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ABSTRACT

In this research, we present an advanced aerial surveillance system powered by the
YOLOV7 object detection model, designed for automatic and on-demand collection of traf-
fic data. The system uses unmanned aerial vehicles (UAVs) to capture real-time video, mak-
ing it especially valuable in areas without fixed surveillance cameras, such as rural roads
and busy highways. It accurately detects, classifies, and tracks eight types of vehicles, and
includes vehicle counting with directional analysis (left, right, or straight). This compre-
hensive approach enables the extraction of detailed traffic statistics, including flow rates,
movement patterns, and vehicle density. Our classification model achieved an overall accu-
racy of 98.6%, with some vehicle types reaching up to 99.6%, demonstrating the system’s
strong performance and practical utility for traffic monitoring.

Keywords: Aerial surveillance system; Detection; Intelligent traffic management; Vehicle
classification; YOLOv7

1. Introduction road accidents [1]. However, these road-

In the backdrop of global technolog-
ical advancements, the evolution of vehi-
cle technology has been swift. Enhanced
vehicle technology translates to increased
speed, often leading to reckless driving
practices. Notably, speeding is a prominent
factor contributing to approximately 60% of

related mishaps and the challenges of traffic
congestion can be mitigated through the im-
plementation of an intelligent traffic man-
agement system.

Traditionally, traffic management
has relied heavily on static infrastructure
such as fixed sensors (e.g., loop detectors,
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inductive loops) and stationary traffic cam-
eras. While these conventional methods
have provided essential data for traffic
monitoring and control, they inherently
possess limitations. Fixed sensors offer
localized data and lack comprehensive
spatial coverage, struggling to provide an
overarching view of traffic flow across
wider areas. Similarly, stationary cam-
eras, despite their visual information, are
restricted by their fixed viewpoints and
coverage areas, often missing crucial events
or data in unmonitored zones or during
dynamic traffic changes. These limitations
in capturing a holistic and adaptable view
of traffic dynamics underscore the need
for more flexible and comprehensive data
acquisition systems, which forms the
central theme of our research.

Intelligent traffic management not
only has the potential to enhance road safety
but also to significantly reduce traffic-
related accidents and alleviate the burdens
of congestion. As we look to the fu-
ture, the role of surveillance, particularly
through closed-circuit cameras (CCTV),
will remain pivotal [2]. These unblinking
sentinels have seamlessly integrated into
contemporary traffic management systems,
generating indispensable data streams for
vehicle detection, tracking, and beyond [3].
The data they provide not only empowers
real-time traffic analysis but also bolsters a
nation’s intelligence infrastructure, enhanc-
ing security and situational awareness on
multiple fronts.

The analysis of the data yields a
wealth of statistical information, including
vehicle counts, directional flow patterns,
and congestion levels, not only for the en-
tire traffic ecosystem but also for specific
vehicle types. This innovation, as explored
in our study, stands as a beacon of hope in
advancing traffic management capabilities.
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Our research, centered on a vehicle
detection and tracking system utilizing the
YOLO algorithm [4], aims to contribute to
this evolving landscape. It seeks to not
only understand the intricacies of traffic dy-
namics but to proactively address the chal-
lenges posed by modern transportation. In
the following sections of this paper, we
delve deeper into our methodology, results,
and insights, ultimately advocating for the
broader adoption of intelligent traffic man-
agement systems to ensure safer, more ef-
ficient, and more secure roadways in the
world’s ever-advancing technological land-
scape.

2. Literature Review

The domain of object detection is
currently undergoing a series of diverse ex-
periments aimed at advancing its capabil-
ities. These endeavors involve the explo-
ration and integration of novel technolo-
gies across various applications. An il-
lustrative example of this progress can be
found in the work of Jang and Turk, who
introduced the ”Car-Rec” recognition sys-
tem, harnessing a blend of detection and
extraction algorithms to discern both mov-
ing and stationary vehicles [5]. In a similar
vein, the research presented in [6] employed
YOLOV3 for detection and tracking, par-
ticularly from the vantage point of surveil-
lance cameras. Furthermore, the study de-
tailed in [7] stands out for its use of high-
order statistics in the vehicle classification
process post-identification. This research
initiative involved the collection of class-
related information through images, subse-
quently employed to predict the presence of
a vehicle. These contributions collectively
exemplify the dynamic landscape of object
detection and its multifaceted applications

The paper by Ammar et al. [8], ad-
dresses car detection in aerial images using
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Convolutional Neural Networks (CNNs)
and compares three state-of-the-art algo-
rithms: Faster R-CNN, YOLOv3, and
YOLOvV4. The study analyzes two datasets
with different conditions and hyperparam-
eters to evaluate algorithm performance.
YOLOv4 and YOLOvV3 generally outper-
form Faster R-CNN, except when there are
significant differences in object sizes be-
tween training and testing datasets.

In a like manner, the paper by Berwo
M. A. et al. [9], conducts a compre-
hensive survey of using Deep Learning
(DL) techniques in vehicle detection and
classification, examining successes, limi-
tations, benchmark datasets, loss and acti-
vation functions, recent experiments, and
technical advancements. It also discusses
challenges and suggests future research di-
rections, offering insights for the develop-
ment of neural networks and related learn-
ing frameworks.

In the paper by Alamgir R. M. et
al. [10], they focused on the significance
of vehicle detection in various automa-
tion and intelligent systems, especially in
Bangladesh. They highlighted the grow-
ing influence of Deep Learning models
in this field, with a specific emphasis
on real-time applications. Their research
compares different YOLO-based architec-
tures, including YOLOV3, YOLOVS5s, and
YOLOV5x, for efficient vehicle detection
in Bangladeshi traffic images. The evalua-
tion, based on a diverse dataset of 21 vehicle
types, concludes that the YOLOV5x variant
outperforms YOLOvV3 and YOLOvSs with
a 7% and 4% higher mean Average Preci-
sion (mAP), and 12% and 8.5% higher ac-
curacy, respectively.

Similarly, [11] addresses the signif-
icant issue of wrong-way driving, a lead-
ing cause of road accidents and traffic con-
gestion worldwide. The paper introduces
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an automated wrong-way vehicle detec-
tion system for on-road surveillance cam-
era footage. The system comprises three
stages: vehicle detection using the YOLO
algorithm, vehicle tracking with the cen-
troid tracking algorithm, and identification
of wrong-way driving vehicles. YOLO
is employed for precise object detection,
while centroid tracking efficiently tracks
moving objects. Their experiments con-
ducted on various traffic videos demon-
strated the system’s ability to detect and
identify wrong-way vehicles under diverse
lighting and weather conditions.

Likewise, [12] talks about the need
for accurate traffic sign detection in the
context of intelligent driving technology.
Existing methods based on color or shape
recognition are limited in terms of recog-
nition categories and accuracy. To tackle
these limitations, the paper proposes an
enhanced YOLOvS method. It incor-
porates the SIoU loss function to opti-
mize the training model and introduces
the CSP1_3CBAM model, combining the
CSP1 3 model with the convolutional
block attention model (CBAM) to improve
feature extraction. Additionally, the activa-
tion function ACONC enhances YOLOVS’s
generalization ability. Experimental re-
sults on the TT100k dataset demonstrate
significant improvements in precision, re-
call, mAP, and frames per second (FPS).
The algorithm’s generalization ability is
further validated on the GTSDB traffic sign
dataset.

The above research inspired us to se-
lect YOLO model for our work. The paper
by Redmon etal. [13] provides a good foun-
dation for the YOLO model. Their model is
an innovative object detection approach that
frames the problem as regression, predict-
ing bounding boxes and class probabilities
directly in one neural network evaluation.
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YOLO is exceptionally fast, offering real-
time processing. It outperforms other de-
tectors in generalization across different do-
mains, making it a powerful detection sys-
tem.

The original model has undergone
numerous iterations and improvements,
evolving from YOLO to versions 2, 3, 4,
and onward, ultimately reaching version 7.

In the paper by Wang et al. [14],
YOLOvV7 was introduced. It sets new stan-
dards for both speed and accuracy in object
detection, performing exceptionally well in
the 5 FPS to 160 FPS range. This model
attains the highest accuracy among real-
time detectors and surpasses the perfor-
mance of other notable models, including
both transformer-based and convolutional-
based detectors. Notably, YOLOvV7 ex-
cels in both speed and accuracy compared
to several state-of-the-art object detectors,
even when trained exclusively on the MS
COCO dataset from scratch.

In our previous study [15], we trained
YOLOV7 on a dataset comprising eight ve-
hicle types and achieved an overall detec-
tion accuracy of 99.5%, with individual
class accuracies reaching up to 93%. How-
ever, the dataset used in that work was rel-
atively limited in diversity and size. In this
paper, we significantly enhance our previ-
ous work by expanding the dataset to in-
clude a larger and more diverse set of im-
ages, thereby improving the model’s gen-
eralization capability. Furthermore, we ex-
tend the scope of our research by incorpo-
rating object tracking and counting, aiming
to develop a more comprehensive and prac-
tical real-time vehicle analysis system.

3. Dataset

Our experiment involves a dataset
comprising eight distinct vehicle types
commonly used in Thailand, which encom-
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Fig. 1. (a) Pickup Truck (b) Car (c) Trailer (d)
Semitrailer (e) Motorcycle (f) Van (g) Bus (h)
10-wheeler truck.

pass cars, buses, motorcycles, vans, trailer
trucks, semitrailers, 10-wheeler trucks, and
pickup trucks. Fig. 1 exhibits all the vehicle
types below. We partitioned our dataset that
consisted of approximately 5000 annotated
images into training, validation, and test-
ing subsets, with an 80:10:10 ratio, respec-
tively. The data acquisition was primar-
ily conducted during daytime hours, captur-
ing scenes under sunny and slightly cloudy
weather conditions. The majority of the im-
ages (approximately 85%) were taken with
clear or mostly clear skies, while the re-
maining 15% include instances with scat-
tered clouds that subtly alter the lighting.
While the dataset effectively captures vari-
ations in traffic density, ranging from free-
flowing to moderately congested scenarios
during the day, it does not currently include
images captured during nighttime, heavy
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Fig. 2. Training dataset.

rainfall, or other adverse weather condi-
tions. The aerial viewpoint remained con-
sistent throughout the data collection pro-
cess.

To improve the precision and robust-
ness of our vehicle detection model, we
implemented a suite of image augmenta-
tion techniques during the training phase.
These augmentations included horizontal
flipping, saturation adjustments (applied
within a range of +20%), random rotation
(up to £100), and exposure modifications
(adjusted by a factor between 0.8 and 1.2).
To evaluate the effectiveness of these aug-
mentation strategies, we conducted abla-
tion experiments. We trained the YOLOv7
model both with and without the application
of these augmentations, keeping all other
hyperparameters constant.

The results of these experiments, pre-
sented in Table 2, demonstrate the positive
impact of our augmentation pipeline on the
model’s performance. Specifically, we ob-
served an improvement in the mean Av-
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erage Precision (mAP) at an IoU thresh-
old of 0.5 (mAP@0.5) from 96.1% without
augmentation to 98.6% with augmentation.
This 2.5% increase in mAP@Q0.5 indicates
that the introduced variations in the train-
ing data helped the model generalize better
and improve its ability to accurately detect
vehicles under slightly different conditions
of orientation, color, and brightness. Fur-
thermore, we noted a consistent improve-
ment across individual vehicle classes, sug-
gesting that the augmentations contributed
to a more robust feature learning process.
These findings underscore the importance
of employing appropriate data augmenta-
tion techniques to enhance the overall de-
tection accuracy of our traffic monitoring
system Fig. 2 shows the training dataset ex-
amples.

Each image file was accompanied by
a corresponding text file containing its an-
notations. The annotation process was sim-
plified through the use of “’labellmg” soft-
ware, a widely recognized graphical anno-
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tation tool in the field. This software af-
fords the flexibility of defining classes ei-
ther prior to or during the annotation pro-
cess, and it compiles all the class defini-
tions into a corresponding text file. Two pri-
mary issues we encountered were the time-
consuming nature of annotating thousands
of individual vehicles and the potential for
annotation errors and inter-annotator vari-
ability.

The task of manually drawing ac-
curate bounding boxes around the numer-
ous vehicles present within our 5000-image
dataset proved to be exceptionally time-
consuming. The sheer volume of annota-
tion required significant time investment,
and the manual process introduced potential
for errors and inter-annotator inconsisten-
cies. To address the time constraint, a team
of two annotators worked concurrently. To
mitigate annotation errors, we implemented
a two-stage process: initial annotation fol-
lowed by a review of 15% of images by
a second annotator, with discrepancies re-
solved through consensus. Inter-annotator
variability was minimized through the de-
velopment of detailed annotation guidelines
and the consensus-based review process.
These measures ensured the high reliability
of our ground truth data, crucial for the ro-
bust training of our vehicle detection model.

An illustration of the software inter-
face is presented in Fig. 3, while Fig. 4
showcases the text file housing the annota-
tions.

4. Methodology

We opted for the YOLOV7 algo-
rithm in our study, primarily for its no-
table combination of speed and accuracy.
YOLOV7 represents the latest iteration in
the YOLO model series, renowned for
its real-time object detection capabilities.
Alexey Bochkovskiy, Chien-Yao Wang,
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Fig. 3. Labellmg labelling annotations.

File Edit  View
| B 8.749219 @.731012 @.825000 @.034259
3 8.670443 @,731019 @.022656 ©.022222
3 8.629818 @.7@8333 @.828573 @.923148
3 8.489844 @.B41667 @.812568 @.837963
3 8.486771 @.424769 8.828833 0.833796
3 9.467422 @.224769 @.021094 0.028241
3 9.802344 @.500880 @.0250080 0.026389
'3 9.890495 @.576620 @.823698 8.025463
6 9.289844 @,263057 6.086458 ©.055093
! 5 ©.250391 @.363426 @.170573 @.073148
5 9.890495 @.310880 @.180469 @.068981
[ 1 8.872917 @.243519 @.856258 @.841667

Fig. 4. Annotated file.

and Hong-Yuan Mark Liao are the creators
of the model as outlined in their paper [14].
YOLO notably operates as a one-stage ob-
ject detection model.

The YOLO machine learning
model’s architecture is designed for real-
time object detection. It is a single-stage
object detection system known for its speed
and accuracy. YOLO consists of three
primary components:

Backbone: This component acts as a
feature extractor, extracting valuable infor-
mation or feature maps from input data.

Neck: The neck component is re-
sponsible for merging representations from
Convolutional Neural Network (ConvNet)
layers before they are passed on to the head.

Head: YOLO comprises multiple
heads, with the primary head responsible
for generating the final output. Auxiliary
heads assist during the training process.
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Computational Block
Scaling up depth Sca

Partial
Scaling up width

Fig. 5. Compound scaling up depth and width
for concatenation-based model.

YOLO is recognized for its effi-
ciency in real-time object detection tasks
and has seen various iterations.

4.1 YOLOvV7

It is an evolution of the YOLO
model, and it comes with several improve-
ments such as speed and efficiency, accu-
racy, and stability. YOLOvV7 introduces
two significant changes, primarily in its ar-
chitecture and the integration of trainable
bag-of-freebies.

YOLOvV7 has restructured its archi-
tecture by incorporating the Extended Ef-
ficient Layer Aggregation Network (E-
ELAN), enhancing its ability to acquire
a broader range of features for improved
learning. Furthermore, YOLOV7 scales its
architecture by integrating elements from
models like YOLOv4, Scaled YOLOv4,
and YOLO-R from which it is derived. This
adaptation enables the model to cater to
varying requirements for different inference
speeds. Fig. 5 shows the compound scaling
for the concatenation-based model.

The concept of “bag-of-freebies” is
central to YOLOV7’s approach, focusing on
improving model accuracy without increas-
ing training costs while simultaneously en-
hancing inference speed and detection ac-
curacy. The re-parameterization planning,
which follows training, is a technique that
extends the training time but leads to im-
proved inference results. Model-level re-
parametrization can be achieved through
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two primary methods: training multiple
models with different training data but iden-
tical settings and averaging their weights for
the final model, or by calculating the av-
erage of model weights at various training
epochs.

This version is an advancement of the
YOLO model series, focusing on improved
speed, accuracy, and overall performance in
real-time object detection which is why we
have selected it for our work.

5. Results

This section will elucidate the param-
eters utilized, the performance metric ap-
plied, and the results obtained. The hyper-
parameters for YOLOv7 employed in our
study are outlined in Table 1 below.

The selection of hyperparameters for
the YOLOvV7 model, outlined in Table 1, in-
volved an iterative process guided by mon-
itoring the model’s performance on the val-
idation set. We started with the default hy-
perparameters suggested in the YOLOv7
repository and then systematically adjusted
key parameters such as the initial learning
rate (Ir0), momentum, and weight decay
based on the observed training and valida-
tion loss, as well as the mAP. For instance,
we experimented with different learning
rates and learning rate schedules to find one
that facilitated stable convergence and high
performance. The warmup epochs and mo-
mentum were tuned to avoid instability dur-
ing the initial training phase. The final val-
ues presented in Table 1 represent the con-
figuration that yielded the best mAP on our
validation set after several rounds of adjust-
ments. While a comprehensive grid search
was not feasible, this iterative tuning al-
lowed us to find a set of hyperparameters
well-suited to our specific dataset and task.

Training was executed by using 80%
of the dataset in batches of 32, spanning
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Table 1. Hyperparameters of the model.

Parameters Description Values
1r0 Initial learning rate 0.01
Irf Final OneCycleLR learning rate 0.2
momentum SGD momentum/Adam betal 0.937
weight decay Optimizer weight decay 5Se-4 0.005
warmup_epochs Warmup epochs (fractions ok) 3.0
warmup_momentum Warmup initial momentum 0.8
warmup_bias_Ir Warmup initial bias Ir 0.1
box Box loss gain 0.05
cls ClIs loss gain 0.5
cls pw Cls BCELoss positive_weight 1.0
obj Obj loss gain 1.0
obj pw Obj BCELoss positive weight 1.0
iou_t Iou training threshold 0.20
anchor t Anchors per output layer (0 to ignore) 4.0
fl_ gamma Focal loss gamma 0.0
hsv_h Image HSV-Hue augmentation (fraction) 0.015
hsv_s Image HSV-Saturation augmentation (fraction) 0.7
hsv v Image HSV-Value augmentation (fraction) 0.4
degrees Image rotation (+/- deg) 0.0
translate Image translation (+/- fraction) 0.1
scale Image scale (+/- gain) 0.5
shear Image shear (+/- deg) 0.0
perspective Image perspective (+/- fraction) 0.0
flipud Image flip up-down (probability) 0.0
fliplr Image flip left-right (probability) 0.5
mosaic Image mosaic (probability) 1.0
mixup Image mixup (probability) 0.0
a total of 200 epochs. Table 2 shows the
cqmparison betweeg the results we obtained Table 2. Results of all classes.
with the augmentation versus without the
augmentz}tion. As seen below, our experi- Class ?vlv?ti (V:’Ii]t?ll(:u .
ment achieved an overall mean average pre- augmentation)  augmentation)
cision (mAP) of 98.6% across all classes. A All 98.6% 96.1%
detailed breakdown of individual class ac- go_Wheeler truck o e
us 99.5% 98.9%
curacies with mAP metrics is detailed in Ta- Car 99.2% 99%
ble 2 below. The table above provides com- If\,/ilé’gﬁieck gg:ﬁﬁ gg:é;‘:
pelling evidence of YOLOvV7’s exceptional Semitrailer 98.5% 97.4%
detection capabilities. The accompanying Elﬁler 9969;/‘;) 9985/'?’

figure below illustrates the accuracy trends
through plotting.
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Van
Trailer
Semitrailer
Pickup truck
Motorcycle
Car
Bus

10-...
All

94.00% 96.00% 98.00%

B Precision

100.00%

Fig. 6. Results of our dataset on YOLOV7.

Table 3. Results of YOLO models.

Metrics YOLOv5 YOLOv6 YOLOv7
mAP 98.2 83.5 98.6
F1 Score 95 81.1 95.8
Precision  95.39 74.50 96.2
Recall 95.8 68.9 97.4

The achieved results are indeed re-
markable, with an impressive overall accu-
racy of 98.6%, and some individual class
accuracies reaching as high as 99.6%.

Table 3 presents a comprehensive
comparison of three different YOLO mod-
els using multiple evaluation metrics to
assess their performance. In addition to
the widely used mean Average Precision
(mAP), we also report precision, recall,
and the F1-score to provide a well-rounded
evaluation of each model’s effectiveness
in detecting vehicles. These metrics help
highlight not only the accuracy of the mod-
els but also their balance between cor-
rectly detecting vehicles and minimizing
false positives and false negatives.

Our system not only detects and tracks but
also counts the number of vehicles passing
through, taking their direction into account.
Figs. 7-8 depict detection and tracking,
while Fig. 9 illustrates detection, tracking,
and vehicle counting. Figs. 7-8 not only
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Fig. 9. Detection, tracking and counting of ve-
hicles.
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Fig. 10. Counting of vehicles.

display effective detection but also exhibit
the trajectory of tracked vehicles, showcas-
ing the precision and robustness of our real-
time object detection system. It was also
observed that vehicle classes with a higher
number of training images achieved greater
accuracy during the testing phase, under-
scoring the significance of data volume in
model performance.

To enhance the functionality of our
system, we integrated a robust tracking and
counting mechanism. For tracking, we em-
ployed the ByteTrack algorithm, known for
its reliability in maintaining object identity
even in crowded scenes. For counting, we
implemented a loop-based method, where
virtual entry and exit zones are defined, and
vehicle IDs are counted as they pass through
these predefined loops. This method, as
shown in Fig. 9, includes a visual loop at
the top of the frame, and its corresponding
count is reflected in the table at the bottom.
Fig. 10 further demonstrates how vehicles
are counted based on their direction, con-
tributing to a comprehensive and accurate
traffic monitoring solution.

6. Conclusion

Our experiment focused on employ-
ing YOLOV7 for the detection and tracking
of eight distinct vehicle types commonly
utilized in Thailand. We extracted frames
from aerial view footage and proceeded to
annotate them with the assistance of the La-
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bellmg software. Our dataset encompassed
around 5000 images, accompanied by four
diverse augmentations. The dataset was
partitioned in an 80:10:10 ratio for train-
ing, validation, and testing purposes. The
hyperparameters employed in our study are
comprehensively detailed in Table 1. As a
result of our experimentation, we achieved
an impressive overall accuracy of 98.6%,
with individual detection accuracy reaching
remarkable heights of up to 99.6%.

During the development, we encoun-
tered challenges such as managing the com-
putational resources required for real-time
processing of aerial video streams. Our
solution involved optimizing the YOLOvV7
model and utilizing cloud-based GPU ac-
celeration to ensure efficient performance.
While our initial experiments were con-
ducted under favorable conditions, future
work will need to address the integration of
more robust drone platforms and power so-
lutions for extended operational periods and
varied environmental conditions.

Our work has achieved the capabil-
ities of real-time detection, tracking, and
vehicle counting, rendering it valuable for
various applications. In the future, we aim
to further enhance and refine our counting
function to broaden its utility and effective-
ness along with loops and tallying for every
road.
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