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ABSTRACT

In this paper, we introduce the notion of a w-distance in complete complex-valued
metric spaces and prove some fixed point theorems for mappings satisfying some appropri-
ate inequalities in complete complex-valued metric spaces. Moreover, we deduce new fixed
point results in complete complex-valued metric spaces and provide some examples to illus-

trate the usability of the obtained results.
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1. Introduction

The Banach’s contraction mapping
principle is widely recognized as the source
of a metric fixed point theory. The exis-
tence and uniqueness of a fixed point of
operators or mappings has been a subject
of a great interest since the work of a Ba-
nach in 1922 [[I]]. The concept of nonexpan-
sive mappings has also been widely studied
in the following works [, B]. This prin-

ciple has been applied in different spaces
by mathematicians, for example D-metric
spaces, quasimetric spaces, quasi b-metric
spaces, b-metric-like spaces, Dislocated
quasi-b-metric spaces, and G-metric spaces
(see [4-B]) have already been obtained. A
new space called the complex valued met-
ric space which is more general than well-
know metric spaces has been introduced by
Azam et al. [9]. Naturally, this new idea
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can be utilized to define complex valued
normed spaces and complex valued inner
product spaces which, in turn, offer a lot of
scope for further investigations. Many au-
thors have studied a fixed point theory in
complex valued metric space (see [[LO-14]).

On the other hand, in 1996, Taka-
hashi et al.[[d] introduced the notion of a
w-distance on a metric space and proved
a nonconvex minimization theorem which
generalizes Caristi’s fixed-point results and
the e-variational principle. After that in
2011, Cho et al. [[1§] introduced the concept
of a c-distance in a cone metric space. For
more details about c-distance (see [[9, R(]
and the references contained therein). The
concept of a Q-distance of G-metric spaces
and constructed some fixed point theorems
in G-metric spaces by using the notion of
a Q-distance introduced by Saadati et al.
[R1]]. Moreover, the results of Saadati et al.
was made clear to shoot up by Shatanawi
and Pitea [R2]. Recently, a new concept of
a wt-distance on b-metric spaces, which is a
b-metric version of the w-distance of Taka-
hashi et al. [[L7] was introduced by Saadati
et al. [23] and proved some fixed point re-
sults in a partially ordered b-metric space.

Moreover, Mohanta [24] has gener-
alized the results of Saadati et al. [R23].
The concept of a generalized c-distance on a
cone b-metric space was introduced by Xu
et al. [R3] which is a generalization of c-
distance of Cho et al. [[L§] and proved some
fixed and common fixed point results in or-
dered cone b-metric spaces using this dis-
tance . For more details about generalized
c-distance see [24].

The above concept, we introduce
the notion of a w-distance in complete
complex-valued metric spaces and prove
some fixed point theorems for mappings
satisfying some appropriate inequalities in
complete complex-valued metric spaces.
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Moreover, we deduce new fixed point re-
sults in complete complex-valued metric
spaces and provide some examples to illus-
trate the usability of the obtained results.

2. Preliminaries

Throughout this paper, we will write
Np ={0,1,2,3,...} and N = {1,2,3,...}.
Let C be the set of complex numbers and
01,09 € C, we define a partial order < and
< on C as follows:

(i) o4 < o9 if and only if
Re(o1) <Re(o») and Im(o) <Im(o)

(if) o4 = o9 if and only if
Re(o1) <Re(ov) and Im(z1) <Im(z2).

Now, we recall some property of a
complex valued metric space.

Definition 2.1 ([9]). Let X be a nonempty
set. Suppose that the mapping ' : XX X —
C satisfies the following conditions:
(T')0=T(,n), forall ,n € X;
(I'2)T'(¢,n) =0ifandonly if £ =7
forall Z,n € X;

(') T'(Z,n) = T(n,¢) for all
{neX;
(T'y) T'(¢,n) =2 T, o) +T(o,n),

forall Z,n,0 € X.

Then I' is called a complex valued
metric on X and (X, T') is called a complex
valued metric space.

Example 2.2 ([9]). DefinedI": XxX — C
as follows:

2100 - Lol + 54 - &l
ifoy, o0 € Xy,
$lm1 = mal + Lln1 = nal
ifoy, 09 € Xo,

2 1 1 1
(581 + 3m2) +i(541 + 5m2)
if0'1 € X1, o9 € Xo,

(3m + 30) +i(3m1 + 340)
ifO'l € X9, 09 € X1,

['(o1,09) =
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Let X1 = {o € C : 0 < Re(o)
1, Im(oc) = 0}, Xo = {o0 € C : 0
Im(o) <1, Re(0) =0}and let X = X3 U
Xo.Letoy =41 +in1, o0 = {o+in2 € X.
Then (X,T') is a complete complex valued
metric space.

<

IA

Example 2.3 ([9]). Let X
C([1,3],R), @ > 0 and for every
L € X let Mg, = max;c1,3114(1) -
N, T(m) = MgyVi+aZeitana,
Then (X,I') is a complex valued metric
space.

Definition 2.4 ([9]). Let (X,I") be a com-
plex valued metric space.

(/) A point ¢ € X is called interior
point of a set B C X whenever there exists
0 <r e Csuchthat N(Z,r) :=={n € X :
I'(Z,n) <r} C B.

(if) A point ¢ € X is called limit
point of a set B C X whenever for every
0<reCsuchthat N(¢,n)N (X -B) # 0.

(7ii) A subset B C X is called open
whenever each element of B is an interior
point of B.

(iv) A subset B C X is called closed
whenever each limit point of B belongs to
B.

(v) The family F = {N({,r) : { €
X,0 < r} is a sub-basis for a topology on
X. we denote this complex topology 7.. In-
deed, the topology 7. is Hausdorff.

Definition 2.5 ([9]). Let (X,T") be a com-
plex valued metric space and {{,} be a se-
quence in X and £ € X.

(7) If for every ¢ € C, with 0 <
¢ there is N € N such that for all n >
N,T'({n, &) < ¢, then {Z,} is said to be con-
vergent, {{,} converges to ¢ and ¢ is limit
point of {£,,}. We denote this by ,, —  as
n — ooorlimy, e ¢y =<.

(if) If for every ¢ € C, with 0 <
c there is N € N such that for all n >

175

N,U(¢n, Cnem) < ¢, where m € N, then
{¢n} is said to be Cauchy sequence.

(iii) If every Cauchy sequence in X is
convergent, then (X, I') is said to be a com-
plete complex valued metric space.

Lemma 2.6 ([9]). Let (X,T’) be a complex
valued metric space and let {(,} be a se-
quence in X. Then {{,} converges to ¢ if
and only if [['({,, {)| = Oasn — oo,

Lemma 2.7 ([9]). Let (X,I") be a complex
valued metric space and let {Z,,} be a se-
quence in X. Then {{,} is a Cauchy se-
quence if and only if |I'(¢y, Cnem)| — O as
n — oo, where m € N.

Definition 2.8. Let C be the set of complex
number and M C C.

(i) f is continuous at oy € C if and
only if for all € > 0, there exists 6 > 0, if
|o = op| < 6, then | f(0) — f(00)| < € for
all o € C.

(if) f is continuous on M if and only
if f is continuous at oy for all oy € M.

Remark 2.9 ([[14]). We obtained that fol-
lowing statements hold:

(i) If oy 5 09 and 0 < 073, then
o1 S 03.

(i) If o € C,a,b € Randa < b,
then ao < bo.

@) If0 5 01 3

~

09, then |o| <
loa].

3. w-distance

In this section, we introduce the
notion of w-distance in complete complex-
valued metric spaces and prove some
lemma in such a space.

Let us recall that a complex-valued
function f defined on a complex-valued
metric space X is said to be lower semi-
continuous at a point o in X if eirher

liminfz, o f(n) o or f(o) <=
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liminf,, o f({n), whenever £, € X for
eachneNand , —» o

Definition 3.1. Let (X,I") be a complex
valued metric space. Then a function p :
X x X — Cis called a w-distance on X if
the following are satisfied:

(1) p(¢,n) =0forall {,n € X;

(2) p(¢{,m) = p(¢,0) + p(o,n) for
all {,n, 0 € X;

(3) forall¢ € X, p(£,:) : X —» Cis
lower semicontinuous i.e., if £ € X, n,, —
n € X then p(£,n) < liminf, e p(£,70);

(4) for all € > 0, there exists 6 > 0,
such that p({,0) < 6 and p(o,n) < § im-
ply p(¢,n) < €, where €, 6 € C.

Now, we provide examples of w-
distance in complex-valued metric space.

Example 3.2. Let (X,I") be a complex val-
ued metric space. Then p = I'is a w-
distance on X

Proof. (1), (2) and (3) are clearly. To show
(4). Let € > 0. Setting 6 5. Then,
we have I'({,n7) =< I'({,0) + ['(o,m) =

p({,0) +p(o,n) < € where p({,0) <6
and p(o,n) < 6. O

Example 3.3. Let (X,I") be a complex val-
ued metric space. Then a function p : X X
X — C defined by p({,n) = c for every
{,n € X, pisa w-distance on X, where
ceCandc > 0.

Proof. (1), (2) and (3) clear. To show (4),
let € > 0. Setting 6 = 5. Then, p({,0) <6
and p(o,n) <6 implyI'(Z,7n) < €. O

Example 3.4. Let X be a normed linear
space with || - || and let ['({,np) = || —
nl|l + il|¢ = nl|, for all £/,n € X. Then a
function p : X X X — C defined by
p(&.m) = (I + 17l + AU+ [l1Di for

every {,n € X, p is aw-distance on X
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Proof. Let¢,n,0 € X. Then,

p(Zn) =21+ lIml) + AIZI + il
<p(, o) +p(o,n).

(1), (2) and (3) clear. To show (4), let € >
0. Setting 6 = 5. Then,

3
L& m) =1L =nll +illZ =7l
<UIZI =+ Ml + CHZ I+ Niml)i
<p(l,o)+p(o,n) Ze.

O

Example 3.5. Let (X,I") be a complex val-
ued metric space, and let J be continu-
ous mapping from X into itself. Then a
function p : X X X — C defined by
p(¢&,m) = max{I'(3¢,n), (3¢, In)} for

every {,n € X, pisaw-distance on X.

Proof. We see that (1) holds. We show (2).
Letl,n,0 € X.If (8¢, 0) = T(5¢, o),
then

p(,0) =T(3,0)
<I(8¢,3n) +T(In,0)
<max{I'(3¢,n), (3¢, In)}
+ max{I'(In,0),['(In, Jo)}
=p({,n) +pn, o).

On the other hand, we have

p({,0) =T(3L,80)
<T(3Z,3n)+T(3n, Jo)
< max{['(34,n),T(I, In)}
+max{['(In,0),I'(In, Jo)}
=p(¢,n)+pn, o).
Hence (2) holds. Since J is continuous, we
have forall{ € X, p({,-) : X — Cislower
semicontinuous. Let € > 0. Choose 6 = £
Therefore, if p({,0) < § and p(o,n)
d, then p(£,J0) < § and p(Jo,n) <

Hence I'(¢,n) < T(80,¢) +T(Jo,7n)
E.

|

O IA & IA
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Next, we prove some basis lemma
for w-distance in complex-valued metric
space.

Lemma 3.6. Let (X,I') be a complex
valued metric spaces, and let p be an @-
distance on X. Let {£,}, {n.} be sequences
in X, {a,} and {B,} be sequences in C
with @, > Oand B, > 0, {a,} and {B,}
convergent to zero and let {,n,0,a € X.
Then we have the following:

(@) if p(&nsmn) = @, and
p(ln,0) < By forall n € N, thenn,, — o

(@) if p({n,m) = @, and
p(ln,o0) =< B, for all n € N, then
n=o.
In paticular, if p(¢,n7) =0and p({,0) =0,
then 7 = o

(@ii) if p(&nslm) a, for all
n,m € N with m > n, then {,} is a
Cauchy sequence;

(iv) if p(n,&n) < ap foralln € N,
then {£,,} is a Cauchy sequence.

<

Proof. First, we show (i). Let € > 0.
From the definition of w-distance , there
exists a & > 0 such that p(u,v) < ¢ and
p(u, o) < §implyd(v, o) < €. Since {a, }
and {B,} are converging to zero, we have
ng € N such that @,, < § and 3, < ¢ for all
n > ng. Then we get, for any n > ny,

P(Lnsnin) 2 @y 26,

P(Ln,0) X Bn 2 6.
So, d(n,, o) < €, and then {5, } converges
to 0. (if) holds, because using (7).
Now, to show that (iii) is true. Let € > 0.
As in the proof of (ii), choose § > 0, and
then ng € N. Then, for any m,n > ng + 1

p(gno, {n) < apy = 0,

P(Kno, {m) < Qpy 2 0.
So, I'({n,¢m) = €. Therefore ¢, is a
Cauchy sequence. As in proof of (iii), we
can prove (iv). |
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4. Fixed point theorems

In this section, we will prove
some fixed point theorems for mappings
satisfying some appropriate inequalities in
complete complex-valued metric spaces.
Moreover, we deduce new fixed point re-
sults in complete complex-valued metric
spaces and provide some examples to illus-
trate the usability of the obtained results.
We suppose (X, <) is a partially ordered set
and J is a mapping of X into itself. We say
that J is non-decreasing if for {,n € X,
¢ < npimplies 37 < In.

Theorem 4.1. Let (X,I') be a complete
complex-valued metric spaces. Assume
that J is a mapping from X into itself and a
function p : X x X — [0, o) is w-distance
on X. Suppose that the following conditions
are satisfied.

() (X, <) is a partially ordered set
and J non-decreasing mapping;

(i7) for any fixed { € X with ¢ < J¢

inf {p(&m) + (L, 30y>0, 4D
with n # Jn;
(iii) there exists an ¢y € X with {y <
3o
(iv) there exists a,8 € [0, %) such
that

p(3¢,3%) s ap(L, 3n)

p(Z,30)p(3n, 3%n)
+h L+ p(Z, 3n)

(4.2)

for all { < 3¢ and any n € X and
a+pfB<1.
Then I has a fixed point. Moreover, if v =
v, then p(v,v) =0.

Proof. Let {y be an arbitrary point in X, we
define {41 = 3¢y, foralln € No. If 3 =
{0, then the proofis complete. On the other
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hand, suppose that 3¢y # y. Since ¢y <
J¢o and J is non-decreasing, we have

=0 <03 S8h<lp1 <.

Using the inequality (@) and p(Z,, 3,) <
1+ p(&n, 3¢,), we obtain that

P(&ns1s Env2) = p(SLn, 32L0)
S ap(Ln, 30+
ﬂp(g“n, 92 p (380, 82Ln)

L+ p(&n, 3n)

S ap(ln, (1) +

B (Ln+1s Lns2)-

(4.3)

Thus,
p(§n+1’ §n+2) 3 J’P({n, §n+1)
3 ’)’2p(§n_1, (n)
3
3 yn+1p(§0> gl)" (44)

where 7y = ﬁ Then, for any n € Ny with
m > n, using the triangle inequality, we ob-
tain that

P(Lns&m) 3 P(Lns Envt) + P(Lnats Cna2)+
oo+ P(Gn-1,Cm)
$Y"p(Lo0. &) + "™ p (Lo, L)+
Y p(L0. 1)
SO Y Y (0, 0)

< ()P 4.

By using Lemma 3.6, we obtain that {¢,,} is
a Cauchy sequence in X. Since X is com-
plete, there exists n € X such that £, — 7.
For any n € Ny. Then since {¢,} con-
verges to i in (X,T") and p(¢y,-) is lower
semi-continuous, we obtain thatn p(&n,m) <
liminfm—e p({ns dm) = 1)/__yp(§09 &).
Now, we show that 7 is a fixed point of J,
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(i.e. On = n). If 3n # n, then by using
condition (.1)) and &, < {ue1, We get

0< 717161§({p(§n,77) +p(&ns> Lna1) }

. y"
< inf
= It {77

yP((o, &) +y"p(Lo, &)}
It implies that 0 < 0, which is a contradic-
tion. Therefore n = Jn. Moreover, by the

inequality (), we have p(n,n) = 0. O

Now, we will prove the unique fixed
point as follows:

Corollary 4.2. Let (X,I") be a complete
complex-valued metric space. Assume that
the function p : X X X — [0, 00) is w@-
distance on X and J is a mapping from
X into itself are satisfying the conditions
(/) = (iv) in Theorem @4.1| and X # F(J).
Then J has a unique fixed point. Moreover,
if v=3v, then p(v,v) = 0.

Proof: We will show that J has a unique
fixed point. Assume that o, in X are a
fixed point of 3. If o= # n, then by assump-
tion and using condition (§.1), there exists
¢ € X such that ¢ # ¢, we get

0 < inf {p(n,s) +p(n, In)}
ceX
and
0 < inf {p(o,¢)+p(o,To)}.
ceX

Thus, we obtain that

0 < inf{p(n,¢)+p(n, 3} (45)
ceX
+ inf {p(c,¢) + p(o, Jo)}
ceX
<p(,3n) +p(c,30) =0,
which a contradiction. Hence o = 7.
Therefore J has a unique fixed point. O



Khuangsatung et al. | Science & Technology Asia | Vol.29 No.2 April - June 2024

Corollary 4.3. Let (X,T") be a complete
complex-valued metric spaces. Assume
that the function p : X X X — [0,0) is
w-distance on X and J is a mapping from
X into itself are satisfied the conditions (i) —
(iv) in Theorem@.1jand, if p(Z, ) = 0, then
l=nforall {,n € X.

Then J has a unique fixed point. Moreover,
if v = 3v, then p(v,v) = 0.

Proof. We will to show that J has unique
fixed point. Assume that o, in X are a
fixed point of J. If o # n, then using in-
equality (.2), we have

p(n.0) = p(In, 3%0)
<ap(n,Jo)
p(n,9n)p(Jo, 320)
*B 1+p(n, 30)
=ap(n,o).

Since 0 < @ < 1, we have o = 1. Therefore
I has unique fixed point. m]

Example 4.4. Let X = C, and let | - | be an
absolute value of R. Defined

p(&,m) = |Re(m)| +ilIm(n)|,

for all {,n € X. Then p is w-distance on
X, by Example B.3. Consider the function
J:X — X defined by I = % Thus,

P(3¢.9%n) = 97| = [Re(D)|+ilIm(D)]

= S(Re(D+ilm(D)

< 5URe(D+ilim( D+

(IRe($)| +ilIm(5)D(IRe()] +ilIm(¥)])

Wl =

L+ (IRe(P)| +ilIm(F)])

p(£,30)p(In, 3n)
1L+ p(Z,3n)
1

where @ = 5 and 8 = % Then the con-
ditions of Theorem hold and the fixed

=ap({,3n)+pB
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point of J is 0 + 0i and P(0,0) = 0. More-
over, J has a unique fixed point, because
X # F(3).

Next, we will replace the inequality
(#.2) by the inequality (4.7), which have a
same the result of theorem §. 1| and prove the
fixed point theorem as follows:

Theorem 4.5. Let (X,I') be a complete
complex-valued metric spaces. Assume
that J is a mapping from X into itself and a
function p : X X X — [0, o) is w-distance
on X. Suppose that the following conditions
are satisfied.

() (X, <) is a partially ordered set
and J non-decreasing mapping;

(i) for any fixed ¢ € X with ¢ < 3¢

inf {p({,n) +p(£, 3} >0,  (4.6)
neX
with n # In;
(ii7) there exists an ¢y € X with {p <
34o;
(iv) there exists a,8 € [0, %) such
that

(¢, 3)p(n, 3%n)

2
P(3¢.5%) 3 ap(L, I + B s s

4.7)

forall { < 3 andanyn € X and @ +28 <
1. Then J has a fixed point. Moreover, if
v = Jv, then p(v,v) = 0.

Proof. Let {( be an arbitrary point in X, we
define £,41 = 34, foralln € No. If 37 =
o, then the proof'is complete. On the other
hand, suppose that 3¢y # o. Since ¢y <
J¢y and J is non-decreasing, we have

<0 <SB30 S8 <dn S

Using the inequality (4.7) and p (&, I5) <
1+ p(&n, 3¢,), we obtain that

P(nits Env2) = p(IEn, 32L0)
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n,S n H’SQ -\
< ap(&us 3&0) +,8p(§1+i();(€;§ ) Zn)

< Q’P({na §n+1) +,8P(§n, §n+2)’
5 ap({n’ §n+1) +ﬁp(§n’ §n+1)+

Bp(Ln+1s Ene2)- (4.8)
Thus,
P(&ns1s Lns2) 3 YP(Lns Env1)
372 p(dn-1.4n)
3
Yo, (49)

where y = % Then, for any n € Ny
with m > n, using the triangle inequality,

we obtain that

P(&nsm) 2 P(Lns nv1) + P(Lnsts {na2)+
ot (-1, {m)
3" (o, &) + ¥ p (Lo, L)+
Y p(L0. 1)
SO HY™ Y D p(xo,x)

,yn
S ()P 4. (4.10)
Y
By using Lemma B.¢, we obtain that {£,,}
is a Cauchy sequence in X. As in proof of
Theorem f.1|, we obtain that J has a fixed
point. Moreover, if v = Jv, then p(v,v) =
0. O

Corollary 4.6. Let (X,I') be a complete
complex-valued metric space. Assume that
the function p : X X X — [0, 00) is w-
distance on X and J is a mapping from X
into itself are satisfied conditions (i) — (iv)
in Theorem 4.5 and X # F(J).

Then J has a unique fixed point. Moreover,
if v=3v, then p(v,v) = 0.

Proof. The same proof of Corollary §.2.
O
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Corollary 4.7. Let (X,T") be a complete
complex-valued metric space. Assume that
the function p : X X X — [0, 00) is w@-
distance on X and J is a mapping from X
into itself are satisfied conditions (i) — (iv)
in Theorem and, if p(Z,n) = 0, then
l=nforall /,n € X.

Then J has a unique fixed point. Moreover,
if v =3v, then p(v,v) = 0.

Proof. We will show that J has unique
fixed point. Assume that 0,7 in X are a
fixed point of J. If & # 7, then using in-
equality (4.7), we have

p(n, o) = p(3n, 3%0)

p(n, In)p(o, I%0)
1+ p(n,3o0)

<ap(n, Jo)+B

=ap(n,o).

Since 0 < a < 1, wehave o = . Therefore
9 has unique fixed point. O

Example 4.8. Let X = C, and define a map-
pingl': XXX —» Cby |l —n|forall{,n €
X, then (X,I') can be easily verified as
a complete complex-valued metric spaces.
Defined p(£,m) = |Re(n)] + ilIm(y)|, for
all /,n € X. Then p is w-distance on X,
consider the function J : X — X defined
by

0, {,neQ@
. 3+3i, {,neQ°
3 +in) =
3, L€ neQ
31, leQ,neQ°.
Nowfor{z%andnsze
get F(S(%),S(O)) = I'(3,0) = 3 <

AC(,0) = zvig. Thus A > 3v3, which
is a contradiction as 0 < A < 1. How-
ever, notice that 320 = 0, so that 0
F(SQO'L 820'2) < AI'(0q, 09),

which shows that J? satisfies the require-
ment of Bryant Theorem and o = 0 is the
unique fixed point of J.

4.11)
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P(9¢.9°n) = 1901 = [Re(D)| +ilm(D)]
= 2(Re(D +ilim(h)
< 2(Re(Dy +ilim(D+

(IRe(5)| +ilIm($))(IRe()| +ilIm(L)])
L+ ([Re( )| +ilIm(Z)])

p(,30)p(n, 3%n)
1+p(Z,3n)

where @ = % and 8 = i. Then the con-
ditions of Theorem .3 hold and the fixed
point of J is 0 + 0 and p(0,0) = 0. More-
over, J has a unique fixed point, because
X # F(9), (F(3) is means that the set of
fixed point of J).

1
4

=ap({,In) +pB
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