mathfrak{I} is a mapping from X into itself are satisfied conditions (i) – (iv) in Theorem 4.5 and $X \neq F(\mathfrak{I})$.

Then \mathfrak{I} has a unique fixed point. Moreover, if $v = \mathfrak{I}v$, then $p(v, v) = 0$.

Proof. The same proof of Corollary 4.2. \square

Corollary 4.7. Let (X, Γ) be a complete complex-valued metric space. Assume that the function $p : X \times X \rightarrow [0, \infty)$ is ϖ -distance on X and \mathfrak{I} is a mapping from X into itself are satisfied conditions (i) – (iv) in Theorem 4.5 and, if $p(\zeta, \eta) = 0$, then $\zeta = \eta$ for all $\zeta, \eta \in X$.

Then \mathfrak{I} has a unique fixed point. Moreover, if $v = \mathfrak{I}v$, then $p(v, v) = 0$.

Proof. We will show that \mathfrak{I} has unique fixed point. Assume that σ, η in X are a fixed point of \mathfrak{I} . If $\sigma \neq \eta$, then using inequality (4.7), we have

$$\begin{aligned}
 p(\eta, \sigma) &= p(\mathfrak{I}\eta, \mathfrak{I}^2\sigma) \\
 &\leq \alpha p(\eta, \mathfrak{I}\sigma) + \beta \frac{p(\eta, \mathfrak{I}\sigma)p(\sigma, \mathfrak{I}^2\sigma)}{1 + p(\eta, \mathfrak{I}\sigma)} \\
 &= \alpha p(\eta, \sigma).
 \end{aligned}$$

Since $0 \leq \alpha < 1$, we have $\sigma = \eta$. Therefore \mathfrak{I} has unique fixed point. \square

Example 4.8. Let $X = \mathbb{C}$, and define a mapping $\Gamma : X \times X \rightarrow \mathbb{C}$ by $|\zeta - \eta|$ for all $\zeta, \eta \in X$, then (X, Γ) can be easily verified as a complete complex-valued metric spaces. Defined $p(\zeta, \eta) = |Re(\eta)| + i|Im(\eta)|$, for all $\zeta, \eta \in X$. Then p is ϖ -distance on X , consider the function $\mathfrak{I} : X \rightarrow X$ defined by

$$\mathfrak{I}(\zeta + i\eta) = \begin{cases} 0, & \zeta, \eta \in Q \\ 3 + 3i, & \zeta, \eta \in Q^c \\ 3, & \zeta \in Q^c, \eta \in Q \\ 3i, & \zeta \in Q, \eta \in Q^c. \end{cases} \tag{4.11}$$

Now for $\zeta = \frac{1}{\sqrt{3}}$ and $\eta = 0$ we get $\Gamma(\mathfrak{I}(\frac{1}{\sqrt{3}}), \mathfrak{I}(0)) = \Gamma(3, 0) = 3 \lesssim \lambda\Gamma(\frac{1}{\sqrt{3}}, 0) = \lambda\frac{1}{\sqrt{3}}$. Thus $\lambda \geq 3\sqrt{3}$, which is a contradiction as $0 \leq \lambda < 1$. However, notice that $\mathfrak{I}^2\sigma = 0$, so that $0 = \Gamma(\mathfrak{I}^2\sigma_1, \mathfrak{I}^2\sigma_2) \lesssim \lambda\Gamma(\sigma_1, \sigma_2)$, which shows that \mathfrak{I}^2 satisfies the requirement of Bryant Theorem and $\sigma = 0$ is the unique fixed point of \mathfrak{I} .

$$\begin{aligned}
p(\Im\zeta, \Im^2\eta) &= |\Im^2\eta| = |Re(\frac{\eta}{9})| + i|Im(\frac{\eta}{9})| \\
&= \frac{1}{3}(|Re(\frac{\eta}{3})| + i|Im(\frac{\eta}{3})|) \\
&\leq \frac{1}{3}(|Re(\frac{\eta}{3})| + i|Im(\frac{\eta}{3})|) + \\
&\frac{1}{4} \frac{(|Re(\frac{\zeta}{3})| + i|Im(\frac{\zeta}{3})|)(|Re(\frac{\eta}{9})| + i|Im(\frac{\eta}{9})|)}{1 + (|Re(\frac{\eta}{3})| + i|Im(\frac{\eta}{3})|)} \\
&= \alpha p(\zeta, \Im\eta) + \beta \frac{p(\zeta, \Im\zeta)p(\eta, \Im^2\eta)}{1 + p(\zeta, \Im\eta)},
\end{aligned}$$

where $\alpha = \frac{1}{3}$ and $\beta = \frac{1}{4}$. Then the conditions of Theorem 4.5 hold and the fixed point of \Im is $0 + 0i$ and $p(0, 0) = 0$. Moreover, \Im has a unique fixed point, because $X \neq F(\Im)$, ($F(\Im)$ is means that the set of fixed point of \Im).

Acknowledgements

The author would like to thank the anonymous referee who provided useful and detailed comments on a previous/earlier version of the manuscript. The author would like to thank Kamphaeng Phet Rajabhat University for supporting the research grant.

References

- [1] S.Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, *Fund. Math.*, 3 (1992) 133-181.
- [2] N.Artsawang, Accelerated preconditioning Krasnosel'ski'i-Mann method for efficiently solving monotone inclusion problems , *AIMS Mathematics*, 8(12): (2023) 28398-28412. DOI: 10.3934/math.20231453
- [3] N.NIMANA1 and N.ARTSAWANG, A strongly convergent simultaneous cutter method for finding the minimal norm solution to common fixed point problem, *CARPATHIAN J. MATH.* Volume 40, No. 1, (2024) 155-171. DOI: <https://doi.org/10.37193/CJM.2024.01.11>
- [4] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, *Proceedings of the International Conference on Fixed Point Theory and Applications.*, (2004) 189-198, Valencia, Spain, July.
- [5] IA. Bakhtin, The contraction principle in quasimetric spaces, In: *Functional Analysis.*, 30 (1989) 26-37.
- [6] M.H. Shah and N. Hussain Nonlinear contractions in partially ordered quasi b-metric spaces, In: *Commun. Korean Math. Soc.*, 27(1) (2012) 117-128.
- [7] M.A. Alghamdi, N. Hussain and P.Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, *J. Inequal., Appl.*, 402 (2013).
- [8] C. Klin-eam and C. Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, *Fixed point theory and applications.*, 74 (2015). DOI 10.1186/s13663-015-0325-2
- [9] A.Azam, B.Fisher, M.Khan, Common fixed point theorems in complex valued metric spaces, *Numer. Funct. Anal. Optim.*, 32 (3) (2011) 243-253.
- [10] S. Bhatt, S. Chaukiyal and R. C. Dimri, A common fixed point theorem for weakly compatible maps in complex-valued metric spaces, *Int. J. Math. Sci. Appl.*, 1 (2011) 1385-1389.
- [11] P. Kumam and W. Sintunavarat and , Generalized common fixed point theorems in complex valued metric spaces and applications, *Journal of Inequalities and Applications.*, 84 (2012).
- [12] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, *Computers and Mathematics with Applications.*, 64 (2012) 186-1874.
- [13] C. Klin-eam and C. Suanoom, On complex valued G_b -metric spaces and related

fixed point theorems, International Journal of Nonlinear Analysis and Applications 12 (1), (2021) 748-760

[14] C. Klin-eam and C. Suanoom , Some Common Fixed-Point Theorems for Generalized-Contractive-Type Mappings on Complex-Valued Metric Spaces, Abstract and Applied Analysis., 6 (2013).

[15] C. Klin-Eam, J. Ahmad and A. zam , Common Fixed Points for Multivalued Mappings in Complex Valued Metric Spaces with Applications, Abstract and Applied Analysis., 12 (2013).

[16] N. Hooda and Savitri A common coupled fixed point theorem in complex valued metric space, International Journal of Computer Applications., 109(4) (2015) 0975-8887.

[17] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica., 4 (1996) 381-391.

[18] S. Wang and B. Guo, Distance in cone metric spaces and common fixed point theorems, Applied Mathematical Letters. 24 (2011) 1735-1739.

[19] Z. M. Fadail and A. G. B. Ahmad, Coupled fixed point theorems of single-valued mapping for c-distance in cone metric spaces, Journal of Applied Mathematics., 20 (2012).

[20] Z. M. Fadail and A. G. B. Ahmad, Common coupled fixed point theorems of single-valued mapping for c-distance in cone metric spaces, Abstract and Applied Analysis., 24 (2012).

[21] L. Gholizadeh, R. Saadati, W. Shatanawi, and SM. Vaezpour, Contractive mapping in generalized, ordered metric spaces with application in integral equations, Math. Probl. Eng., (2011.)

[22] W. Shatanawi and A. Pitea, Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction, Fixed Point Theory and Applications., 2 (75) (2013).

[23] N. Hussain , R. Saadati and R.P. Agrawal , On the topology and wt-distance on metric type spaces, Fixed Point Theory and Applications., 88(14) (2014).

[24] S. K. Mohanta, Some fixed point theorems using wt-distance in b-metric spaces, AMS Mathematics Subject Classification., 54 (2015).

[25] B. Bao, S. Xu, L. Shi and V. C. Rajic, Fixed point theorems on generalized c-distance in ordered cone b-metric spaces, Int. J. Nonlinear Anal. Appl., 6(1) (2015) 9-22.

[26] Z. M. Fadail and A.G.B. Ahmad, Generalized c-distance in cone b-metric spaces and common fixed point results for weakly compatible self mappings, International Journal of Mathematical Analysis., 9(32) (2015) 1593-1607