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ABSTRACT
In this paper, we introduce the notion of a 𝜛-distance in complete complex-valued

metric spaces and prove some fixed point theorems for mappings satisfying some appropri-
ate inequalities in complete complex-valued metric spaces. Moreover, we deduce new fixed
point results in complete complex-valued metric spaces and provide some examples to illus-
trate the usability of the obtained results.
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1. Introduction
The Banach’s contraction mapping

principle is widely recognized as the source
of a metric fixed point theory. The exis-
tence and uniqueness of a fixed point of
operators or mappings has been a subject
of a great interest since the work of a Ba-
nach in 1922 [1]. The concept of nonexpan-
sive mappings has also been widely studied
in the following works [2, 3]. This prin-

ciple has been applied in different spaces
by mathematicians, for example D-metric
spaces, quasimetric spaces, quasi b-metric
spaces, b-metric-like spaces, Dislocated
quasi-b-metric spaces, and G-metric spaces
(see [4-8]) have already been obtained. A
new space called the complex valued met-
ric space which is more general than well-
know metric spaces has been introduced by
Azam et al. [9]. Naturally, this new idea
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can be utilized to define complex valued
normed spaces and complex valued inner
product spaces which, in turn, offer a lot of
scope for further investigations. Many au-
thors have studied a fixed point theory in
complex valued metric space (see [10-16]).

On the other hand, in 1996, Taka-
hashi et al.[17] introduced the notion of a
𝑤-distance on a metric space and proved
a nonconvex minimization theorem which
generalizes Caristi’s fixed-point results and
the 𝜖-variational principle. After that in
2011, Cho et al. [18] introduced the concept
of a c-distance in a cone metric space. For
more details about c-distance (see [19, 20]
and the references contained therein). The
concept of a Ω-distance of G-metric spaces
and constructed some fixed point theorems
in G-metric spaces by using the notion of
a Ω-distance introduced by Saadati et al.
[21]. Moreover, the results of Saadati et al.
was made clear to shoot up by Shatanawi
and Pitea [22]. Recently, a new concept of
a 𝑤𝑡-distance on b-metric spaces, which is a
b-metric version of the 𝑤-distance of Taka-
hashi et al. [17] was introduced by Saadati
et al. [23] and proved some fixed point re-
sults in a partially ordered b-metric space.

Moreover, Mohanta [24] has gener-
alized the results of Saadati et al. [23].
The concept of a generalized 𝑐-distance on a
cone b-metric space was introduced by Xu
et al. [25] which is a generalization of 𝑐-
distance of Cho et al. [18] and proved some
fixed and common fixed point results in or-
dered cone b-metric spaces using this dis-
tance . For more details about generalized
𝑐-distance see [26].

The above concept, we introduce
the notion of a 𝜛-distance in complete
complex-valued metric spaces and prove
some fixed point theorems for mappings
satisfying some appropriate inequalities in
complete complex-valued metric spaces.

Moreover, we deduce new fixed point re-
sults in complete complex-valued metric
spaces and provide some examples to illus-
trate the usability of the obtained results.

2. Preliminaries
Throughout this paper, we will write

N0 = {0, 1, 2, 3, ...} and N = {1, 2, 3, ...}.
Let C be the set of complex numbers and
𝜎1, 𝜎2 ∈ C, we define a partial order ≺ and
≾ on C as follows:

(𝑖) 𝜎1 ≺ 𝜎2 if and only if
Re(𝜎1) <Re(𝜎2) and Im(𝜎1) <Im(𝜎2)

(𝑖𝑖) 𝜎1 ≾ 𝜎2 if and only if
Re(𝜎1) ≤Re(𝜎2) and Im(𝑧1) ≤Im(𝑧2).

Now, we recall some property of a
complex valued metric space.

Definition 2.1 ([9]). Let 𝑋 be a nonempty
set. Suppose that the mapping Γ : 𝑋 × 𝑋 →
C satisfies the following conditions:

(Γ1) 0 ≾ Γ(𝜁, 𝜂), for all 𝜁, 𝜂 ∈ 𝑋;
(Γ2)Γ(𝜁, 𝜂) = 0 if and only if 𝜁 = 𝜂

for all 𝜁, 𝜂 ∈ 𝑋;
(Γ3) Γ(𝜁, 𝜂) = Γ(𝜂, 𝜁) for all

𝜁, 𝜂 ∈ 𝑋;
(Γ4) Γ(𝜁, 𝜂) ≾ Γ(𝜁, 𝜎) + Γ(𝜎, 𝜂),

for all 𝜁, 𝜂, 𝜎 ∈ 𝑋.

Then Γ is called a complex valued
metric on 𝑋 and (𝑋, Γ) is called a complex
valued metric space.

Example 2.2 ([9]). Defined Γ : 𝑋×𝑋 → C
as follows:

Γ(𝜎1, 𝜎2) =



2
3 |𝜁1 − 𝜁2 | + 𝑖

2 |𝜁1 − 𝜁2 |
𝑖 𝑓 𝜎1, 𝜎2 ∈ 𝑋1,
1
2 |𝜂1 − 𝜂2 | + 𝑖

3 |𝜂1 − 𝜂2 |
𝑖 𝑓 𝜎1, 𝜎2 ∈ 𝑋2,

( 23 𝜁1 +
1
2𝜂2) + 𝑖( 12 𝜁1 +

1
3𝜂2)

𝑖 𝑓 𝜎1 ∈ 𝑋1, 𝜎2 ∈ 𝑋2,

( 12𝜂1 +
2
3 𝜁2) + 𝑖( 13𝜂1 +

1
2 𝜁2)

𝑖 𝑓 𝜎1 ∈ 𝑋2, 𝜎2 ∈ 𝑋1,
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Let 𝑋1 = {𝜎 ∈ C : 0 ≤ 𝑅𝑒(𝜎) ≤
1, 𝐼𝑚(𝜎) = 0}, 𝑋2 = {𝜎 ∈ C : 0 ≤
𝐼𝑚(𝜎) ≤ 1, 𝑅𝑒(𝜎) = 0} and let 𝑋 = 𝑋1 ∪
𝑋2. Let 𝜎1 = 𝜁1 + 𝑖𝜂1, 𝜎2 = 𝜁2 + 𝑖𝜂2 ∈ 𝑋.
Then (𝑋, Γ) is a complete complex valued
metric space.

Example 2.3 ([9]). Let 𝑋 =
𝐶 ([1, 3],R), 𝑎 > 0 and for every
𝜁, 𝜂 ∈ 𝑋 let 𝑀𝜁 𝜂 = max𝑡 ∈[1,3] |𝜁 (𝑡) −
𝜂(𝑡) |, Γ(𝜁, 𝜂) = 𝑀𝜁 𝜂

√
1 + 𝑎2𝑒𝑖 tan

−1 𝑎 .
Then (𝑋, Γ) is a complex valued metric
space.

Definition 2.4 ([9]). Let (𝑋, Γ) be a com-
plex valued metric space.

(𝑖) A point 𝜁 ∈ 𝑋 is called interior
point of a set 𝐵 ⊆ 𝑋 whenever there exists
0 ≺ 𝑟 ∈ C such that 𝑁 (𝜁, 𝑟) := {𝜂 ∈ 𝑋 :
Γ(𝜁, 𝜂) ≺ 𝑟} ⊆ 𝐵.

(𝑖𝑖) A point 𝜁 ∈ 𝑋 is called limit
point of a set 𝐵 ⊆ 𝑋 whenever for every
0 ≺ 𝑟 ∈ C such that 𝑁 (𝜁, 𝜂) ∩ (𝑋 − 𝐵) ≠ ∅.

(𝑖𝑖𝑖) A subset 𝐵 ⊆ 𝑋 is called open
whenever each element of 𝐵 is an interior
point of 𝐵.

(𝑖𝑣) A subset 𝐵 ⊆ 𝑋 is called closed
whenever each limit point of 𝐵 belongs to
𝐵.

(𝑣) The family 𝐹 = {𝑁 (𝜁, 𝑟) : 𝜁 ∈
𝑋, 0 ≺ 𝑟} is a sub-basis for a topology on
𝑋 . we denote this complex topology 𝜏𝑐 . In-
deed, the topology 𝜏𝑐 is Hausdorff.

Definition 2.5 ([9]). Let (𝑋, Γ) be a com-
plex valued metric space and {𝜁𝑛} be a se-
quence in 𝑋 and 𝜁 ∈ 𝑋.

(𝑖) If for every 𝑐 ∈ C, with 0 ≺
𝑐 there is 𝑁 ∈ N such that for all 𝑛 >
𝑁, Γ(𝜁𝑛, 𝜁) ≺ 𝑐, then {𝜁𝑛} is said to be con-
vergent, {𝜁𝑛} converges to 𝜁 and 𝜁 is limit
point of {𝜁𝑛}. We denote this by 𝜁𝑛 → 𝜁 as
𝑛 → ∞ or lim𝑛→∞ 𝜁𝑛 = 𝜁 .

(𝑖𝑖) If for every 𝑐 ∈ C, with 0 ≺
𝑐 there is 𝑁 ∈ N such that for all 𝑛 >

𝑁, Γ(𝜁𝑛, 𝜁𝑛+𝑚) ≺ 𝑐, where 𝑚 ∈ N, then
{𝜁𝑛} is said to be Cauchy sequence.

(𝑖𝑖𝑖) If every Cauchy sequence in 𝑋 is
convergent, then (𝑋, Γ) is said to be a com-
plete complex valued metric space.

Lemma 2.6 ([9]). Let (𝑋, Γ) be a complex
valued metric space and let {𝜁𝑛} be a se-
quence in 𝑋. Then {𝜁𝑛} converges to 𝜁 if
and only if |Γ(𝜁𝑛, 𝜁) | → 0 as 𝑛 → ∞.

Lemma 2.7 ([9]). Let (𝑋, Γ) be a complex
valued metric space and let {𝜁𝑛} be a se-
quence in 𝑋. Then {𝜁𝑛} is a Cauchy se-
quence if and only if |Γ(𝜁𝑛, 𝜁𝑛+𝑚) | → 0 as
𝑛 → ∞, where 𝑚 ∈ N.

Definition 2.8. Let C be the set of complex
number and 𝑀 ⊆ C.

(𝑖) 𝑓 is continuous at 𝜎0 ∈ C if and
only if for all 𝜖 > 0, there exists 𝛿 > 0, if
|𝜎 − 𝜎0 | < 𝛿, then | 𝑓 (𝜎) − 𝑓 (𝜎0) | < 𝜖 for
all 𝜎 ∈ C.

(𝑖𝑖) 𝑓 is continuous on 𝑀 if and only
if 𝑓 is continuous at 𝜎0 for all 𝜎0 ∈ 𝑀.

Remark 2.9 ([14]). We obtained that fol-
lowing statements hold:

(𝑖) If 𝜎1 ≾ 𝜎2 and 𝜎2 ≾ 𝜎3, then
𝜎1 ≾ 𝜎3.

(𝑖𝑖) If 𝜎 ∈ C, 𝑎, 𝑏 ∈ R and 𝑎 ≤ 𝑏,
then 𝑎𝜎 ≾ 𝑏𝜎.

(𝑖𝑖𝑖) If 0 ≾ 𝜎1 ≾ 𝜎2, then |𝜎1 | ≤
|𝜎2 |.

3. 𝜛-distance
In this section, we introduce the

notion of 𝜛-distance in complete complex-
valued metric spaces and prove some
lemma in such a space.

Let us recall that a complex-valued
function 𝑓 defined on a complex-valued
metric space 𝑋 is said to be lower semi-
continuous at a point 𝜎 in 𝑋 if eirher
lim inf 𝜁𝑛→𝜎 𝑓 (𝜁𝑛) = ∞ or 𝑓 (𝜎) ⪯

175



Khuangsatung et al. | Science & Technology Asia | Vol.29 No.2 April - June 2024

lim inf 𝜁𝑛→𝜎 𝑓 (𝜁𝑛), whenever 𝜁𝑛 ∈ 𝑋 for
each 𝑛 ∈ N and 𝜁𝑛 → 𝜎

Definition 3.1. Let (𝑋, Γ) be a complex
valued metric space. Then a function 𝑝 :
𝑋 × 𝑋 → C is called a 𝜛-distance on 𝑋 if
the following are satisfied:

(1) 𝑝(𝜁, 𝜂) ⪰ 0 for all 𝜁, 𝜂 ∈ 𝑋;
(2) 𝑝(𝜁, 𝜂) ⪯ 𝑝(𝜁, 𝜎) + 𝑝(𝜎, 𝜂) for

all 𝜁, 𝜂, 𝜎 ∈ 𝑋;
(3) for all 𝜁 ∈ 𝑋, 𝑝(𝜁, ·) : 𝑋 → C is

lower semicontinuous i.e., if 𝜁 ∈ 𝑋, 𝜂𝑛 →
𝜂 ∈ 𝑋 then 𝑝(𝜁, 𝜂) ⪯ lim inf𝑛→∞ 𝑝(𝜁, 𝜂𝑛);

(4) for all 𝜖 ≻ 0, there exists 𝛿 ≻ 0,
such that 𝑝(𝜁, 𝜎) ⪯ 𝛿 and 𝑝(𝜎, 𝜂) ⪯ 𝛿 im-
ply 𝑝(𝜁, 𝜂) ⪯ 𝜖, where 𝜖, 𝛿 ∈ C.

Now, we provide examples of 𝜛-
distance in complex-valued metric space.

Example 3.2. Let (𝑋, Γ) be a complex val-
ued metric space. Then 𝑝 = Γ is a 𝜛-
distance on 𝑋

Proof. (1), (2) and (3) are clearly. To show
(4). Let 𝜖 ≻ 0. Setting 𝛿 = 𝜖

2 . Then,
we have Γ(𝜁, 𝜂) ⪯ Γ(𝜁, 𝜎) + Γ(𝜎, 𝜂) =
𝑝(𝜁, 𝜎) + 𝑝(𝜎, 𝜂) ⪯ 𝜖, where 𝑝(𝜁, 𝜎) ⪯ 𝛿
and 𝑝(𝜎, 𝜂) ⪯ 𝛿. □

Example 3.3. Let (𝑋, Γ) be a complex val-
ued metric space. Then a function 𝑝 : 𝑋 ×
𝑋 → C defined by 𝑝(𝜁, 𝜂) = 𝑐 for every
𝜁, 𝜂 ∈ 𝑋, 𝑝 is a 𝜛-distance on 𝑋, where
𝑐 ∈ C and 𝑐 ≻ 0.

Proof. (1), (2) and (3) clear. To show (4),
let 𝜖 ≻ 0. Setting 𝛿 = 𝑐

2 . Then, 𝑝(𝜁, 𝜎) ⪯ 𝛿
and 𝑝(𝜎, 𝜂) ⪯ 𝛿 imply Γ(𝜁, 𝜂) ⪯ 𝜖 . □

Example 3.4. Let 𝑋 be a normed linear
space with ∥ · ∥ and let Γ(𝜁, 𝜂) = ∥𝜁 −
𝜂∥ + 𝑖∥𝜁 − 𝜂∥, for all 𝜁, 𝜂 ∈ 𝑋. Then a
function 𝑝 : 𝑋 × 𝑋 → C defined by
𝑝(𝜁, 𝜂) = (∥𝜁 ∥ + ∥𝜂∥) + (∥𝜁 ∥ + ∥𝜂∥)𝑖 for
every 𝜁, 𝜂 ∈ 𝑋, 𝑝 is a 𝜛-distance on 𝑋

Proof. Let 𝜁, 𝜂, 𝜎 ∈ 𝑋. Then,

𝑝(𝜁, 𝜂) =(∥𝜁 ∥ + ∥𝜂∥) + (∥𝜁 ∥ + ∥𝜂∥)𝑖
⪯𝑝(𝜁, 𝜎) + 𝑝(𝜎, 𝜂).

(1), (2) and (3) clear. To show (4), let 𝜖 ≻
0. Setting 𝛿 = 𝜖

2 . Then,

Γ(𝜁, 𝜂) =∥𝜁 − 𝜂∥ + 𝑖∥𝜁 − 𝜂∥
⪯(∥𝜁 ∥ + ∥𝜂∥) + (∥𝜁 ∥ + ∥𝜂∥)𝑖
⪯𝑝(𝜁, 𝜎) + 𝑝(𝜎, 𝜂) ⪯ 𝜖 .

□

Example 3.5. Let (𝑋, Γ) be a complex val-
ued metric space, and let ℑ be continu-
ous mapping from 𝑋 into itself. Then a
function 𝑝 : 𝑋 × 𝑋 → C defined by
𝑝(𝜁, 𝜂) = max{Γ(ℑ𝜁, 𝜂), Γ(ℑ𝜁,ℑ𝜂)} for
every 𝜁, 𝜂 ∈ 𝑋, 𝑝 is a 𝜛-distance on 𝑋.

Proof. We see that (1) holds. We show (2).
Let 𝜁, 𝜂, 𝜎 ∈ 𝑋. If Γ(ℑ𝜁, 𝜎) ⪰ Γ(ℑ𝜁,ℑ𝜎),
then

𝑝(𝜁, 𝜎) ⪯ Γ(ℑ𝜁, 𝜎)
⪯ Γ(ℑ𝜁,ℑ𝜂) + Γ(ℑ𝜂, 𝜎)
⪯ max{Γ(ℑ𝜁, 𝜂), Γ(ℑ𝜁,ℑ𝜂)}
+max{Γ(ℑ𝜂, 𝜎), Γ(ℑ𝜂,ℑ𝜎)}
= 𝑝(𝜁, 𝜂) + 𝑝(𝜂, 𝜎).

On the other hand, we have

𝑝(𝜁, 𝜎) ⪯ Γ(ℑ𝜁,ℑ𝜎)
⪯ Γ(ℑ𝜁,ℑ𝜂) + Γ(ℑ𝜂,ℑ𝜎)
⪯ max{Γ(ℑ𝜁, 𝜂), Γ(ℑ𝜁,ℑ𝜂)}
+max{Γ(ℑ𝜂, 𝜎), Γ(ℑ𝜂,ℑ𝜎)}
= 𝑝(𝜁, 𝜂) + 𝑝(𝜂, 𝜎).

Hence (2) holds. Since ℑ is continuous, we
have for all 𝜁 ∈ 𝑋, 𝑝(𝜁, ·) : 𝑋 → C is lower
semicontinuous. Let 𝜖 ≻ 0. Choose 𝛿 = 𝜖

2 .
Therefore, if 𝑝(𝜁, 𝜎) ⪯ 𝛿 and 𝑝(𝜎, 𝜂) ⪯
𝛿, then 𝑝(𝜁,ℑ𝜎) ⪯ 𝛿 and 𝑝(ℑ𝜎, 𝜂) ⪯ 𝛿.
Hence Γ(𝜁, 𝜂) ⪯ Γ(ℑ𝜎, 𝜁) + Γ(ℑ𝜎, 𝜂) ⪯
𝜖 . □
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Next, we prove some basis lemma
for 𝜛-distance in complex-valued metric
space.

Lemma 3.6. Let (𝑋, Γ) be a complex
valued metric spaces, and let 𝑝 be an 𝜛-
distance on 𝑋. Let {𝜁𝑛}, {𝜂𝑛} be sequences
in 𝑋, {𝛼𝑛} and {𝛽𝑛} be sequences in C
with 𝛼𝑛 ⪰ 0 and 𝛽𝑛 ⪰ 0, {𝛼𝑛} and {𝛽𝑛}
convergent to zero and let 𝜁, 𝜂, 𝜎, 𝑎 ∈ 𝑋.
Then we have the following:

(𝑖) if 𝑝(𝜁𝑛, 𝜂𝑛) ⪯ 𝛼𝑛 and
𝑝(𝜁𝑛, 𝜎) ⪯ 𝛽𝑛 for all 𝑛 ∈ N, then 𝜂𝑛 → 𝜎;

(𝑖𝑖) if 𝑝(𝜁𝑛, 𝜂) ⪯ 𝛼𝑛 and
𝑝(𝜁𝑛, 𝜎) ⪯ 𝛽𝑛 for all 𝑛 ∈ N, then
𝜂 = 𝜎.
In paticular, if 𝑝(𝜁, 𝜂) = 0 and 𝑝(𝜁, 𝜎) = 0,
then 𝜂 = 𝜎;

(𝑖𝑖𝑖) if 𝑝(𝜁𝑛, 𝜁𝑚) ⪯ 𝛼𝑛 for all
𝑛, 𝑚 ∈ N with 𝑚 ≥ 𝑛, then {𝜁𝑛} is a
Cauchy sequence;

(𝑖𝑣) if 𝑝(𝜂, 𝜁𝑛) ⪯ 𝛼𝑛 for all 𝑛 ∈ N,
then {𝜁𝑛} is a Cauchy sequence.

Proof. First, we show (𝑖). Let 𝜖 ≻ 0.
From the definition of 𝜛-distance , there
exists a 𝛿 ≻ 0 such that 𝑝(𝜇, 𝜈) ⪯ 𝛿 and
𝑝(𝜇, 𝜎) ⪯ 𝛿 imply 𝑑 (𝜈, 𝜎) ⪯ 𝜖 . Since {𝛼𝑛}
and {𝛽𝑛} are converging to zero, we have
𝑛0 ∈ N such that 𝛼𝑛 ⪯ 𝛿 and 𝛽𝑛 ⪯ 𝛿 for all
𝑛 ≥ 𝑛0. Then we get, for any 𝑛 ≥ 𝑛0,

𝑝(𝜁𝑛, 𝜂𝑛) ⪯ 𝛼𝑛 ⪯ 𝛿,

𝑝(𝜁𝑛, 𝜎) ⪯ 𝛽𝑛 ⪯ 𝛿.

So, 𝑑 (𝜂𝑛, 𝜎) ⪯ 𝜖, and then {𝜂𝑛} converges
to 𝜎. (𝑖𝑖) holds, because using (𝑖).
Now, to show that (𝑖𝑖𝑖) is true. Let 𝜖 ≻ 0.
As in the proof of (𝑖𝑖), choose 𝛿 ≻ 0, and
then 𝑛0 ∈ N. Then, for any 𝑚, 𝑛 ⪰ 𝑛0 + 1

𝑝(𝜁𝑛0 , 𝜁𝑛) ⪯ 𝛼𝑛0 ⪯ 𝛿,

𝑝(𝜁𝑛0 , 𝜁𝑚) ⪯ 𝛼𝑛0 ⪯ 𝛿.

So, Γ(𝜁𝑛, 𝜁𝑚) ⪯ 𝜖 . Therefore 𝜁𝑛 is a
Cauchy sequence. As in proof of (𝑖𝑖𝑖), we
can prove (𝑖𝑣). □

4. Fixed point theorems
In this section, we will prove

some fixed point theorems for mappings
satisfying some appropriate inequalities in
complete complex-valued metric spaces.
Moreover, we deduce new fixed point re-
sults in complete complex-valued metric
spaces and provide some examples to illus-
trate the usability of the obtained results.
We suppose (𝑋, ≤) is a partially ordered set
and ℑ is a mapping of 𝑋 into itself. We say
that ℑ is non-decreasing if for 𝜁, 𝜂 ∈ 𝑋,
𝜁 ≤ 𝜂 implies ℑ𝜁 ≤ ℑ𝜂.

Theorem 4.1. Let (𝑋, Γ) be a complete
complex-valued metric spaces. Assume
that ℑ is a mapping from 𝑋 into itself and a
function 𝑝 : 𝑋 × 𝑋 → [0,∞) is𝜛-distance
on 𝑋. Suppose that the following conditions
are satisfied.

(𝑖) (𝑋, ≤) is a partially ordered set
and ℑ non-decreasing mapping;

(𝑖𝑖) for any fixed 𝜁 ∈ 𝑋 with 𝜁 ≤ ℑ𝜁

inf
𝜂∈𝑋

{𝑝(𝜁, 𝜂) + 𝑝(𝜁,ℑ𝜁)} ≻ 0, (4.1)

with 𝜂 ≠ ℑ𝜂;
(𝑖𝑖𝑖) there exists an 𝜁0 ∈ 𝑋 with 𝜁0 ≤

ℑ𝜁0;
(𝑖𝑣) there exists 𝛼, 𝛽 ∈ [0, 12 ) such

that

𝑝(ℑ𝜁,ℑ2𝜂) ≾ 𝛼𝑝(𝜁,ℑ𝜂)

+ 𝛽
𝑝(𝜁,ℑ𝜁)𝑝(ℑ𝜂,ℑ2𝜂)

1 + 𝑝(𝜁,ℑ𝜂) ,

(4.2)

for all 𝜁 ≤ ℑ𝜁 and any 𝜂 ∈ 𝑋 and
𝛼 + 𝛽 < 1.
Then ℑ has a fixed point. Moreover, if 𝜈 =
ℑ𝜈, then 𝑝(𝜈, 𝜈) = 0.

Proof. Let 𝜁0 be an arbitrary point in 𝑋, we
define 𝜁𝑛+1 = ℑ𝜁𝑛, for all 𝑛 ∈ N0. If ℑ𝜁0 =
𝜁0, then the proof is complete. On the other
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hand, suppose that ℑ𝜁0 ≠ 𝜁0. Since 𝜁0 ≤
ℑ𝜁0 and ℑ is non-decreasing, we have

𝜁0 ≤ 𝜁1 ≤ 𝜁2 ≤ 𝜁3 ≤ ... ≤ 𝜁𝑛 ≤ 𝜁𝑛+1 ≤ ... .

Using the inequality (4.2) and 𝑝(𝜁𝑛,ℑ𝜁𝑛) ≺
1 + 𝑝(𝜁𝑛,ℑ𝜁𝑛), we obtain that

𝑝(𝜁𝑛+1, 𝜁𝑛+2) = 𝑝(ℑ𝜁𝑛,ℑ2𝜁𝑛)
≾ 𝛼𝑝(𝜁𝑛,ℑ𝜁𝑛)+

𝛽
𝑝(𝜁𝑛,ℑ𝜁𝑛)𝑝(ℑ𝜁𝑛,ℑ2𝜁𝑛)

1 + 𝑝(𝜁𝑛,ℑ𝜁𝑛)
≾ 𝛼𝑝(𝜁𝑛, 𝜁𝑛+1)+
𝛽𝑝(𝜁𝑛+1, 𝜁𝑛+2). (4.3)

Thus,

𝑝(𝜁𝑛+1, 𝜁𝑛+2) ≾ 𝛾𝑝(𝜁𝑛, 𝜁𝑛+1)
≾ 𝛾2𝑝(𝜁𝑛−1, 𝜁𝑛)

≾
...

≾ 𝛾𝑛+1𝑝(𝜁0, 𝜁1)., (4.4)

where 𝛾 = 𝛼
1−𝛽 . Then, for any 𝑛 ∈ N0 with

𝑚 > 𝑛, using the triangle inequality, we ob-
tain that

𝑝(𝜁𝑛, 𝜁𝑚) ≾ 𝑝(𝜁𝑛, 𝜁𝑛+1) + 𝑝(𝜁𝑛+1, 𝜁𝑛+2)+
... + 𝑝(𝜁𝑚−1, 𝜁𝑚)
≾ 𝛾𝑛𝑝(𝜁0, 𝜁1) + 𝛾𝑛+1𝑝(𝜁0, 𝜁1)+
... + 𝛾𝑚−1𝑝(𝜁0, 𝜁1)
≾ (𝛾𝑛 + 𝛾𝑛+1 + ... + 𝛾𝑚−1)𝑝(𝜁0, 𝜁1)

≾ ( 𝛾𝑛

1 − 𝛾
)𝑝(𝜁0, 𝜁1).

By using Lemma 3.6, we obtain that {𝜁𝑛} is
a Cauchy sequence in 𝑋. Since 𝑋 is com-
plete, there exists 𝜂 ∈ 𝑋 such that 𝜁𝑛 → 𝜂.
For any 𝑛 ∈ N0. Then since {𝜁𝑛} con-
verges to 𝜂 in (𝑋, Γ) and 𝑝(𝜁𝑛, ·) is lower
semi-continuous, we obtain that 𝑝(𝜁𝑛, 𝜂) ⪯
lim inf𝑚→∞ 𝑝(𝜁𝑛, 𝜁𝑚) ⪯ 𝛾𝑛

1−𝛾 𝑝(𝜁0, 𝜁1).
Now, we show that 𝜂 is a fixed point of ℑ,

(i.e. ℑ𝜂 = 𝜂). If ℑ𝜂 ≠ 𝜂, then by using
condition (4.1) and 𝜁𝑛 ⪯ 𝜁𝑛+1, we get

0 ≺ inf
𝜂∈𝑋

{𝑝(𝜁𝑛, 𝜂) + 𝑝(𝜁𝑛, 𝜁𝑛+1)}

⪯ inf
𝜂∈𝑋

{ 𝛾𝑛

1 − 𝛾
𝑝(𝜁0, 𝜁1) + 𝛾𝑛𝑝(𝜁0, 𝜁1)}.

It implies that 0 < 0, which is a contradic-
tion. Therefore 𝜂 = ℑ𝜂. Moreover, by the
inequality (4.2), we have 𝑝(𝜂, 𝜂) = 0. □

Now, we will prove the unique fixed
point as follows:

Corollary 4.2. Let (𝑋, Γ) be a complete
complex-valued metric space. Assume that
the function 𝑝 : 𝑋 × 𝑋 → [0,∞) is 𝜛-
distance on 𝑋 and ℑ is a mapping from
𝑋 into itself are satisfying the conditions
(𝑖) − (𝑖𝑣) in Theorem 4.1 and 𝑋 ≠ 𝐹 (ℑ).
Thenℑ has a unique fixed point. Moreover,
if 𝜈 = ℑ𝜈, then 𝑝(𝜈, 𝜈) = 0.

Proof. We will show that ℑ has a unique
fixed point. Assume that 𝜎, 𝜂 in 𝑋 are a
fixed point of ℑ. If 𝜎 ≠ 𝜂, then by assump-
tion and using condition (4.1), there exists
𝜍 ∈ 𝑋 such that ℑ𝜍 ≠ 𝜍, we get

0 ≺ inf
𝜍 ∈𝑋

{𝑝(𝜂, 𝜍) + 𝑝(𝜂,ℑ𝜂)}

and

0 ≺ inf
𝜍 ∈𝑋

{𝑝(𝜎, 𝜍) + 𝑝(𝜎,ℑ𝜎)}.

Thus, we obtain that

0 ≺ inf
𝜍 ∈𝑋

{𝑝(𝜂, 𝜍) + 𝑝(𝜂,ℑ𝜂)} (4.5)

+ inf
𝜍 ∈𝑋

{𝑝(𝜎, 𝜍) + 𝑝(𝜎,ℑ𝜎)}

⪯ 𝑝(𝜂,ℑ𝜂) + 𝑝(𝜎,ℑ𝜎) = 0,

which a contradiction. Hence 𝜎 = 𝜂.
Therefore ℑ has a unique fixed point. □
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Corollary 4.3. Let (𝑋, Γ) be a complete
complex-valued metric spaces. Assume
that the function 𝑝 : 𝑋 × 𝑋 → [0,∞) is
𝜛-distance on 𝑋 and ℑ is a mapping from
𝑋 into itself are satisfied the conditions (𝑖)−
(𝑖𝑣) in Theorem 4.1 and, if 𝑝(𝜁, 𝜂) = 0, then
𝜁 = 𝜂 for all 𝜁, 𝜂 ∈ 𝑋 .
Thenℑ has a unique fixed point. Moreover,
if 𝜈 = ℑ𝜈, then 𝑝(𝜈, 𝜈) = 0.

Proof. We will to show that ℑ has unique
fixed point. Assume that 𝜎, 𝜂 in 𝑋 are a
fixed point of ℑ. If 𝜎 ≠ 𝜂, then using in-
equality (4.2), we have

𝑝(𝜂, 𝜎) = 𝑝(ℑ𝜂,ℑ2𝜎)
⪯ 𝛼𝑝(𝜂,ℑ𝜎)

+ 𝛽
𝑝(𝜂,ℑ𝜂)𝑝(ℑ𝜎,ℑ2𝜎)

1 + 𝑝(𝜂,ℑ𝜎)
= 𝛼𝑝(𝜂, 𝜎).

Since 0 ≤ 𝛼 < 1, we have 𝜎 = 𝜂. Therefore
ℑ has unique fixed point. □

Example 4.4. Let 𝑋 = C, and let | · | be an
absolute value of R. Defined

𝑝(𝜁, 𝜂) = |𝑅𝑒(𝜂) | + 𝑖 |𝐼𝑚(𝜂) |,

for all 𝜁, 𝜂 ∈ 𝑋. Then 𝑝 is 𝜛-distance on
𝑋, by Example 3.3. Consider the function
ℑ : 𝑋 → 𝑋 defined by ℑ𝜁 = 𝜁

2 . Thus,

𝑝(ℑ𝜁,ℑ2𝜂) = |ℑ2𝜂 | = |𝑅𝑒( 𝜂
4
) | + 𝑖 |𝐼𝑚( 𝜂

4
) |

=
1

2
( |𝑅𝑒( 𝜂

2
) | + 𝑖 |𝐼𝑚( 𝜂

2
) |)

≾
1

2
(|𝑅𝑒( 𝜂

2
) | + 𝑖 |𝐼𝑚( 𝜂

2
) |)+

1

3

( |𝑅𝑒( 𝜁2 ) | + 𝑖 |𝐼𝑚( 𝜁2 ) |) ( |𝑅𝑒(
𝜂
4 ) | + 𝑖 |𝐼𝑚( 𝜂4 ) |)

1 + (|𝑅𝑒( 𝜂2 ) | + 𝑖 |𝐼𝑚( 𝜂2 ) |)

= 𝛼𝑝(𝜁,ℑ𝜂) + 𝛽
𝑝(𝜁,ℑ𝜁)𝑝(ℑ𝜂,ℑ2𝜂)

1 + 𝑝(𝜁,ℑ𝜂) ,

where 𝛼 = 1
2 and 𝛽 = 1

3 . Then the con-
ditions of Theorem 4.1 hold and the fixed

point of ℑ is 0 + 0𝑖 and 𝑃(0, 0) = 0. More-
over, ℑ has a unique fixed point, because
𝑋 ≠ 𝐹 (ℑ).

Next, we will replace the inequality
(4.2) by the inequality (4.7), which have a
same the result of theorem 4.1 and prove the
fixed point theorem as follows:

Theorem 4.5. Let (𝑋, Γ) be a complete
complex-valued metric spaces. Assume
that ℑ is a mapping from 𝑋 into itself and a
function 𝑝 : 𝑋 × 𝑋 → [0,∞) is𝜛-distance
on 𝑋. Suppose that the following conditions
are satisfied.

(𝑖) (𝑋, ≤) is a partially ordered set
and ℑ non-decreasing mapping;

(𝑖𝑖) for any fixed 𝜁 ∈ 𝑋 with 𝜁 ≤ ℑ𝜁

inf
𝜂∈𝑋

{𝑝(𝜁, 𝜂) + 𝑝(𝜁,ℑ𝜁)} ≻ 0, (4.6)

with 𝜂 ≠ ℑ𝜂;
(𝑖𝑖𝑖) there exists an 𝜁0 ∈ 𝑋 with 𝜁0 ≤

ℑ𝜁0;
(𝑖𝑣) there exists 𝛼, 𝛽 ∈ [0, 12 ) such

that

𝑝(ℑ𝜁,ℑ2𝜂) ≾ 𝛼𝑝(𝜁,ℑ𝜂) + 𝛽
𝑝(𝜁,ℑ𝜁)𝑝(𝜂,ℑ2𝜂)

1 + 𝑝(𝜁,ℑ𝜂) ,

(4.7)

for all 𝜁 ≤ ℑ𝜁 and any 𝜂 ∈ 𝑋 and 𝛼 + 2𝛽 <
1. Then ℑ has a fixed point. Moreover, if
𝑣 = ℑ𝑣, then 𝑝(𝑣, 𝑣) = 0.

Proof. Let 𝜁0 be an arbitrary point in 𝑋, we
define 𝜁𝑛+1 = ℑ𝜁𝑛, for all 𝑛 ∈ N0. If ℑ𝜁0 =
𝜁0, then the proof is complete. On the other
hand, suppose that ℑ𝜁0 ≠ 𝜁0. Since 𝜁0 ≤
ℑ𝜁0 and ℑ is non-decreasing, we have

𝜁0 ≤ 𝜁1 ≤ 𝜁2 ≤ 𝜁3 ≤ ... ≤ 𝜁𝑛 ≤ 𝜁𝑛+1 ≤ ... .

Using the inequality (4.7) and 𝑝(𝜁𝑛,ℑ𝜁𝑛) ≺
1 + 𝑝(𝜁𝑛,ℑ𝜁𝑛), we obtain that

𝑝(𝜁𝑛+1, 𝜁𝑛+2) = 𝑝(ℑ𝜁𝑛,ℑ2𝜁𝑛)

179



Khuangsatung et al. | Science & Technology Asia | Vol.29 No.2 April - June 2024

≾ 𝛼𝑝(𝜁𝑛,ℑ𝜁𝑛) + 𝛽
𝑝(𝜁𝑛,ℑ𝜁𝑛)𝑝(𝜁𝑛,ℑ2𝜁𝑛)

1 + 𝑝(𝜁𝑛,ℑ𝜁𝑛)
⪯ 𝛼𝑝(𝜁𝑛, 𝜁𝑛+1) + 𝛽𝑝(𝜁𝑛, 𝜁𝑛+2),
⪯ 𝛼𝑝(𝜁𝑛, 𝜁𝑛+1) + 𝛽𝑝(𝜁𝑛, 𝜁𝑛+1)+
𝛽𝑝(𝜁𝑛+1, 𝜁𝑛+2). (4.8)

Thus,

𝑝(𝜁𝑛+1, 𝜁𝑛+2) ≾ 𝛾𝑝(𝜁𝑛, 𝜁𝑛+1)
≾ 𝛾2𝑝(𝜁𝑛−1, 𝜁𝑛)

≾
...

≾ 𝛾𝑛+1𝑝(𝜁0, 𝜁1), (4.9)

where 𝛾 = 𝛼+𝛽
1−𝛽 . Then, for any 𝑛 ∈ N0

with 𝑚 > 𝑛, using the triangle inequality,
we obtain that

𝑝(𝜁𝑛, 𝜁𝑚) ≾ 𝑝(𝜁𝑛, 𝜁𝑛+1) + 𝑝(𝜁𝑛+1, 𝜁𝑛+2)+
... + 𝑝(𝜁𝑚−1, 𝜁𝑚)
≾ 𝛾𝑛𝑝(𝜁0, 𝜁1) + 𝛾𝑛+1𝑝(𝜁0, 𝜁1)+
... + 𝛾𝑚−1𝑝(𝜁0, 𝜁1)
≾ (𝛾𝑛 + 𝛾𝑛+1 + ... + 𝛾𝑚−1)𝑝(𝑥0, 𝑥1)

≾ ( 𝛾𝑛

1 − 𝛾
)𝑝(𝜁0, 𝜁1). (4.10)

By using Lemma 3.6, we obtain that {𝜁𝑛}
is a Cauchy sequence in 𝑋. As in proof of
Theorem 4.1, we obtain that ℑ has a fixed
point. Moreover, if 𝜈 = ℑ𝜈, then 𝑝(𝜈, 𝜈) =
0. □

Corollary 4.6. Let (𝑋, Γ) be a complete
complex-valued metric space. Assume that
the function 𝑝 : 𝑋 × 𝑋 → [0,∞) is 𝜛-
distance on 𝑋 and ℑ is a mapping from 𝑋
into itself are satisfied conditions (𝑖) − (𝑖𝑣)
in Theorem 4.5 and 𝑋 ≠ 𝐹 (ℑ).
Thenℑ has a unique fixed point. Moreover,
if 𝜈 = ℑ𝜈, then 𝑝(𝜈, 𝜈) = 0.

Proof. The same proof of Corollary 4.2.
□

Corollary 4.7. Let (𝑋, Γ) be a complete
complex-valued metric space. Assume that
the function 𝑝 : 𝑋 × 𝑋 → [0,∞) is 𝜛-
distance on 𝑋 and ℑ is a mapping from 𝑋
into itself are satisfied conditions (𝑖) − (𝑖𝑣)
in Theorem 4.5 and, if 𝑝(𝜁, 𝜂) = 0, then
𝜁 = 𝜂 for all 𝜁, 𝜂 ∈ 𝑋 .
Thenℑ has a unique fixed point. Moreover,
if 𝜈 = ℑ𝜈, then 𝑝(𝜈, 𝜈) = 0.

Proof. We will show that ℑ has unique
fixed point. Assume that 𝜎, 𝜂 in 𝑋 are a
fixed point of ℑ. If 𝜎 ≠ 𝜂, then using in-
equality (4.7), we have

𝑝(𝜂, 𝜎) = 𝑝(ℑ𝜂,ℑ2𝜎)

⪯ 𝛼𝑝(𝜂,ℑ𝜎) + 𝛽
𝑝(𝜂,ℑ𝜂)𝑝(𝜎,ℑ2𝜎)

1 + 𝑝(𝜂,ℑ𝜎)
= 𝛼𝑝(𝜂, 𝜎).

Since 0 ≤ 𝛼 < 1, we have𝜎 = 𝜂. Therefore
ℑ has unique fixed point. □

Example 4.8. Let 𝑋 = C, and define amap-
ping Γ : 𝑋 × 𝑋 → C by |𝜁 −𝜂 | for all 𝜁, 𝜂 ∈
𝑋, then (𝑋, Γ) can be easily verified as
a complete complex-valued metric spaces.
Defined 𝑝(𝜁, 𝜂) = |𝑅𝑒(𝜂) | + 𝑖 |𝐼𝑚(𝜂) |, for
all 𝜁, 𝜂 ∈ 𝑋. Then 𝑝 is 𝜛-distance on 𝑋,
consider the function ℑ : 𝑋 → 𝑋 defined
by

ℑ(𝜁 + 𝑖𝜂) =


0, 𝜁 , 𝜂 ∈ 𝑄

3 + 3𝑖, 𝜁 , 𝜂 ∈ 𝑄𝑐

3, 𝜁 ∈ 𝑄𝑐 , 𝜂 ∈ 𝑄

3𝑖, 𝜁 ∈ 𝑄, 𝜂 ∈ 𝑄𝑐 .

(4.11)

Now for 𝜁 = 1√
3

and 𝜂 = 0 we
get Γ(ℑ( 1√

3
),ℑ(0)) = Γ(3, 0) = 3 ≾

𝜆Γ( 1√
3
, 0) = 𝜆 1√

3
. Thus 𝜆 ≥ 3

√
3, which

is a contradiction as 0 ≤ 𝜆 < 1. How-
ever, notice that ℑ2𝜎 = 0, so that 0 =
Γ(ℑ2𝜎1,ℑ2𝜎2) ≾ 𝜆Γ(𝜎1, 𝜎2),
which shows that ℑ2 satisfies the require-
ment of Bryant Theorem and 𝜎 = 0 is the
unique fixed point of ℑ.
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𝑝(ℑ𝜁,ℑ2𝜂) = |ℑ2𝜂 | = |𝑅𝑒( 𝜂
9
) | + 𝑖 |𝐼𝑚( 𝜂

9
) |

=
1

3
( |𝑅𝑒( 𝜂

3
) | + 𝑖 |𝐼𝑚( 𝜂

3
) |)

≾
1

3
( |𝑅𝑒( 𝜂

3
) | + 𝑖 |𝐼𝑚( 𝜂

3
) |)+

1

4

( |𝑅𝑒( 𝜁3 ) | + 𝑖 |𝐼𝑚( 𝜁3 ) |) ( |𝑅𝑒(
𝜂
9 ) | + 𝑖 |𝐼𝑚( 𝜂9 ) |)

1 + (|𝑅𝑒( 𝜂3 ) | + 𝑖 |𝐼𝑚( 𝜂3 ) |)

= 𝛼𝑝(𝜁,ℑ𝜂) + 𝛽
𝑝(𝜁,ℑ𝜁)𝑝(𝜂,ℑ2𝜂)

1 + 𝑝(𝜁,ℑ𝜂) ,

where 𝛼 = 1
3 and 𝛽 = 1

4 . Then the con-
ditions of Theorem 4.5 hold and the fixed
point of ℑ is 0 + 0𝑖 and 𝑝(0, 0) = 0. More-
over, ℑ has a unique fixed point, because
𝑋 ≠ 𝐹 (ℑ), (𝐹 (ℑ) is means that the set of
fixed point of ℑ).
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