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ABSTRACT
In Lampang province, Thailand, motorcycle-related road traffic collisions are com-

mon, and the differentiation between drivers and passengers is crucial for legal proceedings.
This study aimed to develop and validate two multivariable predictive models that differen-
tiate between motorcycle drivers and passengers based on demographics and fracture pat-
terns. Retrospective data from patients involved in motorcycle accidents from January 2014
to December 2017 at Lampang Hospital were used to construct models. Model 1 focused on
motorcycle collisions with other vehicles, while Model 2 focused on non-collision motorcy-
cle accidents. Predictor selection was done through multivariable logistic regression using
a stepwise backward elimination method. A total of 1,816 patients with fractures from mo-
torcycle accidents were included, with 1,583 categorized as drivers and 233 as passengers.
The final model identified six significant predictors: age categories, gender, pelvis and lum-
bar spine fractures, wrist and hand level fractures, femur fractures, and lower leg fractures.
Both models demonstrated acceptable discriminative abilities, indicating their potential as
user-friendly tools for medical and legal adjudication following motorcycle accidents.
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1. Introduction
Investigations into the epidemiology

of road traffic collisions (RTCs) in Thai-
land have elucidated that motorcycles are
the predominantly involved, comprising ap-
proximately 80% of all involved vehicles
[1, 2]. Contributing factors to this preva-
lence include excessive speeding, driving
under the influence, and negligence [2]. Le-
gal ramifications for such infractions are
stringent, with The Protection For Motor
Vehicle Victims Act B.E.2535 (1992) stip-
ulating that families of deceased passengers
receive significantly higher compensations
than drivers, accounting for organ loss and
sustained disabilities [3]. Thus, the pre-
cise distinction between drivers and passen-
gers post-collision is essential for equitable
treatment.

Post-RTC, individuals may experi-
ence conditions like unconsciousness or
amnesia, or in more severe cases, death,
which impedes their capacity to impart cru-
cial information. Without witnesses or
video evidence, determining the identity
of the driver is challenging. This uncer-
tainty may lead to disputations over liabil-
ity. Therefore, it is imperative for medical
professionals to conduct detailed examina-
tions of injuries to accrue substantial evi-
dence, which is crucial in legal contexts [4].

Research has demonstrated that mo-
torcycle drivers sustain injuries predomi-
nantly in the head, neck, hands, chest, and
abdomen, which reflect the mechanisms
of injury [5]. Collisions with other vehi-
cles tend to result in more fatalities among
drivers, whereas passengers are more vul-
nerable to fatal injuries from falls or ejec-
tions. Notably, head injuries are a signif-
icant factor in mortality rates [5]. In re-
gions with high helmet usage, the dispar-
ity in head injuries between drivers and pas-
sengers is negligible [6]. However, in areas

with low helmet utilization, like Cameroon
or Thailand, drivers suffer more head in-
juries, including skull and facial fractures,
compared to passengers [5, 7]. Drivers also
exhibit a higher frequency of fractures in re-
gions such as the hand, elbow, forearm, and
foot [7], while lower limb injuries are com-
mon to both drivers and passengers [6, 8].
Furthermore, injury patterns and severities
have been noted to vary with age and gen-
der [9, 10], which may serve as predictive
indicators for motorcycle-related accidents
[6, 7].

This context provides an opportunity
to delve into the diagnostic potential of
fracture patterns relative to anatomical sites
and demographic attributes for differentiat-
ing between drivers and passengers in colli-
sions. Notably, motorcycle accidents, both
with and without other vehicles, are prolific
in Thailand [11], and discerning injury pat-
terns between these two accident types is
imperative [10]. Consequently, the goal is
to develop predictive models that leverage
fracture distributions and demographic data
to distinguish between drivers and passen-
gers in Thai motorcycle accidents, inclusive
of both collision and non-collision scenar-
ios.

2. Materials and Methods
2.1 Study design and setting

This research entailed a retrospec-
tive cross-sectional predictive study, fo-
cusing exclusively on patients who sus-
tained bone fractures from motorcycle ac-
cidents (excluding those involving scooters
and mopeds). We retrieved data from elec-
tronic medical records at Lampang Hospi-
tal, an urban tertiary care center in Lam-
pang province, over a period spanning Jan-
uary 2014 to December 2017. Regis-
tered with the Thai Clinical Trials Reg-
istry (TCTR20230111011), our methodol-

245



G. Kluakamkao et al. | Science & Technology Asia | Vol.29 No.3 July - September 2024

ogy complied with the TRIPOD guide-
lines [12] and the CONSORT 2010 state-
ment. The Lampang Human Research
Ethics Committee granted ethical clearance
(Approval No: 51/64) and waived the re-
quirement for informed consent given the
study’s observational nature. All data col-
lection from electronic medical records was
authorized and conducted in accordance
with relevant guidelines and regulations.

2.2 Participant selection and data collec-
tion

We identified motorcycle accident
cases that were brought to the emergency
department, distinguishing collisions (in-
volving subsequent impacts with other ve-
hicles) from non-collision incidents. We
included cases involving interactions with
various vehicle types and excluded non-
relevant collision scenarios. We gathered
baseline data including age, sex, fracture
specifics, patient outcomes, and discharge
status. Helmet use and location of accident
(urban vs. rural) were omitted due to docu-
mentation deficiencies. We employed the
ICD-10 coding system for classifying in-
juries and accidents. Eligibility criteria re-
quired an official radiographic report con-
firming bone fractures. Exclusion criteria
included ambiguous documentation regard-
ing the patient’s position on the motorcy-
cle or inconsistent reports across hospital
departments. This study did not involve
corpses.

2.3 Potential predictors and study out-
come

We identified ten fracture sites and
two demographic variables (gender and
age, categorized as <15, 15-40, and >40
years) as potential predictors based on prior
research [6–10]. Our objective was to dis-
cern between drivers and passengers us-
ing these predictors. Primary data were

obtained from patient self-reports, comple-
mented by accounts from witnesses and
medical personnel.

2.4 Statistical analysis and sample size
estimation

Baseline characteristics were quanti-
fied using appropriate statistical measures.
Fisher’s exact and independent t-tests as-
sessed the distinctions between drivers and
passengers. For non-normal distribution,
we employed Mann-Whitney test. A 𝑝-
value of <0.05 was considered statistically
significant. We used Stata version 16.0 for
statistical analyses. To determine the re-
quired sample size for a binary outcome
prediction model, we applied Richard D.
Riley’s formula [13], accounting for an ex-
pected C-statistic of 0.8 and 12 predictors,
yielding a minimum sample of 652 patients
and at least 555 driver-related incidents.

2.5 Development of prediction model
Initial univariable analysis was con-

ducted using binary logistic regression.
Predictors with over 50%missing data were
excluded from further analysis. We derived
two models using multivariable logistic re-
gression with stepwise backward elimina-
tion, targeting collision and non-collision
events. The elimination threshold was set
at a 𝑝-value above 0.05. The final mod-
els were generated by integrating predictors
from both elimination processes, evaluating
logit coefficients to compose the final pre-
diction algorithm.

2.6 Performance measures
The models’ discriminative capabili-

ties and calibration were scrutinized. Dis-
crimination was gauged by the C-statistic
(AuROC), with thresholds for performance
stratified as per Hosmer and Lemeshow
[14]. Calibration plots graphically repre-
sented the correlation between predicted
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and actual outcomes. Internal validity and
model optimism were evaluated via boot-
strapping with 500 iterations, with lower
optimism correlating with greater validity.

3. Results
3.1 Baseline characteristics

A total of 1,816 patients sustained
fractures resulting from motorcycle acci-
dents, with 1,583 being drivers and 233
being passengers (see Fig. 1). Among
these accidents, 1,098 were due to colli-
sions with other vehicles, while 718 were
non-collision incidents. A comparison of
baseline characteristics between drivers and
passengers is presented in Table 1. Males
comprised the majority of drivers, whereas
over half of the passengers were female.
The mean age of drivers, at 37.9 years, was
significantly higher than that of passengers.
The proportion of drivers tended to increase
with age, in contrast to the declining propor-
tion of passengers. In terms of severity, our
study found similar distributions in dispo-
sition status, number of fractures, hospital
stay duration, and recovery rates [see Table
1. Mortality rates were 2.6% for drivers and
1.7% for passengers.

3.2 Fracture distribution between
drivers and passengers (stratified by
accident type)

Table 2 compares fracture distribu-
tion between drivers and passengers based
on ten anatomical locations. In collision ac-
cidents, statistically significant differences
in fracture sites between drivers and pas-
sengers were observed, including the pelvis
and lumbar spine, wrist and hand, femur,
and lower leg (including the ankle). Pas-
sengers were more likely to have sustained
fractures in the femur, lower leg (includ-
ing ankle), pelvis, and lumbar spine, while
the remaining fractures were more com-

mon among drivers. For non-collision ac-
cidents, significant differences in four frac-
ture sites were found between drivers and
passengers: cervical spine and neck, rib(s),
sternum and thoracic spine, pelvis and lum-
bar spine, and femur. Similar proportions
of drivers and passengers experienced frac-
tures in the shoulder, upper arm, wrist, and
hand, with larger disparities seen in colli-
sion accidents. Most fracture sites exhibited
consistent patterns between accident types,
except for the forearm, which was more fre-
quent in drivers involved in collision acci-
dents (see Table 2).

3.3 Potential predictors
Twelve factors were initially con-

sidered as potential predictors for driver
and passenger discrimination. (see Table
3). The cervical spine and neck fractures
were excluded from non-collision accidents
due to insufficient data. After conducting
univariable analyses using logistic regres-
sion, age, sex, and fractures of the pelvis
and lumbar spine were statistically signif-
icant for both accident types (see Table
3). Collision accidents indicated signifi-
cant of fractures of the wrist and hand (𝑝
= 0.001), femur (𝑝 = 0.001), and lower leg
(including ankle) (𝑝 = 0.001). Conversely,
non-collision accidents showed significant
fractures of the rib(s), sternum, and tho-
racic spine (𝑝 = 0.009), and femur (𝑝 =
0.003). All potential predictors listed in Ta-
ble 4 were included in the comprehensive
multivariable prediction model, irrespec-
tive of their statistical significance. Age and
gender consistently demonstrated statistical
significance for both accident types. In col-
lision accidents, only fractures of the fore-
arm (𝑝 = 0.028) and wrist and hand (𝑝 =
0.003) were statistically significant. In con-
trast, non-collision accidents identified sig-
nificant fractures in the pelvis and lumbar
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Fig. 1. Study flow diagram.

spine (𝑝 = 0.006) and femur (𝑝 = 0.030) (see
Table 3).

3.4 Final predictors
Six final predictors were identified

for predicting drivers in non-collision acci-
dents [see Table 4]. The backward elimina-
tion method revealed four predictors: age
15-40 years (Odds Ratio [OR] 6.90, 95%
Confidence Interval [CI] 3.26 - 14.6, 𝑝 <
0.001), age > 40 years (OR 17.53, 95% CI
7.62 - 40.34, 𝑝 < 0.001), male (OR 4.05,
95% CI 2.41 - 6.81, 𝑝 < 0.001), fracture of
the pelvis and lumbar spine (OR 0.1, 95%
CI 0.02 - 0.48, 𝑝 = 0.006), and fracture of
the femur (OR 0.32, 95% CI 0.15 - 0.71, 𝑝
= 0.005). Two additional predictors were

incorporated into the final model through
the merging method, as they showed signif-
icance in the collision accident model: frac-
ture of the wrist and hand (OR 0.82, 95%CI
0.40 - 1.69, 𝑝 = 0.600) and fracture of the
lower leg (including ankle) (OR 0.72, 95%
CI 0.36 - 1.44, 𝑝 = 0.352) (see Table 4). For
predicting drivers in collision accidents, the
backward elimination method yielded five
final predictors: age 15-40 years (OR 8.61,
95% CI 4.65 - 15.96, 𝑝 < 0.001), age > 40
years (OR 20.32, 95% CI 10.20 - 40.48, 𝑝 <
0.001), male (OR 4.64, 95% CI 3.09 - 6.99,
𝑝 < 0.001), fracture of the femur (OR 0.48,
95% CI 0.29 - 0.79, 𝑝 = 0.001), fracture
of wrist and hand (OR 2.73, 95% CI 1.21
- 6.18, 𝑝 = 0.001), and fracture of lower leg
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Table 1. Comparison of characteristics between driver and passenger.

Characteristics Driver Passenger
𝑝-value-1,583 -233

Gender (%)
male 1,136 (71.8) 103 (44.2) <0.001
female 447 (28.2) 130 (55.8) <0.001
Age (mean ± SD) 37.9 ± 18.1 28.2 ± 19.7 <0.001
<15 years (%) 48 (3.0) 51 (21.9) <0.001
15 - 40 years (%) 826 (52.2) 125 (53.6)
>40 years (%) 709 (44.8) 57 (24.5)
Disposition status (%) 0.427
inpatient 1,356 (85.7) 195 (83.7)
outpatient and emergency room 227 (14.3) 38 (16.3)
Number of fractures per case (median, IQR) 1 (1,2) 1 (1,2) 0.001
Treatment outcome (%) 0.65
recovery 1542 (97.4) 229 (98.3)
death 41 (2.6) 4 (1.7)
Prevalence of motorcycle accidents (%) <0.001
collision with 2 wheeled motor vehicle 448 (28.3) 29 (12.5)
collision with car or pickup truck 473 (29.9) 112 (48.1)
collision with heavy transport vehicle 30 (1.9) 6 (2.6)
non-collision transport accident 632 (39.9) 86 (36.9)
Number of passengers
1 - 233 (100)
≥ 1 - 0 (0)
Abbreviation: SD; standard deviation, IQR; interquartile range

Table 2. Comparison of fracture distribution between drivers and passengers based on anatomical
location, subgroup analysis according to accident type.

Anatomical location

Collision with another vehicle Non-Collision
Driver Passenger

𝑃-value
Driver Passenger

𝑝-value-951 -147 -632 -86
No. (%) No. (%) No. (%) No. (%)

Skull and facial bones 262 (27.6) 30 (20.4) 0.071 180 (28.5) 17 (19.8) 0.095
Cervical spine and other part of neck 23 (2.4) 4 (2.7) 0.775 28 (4.4) 0 (0.0) 0.039
Rib(s), sternum and thoracic spine 97 (10.2) 9 (6.1) 0.134 87 (13.8) 2 (2.3) 0.001
Pelvis and lumbar spine 46 (4.8) 14 (9.5) 0.03 3 (0.5) 4 (4.7) 0.005
Shoulder and upper arm 162 (17.0) 18 (12.2) 0.153 147 (23.3) 19 (22.1) 0.892
Forearm 169 (17.8) 20 (13.6) 0.241 88 (13.9) 18 (20.9) 0.104
Wrist and hand level 150 (15.8) 7 (4.8) 0 85 (13.5) 11 (12.8) 1
Femur 120 (12.6) 34 (23.1) 0.001 33 (5.2) 12 (14.0) 0.007
Lower leg, including ankle 194 (20.4) 48 (32.7) 0.001 79 (12.5) 13 (15.1) 0.492
Foot, except ankle 121 (12.6) 11 (7.5) 0.076 55 (8.7) 4 (4.7) 0.293

(including ankle) (OR 0.49, 95% CI 0.32
- 0.74, 𝑝 = 0.002). Fracture of the pelvis
and lumbar spine (OR 0.59, 95% CI 0.29
- 1.18, 𝑝 = 0.135) was added to the final
model through the merging method (see Ta-
ble 4). The coefficients presented in Table
4 formulate the estimated probability equa-
tions for identifying drivers in collision and
non-collision accidents. Regarding the co-
efficient in Table 4, the equations used for

the estimated probability of being a driver
in collision and non-collision accidents are
shown below.

A value of 1 was used to indicate the
presence of fracture sites, while a value of
0 indicated their absence.

The Rider Probability Calcu-
lator is available through the link:
https://tharathipdevelop.com/rider-
prob/form
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Table 3. Estimated odds ratios in univariable and multivariable logistic regression model for collision
(with another vehicle) and non-collision accidents.

Predicting factor
chance of
being driver

Collision with another vehicle Non-collision
Univariable
analysis

Multivariable
analysis

Univariable
analysis

Multivariable
analysis

Odds ratio
𝑝-value Adjusted

Odds ratio
(95%CI)

𝑝-value Odds ratio
𝑝-value Adjusted

Odds ratio
(95%CI)

𝑝-value(95%CI) (95%CI)
Age
<15 Reference Reference Reference Reference
15-40 years 7.4 (4.2-13.0) <0.001 8.9 (4.8-16.8) <0.001 6.6 (3.3-13.2) <0.001 6.0 (2.8-12.6) <0.001
>40 years 14.8 (7.9-27.5) <0.001 21.4 (10.5-43.6) <0.001 11.2 (5.3-23.7) <0.001 14.9 (6.4-34.9) <0.001
Male 3.1 (2.2-4.5) <0.001 4.4 (2.9-6.6) <0.001 3.3 (2.1-5.2) <0.001 3.9 (2.3-6.6) <0.001
Skull and facial bones 1.5 (1.0-2.3) 0.07 1.5 (0.9-2.5) 0.119 1.6 (0.9-2.8) 0.092 1.3 (0.6-2.8) 0.464
Cervical spine and
other part of neck 0.9 (0.3-2.6) 0.826 0.7 (0.2-2.3) 0.557 - - - -

Rib(s), sternum and
thoracic spine 1.7 (0.9-3.5) 0.124 1.2 (0.6-2.7) 0.578 6.7 (1.6-27.7) 0.009 3.2 (0.7-14.2) 0.125

Pelvis and lumbar
spine 0.5 (0.3-0.9) 0.023 0.7 (0.3-1.5) 0.347 0.1 (0.0-0.4) 0.003 0.1 (0.0-0.5) 0.006

Shoulder and upper
arm 1.5 (0.9-2.5) 0.146 1.6 (0.9-3.1) 0.119 1.1 (0.6-1.8) 0.81 0.9 (0.4-1.9) 0.695

Forearm 1.4 (0.8-2.3) 0.215 2.0 (1.1-3.6) 0.028 0.6 (0.3-1.1) 0.088 0.8 (0.4-1.7) 0.544
Wrist and hand level 3.7 (1.7-8.2) 0.001 3.7 (1.6-8.9) 0.003 1.1 (0.5-2.1) 0.866 0.9 (0.4-2.1) 0.888
Femur 0.5 (0.3-0.7) 0.001 0.6 (0.4-1.0) 0.052 0.3 (0.2-0.7) 0.003 0.4 (0.1-0.9) 0.03
Lower leg, including
ankle 0.5 (0.4-0.8) 0.001 0.6 (0.4-1.0) 0.077 0.8 (0.4-1.5) 0.497 0.8 (0.3-1.9) 0.62

Foot, except ankle 1.8 (0.9-3.4) 0.078 1.9 (0.9-4.1) 0.092 2.0 (0.7-5.5) 0.207 2.1 (0.6-7.3) 0.266
Abbreviation: CI; confidential interval

Probability of being
a Driver in a collision
accident

= 𝑒 (−0.96+2.13(age15−40)+2.99(age>40)+1.55(male)−0.53(pelvis&lumber 𝐹𝑥)+1.03(wrist&hand 𝑓 𝑥)−0.79(femur 𝑓 𝑥)−0.70(lower leg&ankle 𝑓 𝑥) )

(1+𝑒 (−0.96+2.13(age 15−40)+2.99(age >40)+1.55(male)−0.53(pelvis&lumber 𝐹𝑥)+1.03(wrist&hand 𝑓 𝑥)−0.79(femur 𝑓 𝑥)−0.70(lower leg&ankle 𝑓 𝑥) ) ,

Probability of
being a Driver in
a non-collision
accident

= 𝑒−0.71+1.93(age 15−40)+2.86(age>40)+1.40(male)−2.32(pelvis&lumber 𝐹𝑥)−0.19(wrist&hand 𝑓 𝑥)−1.16(femur 𝑓 𝑥)−0.33(lower leg&ankle 𝑓 𝑥)

(1+𝑒−0.71+1.93(age15−40)+2.86(age>40)+1.40(male)−2.32(pelvis&lumber 𝐹𝑥)−0.19(wrist&hand 𝑓 𝑥)−1.16(femur 𝑓 𝑥)−0.33(lower leg&ankle 𝑓 𝑥) ,

3.5 Model performance
Regarding discriminative ability, the

AuROC yielded values of 0.79 and 0.77
for the predictive model in instances of
both collision and non-collision accidents,
as shown in Supplementary Figs. 1A-1B.
A subgroup analysis for each collision sub-
category demonstrated comparable perfor-
mance in collisions with 2-wheeled motor
vehicles and collisions with cars or pickup
trucks. However, discriminative perfor-
mance was notably insufficient in collisions
with heavy transport vehicles (see Supple-
mentary Table 1). The final model’s cali-
bration was visually represented through a
calibration plot, highlighting a strong con-

currence between the projected and ob-
served probabilities, as depicted in Figs.
2A-2B. The efficacy of the two ultimate
predictive models was evaluated for inter-
nal validity using a bootstrap resampling
technique comprising 500 iterations. The
calculated C-statistic optimism for the col-
lision and non-collision predictive models
were 0.003 and 0.002, respectively. De-
tailed sensitivity, specificity, positive like-
lihood ratio, and negative likelihood ratio
values were tabulated across various proba-
bility thresholds for both models in Table 5.
Each incremental change of 0.05 in the pre-
dicted probability resulted in a significant
balance shift between sensitivity and speci-
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Table 4. Estimated odds ratios of being driver, coefficients of final model in collision with another
vehicle and non-collision accident.

Predictors Collision group Non-collision group

Coefficient Odds ratios
𝑝-value Coefficient Odds ratios

𝑝-value(95%CI) (95%CI)
Constant -0.96 -0.71
Age
<15 Reference 1 Reference 1
15-40 years 2.13 8.61 (4.65-15.96) <0.001 1.93 6.90 (3.26-14.60) <0.001
>40 years 2.99 20.32 (10.20-40.48) <0.001 2.86 17.53 (7.62-40.34) <0.001

Male 1.55 4.64 (3.09-6.99) <0.001 1.4 4.05 (2.41-6.81) <0.001
Skull and facial bones Not included Not included
Cervical spine and other part of neck Not included Not included
Rib(s), sternum and thoracic spine Not included Not included
Pelvis and lumbar spine -0.53 0.59 (0.29-1.18) 0.135 -2.32 0.10 (0.02-0.48) 0.006
Shoulder and upper arm Not included Not included
Forearm Not included Not included
Wrist and hand level 1.03 2.73 (1.21-6.18) 0.001 -0.19 0.82 (0.40-1.69) 0.6
Femur -0.79 0.48 (0.29-0.79) 0.001 -1.16 0.32 (0.15-0.71) 0.005
Lower leg, including ankle -0.7 0.49 (0.32-0.74) 0.002 -0.33 0.72 (0.36-1.44) 0.352
Foot, except ankle Not included Not included
Abbreviation: CI; confidential interval.

ficity. The study refrained from defining
an official cutoff point. As such, an offi-
cial model cutoff point wasn’t defined. We
suggested favoring high specificity as a rea-
sonable approach to guide further investiga-
tions, including full autopsies and x-rays for
concealed fractures.

3.6 Post Hoc sensitivity analysis
We have acknowledged the major

limitation regarding our outcomes, that the
data was self-report data from patients. To
demonstrate the robustness of our model,
we conducted a sensitivity analysis by ran-
domly substituting passengers for drivers
to simulate fault determination scenarios.
We estimated the AuROC for each sce-
nario, including situations where all pas-
sengers were assigned fault determination
(100% incorrect) and 50%, 25%, and 10%
fault determinations. Each scenario under-
went 200 sampling replicates. Both models
maintained acceptable discriminative abil-
ity when fault determination did not exceed
25% (see Supplementary Table 2).

3.7 Demonstration of individual predic-
tions from the final prediction models

To illustrate the practical implica-
tions, four patients originating from two ac-
tual cases were selected for presentation,
as depicted in Fig. 2. The first case in-
volved a collision involving a husband (the
driver) and his wife (the passenger). Fol-
lowing the husband’s death due to multi-
ple injuries, the wife modified her statement
to the insurance company, aiming to se-
cure higher compensation. However, con-
sidering the fracture distribution and clini-
cal attributes outlined in Supplementary Ta-
ble 3, the computed probabilities of being
the driver were 99.0% for the husband and
88.4% for thewife. The second scenario en-
tailed a motorcycle collision involving two
teenagers (Patients A and B), both 16-year-
old males. The estimated probabilities of
being the driver were 97.7% for Patient A
and 77.4% for Patient B, as revealed in Sup-
plementary Table 3. Notably, Patient B was
discovered deceased at the scene, while Pa-
tient A survived. Initially, security footage
indicated Patient A as the driver, yet he later
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Fig. 2. Calibration plot of final prediction model for collision accident (A) and non-collision accident
(B).

asserted that he had transitioned to being
a passenger midway through the incident.
The predicted probability at each specific
condition is illustrated in Fig. 3.

4. Discussion
In pursuit of delineating the driver

from passengers in motorcycle accidents,
our research endeavored to construct a
predictive model. This model prognos-
ticated the likelihood of being the driver
in both collision and non-collision inci-
dents. Utilized predictors comprised age,
gender, and fractures at specific anatomi-
cal sites: femur, wrist/hand, leg/ankle, and
pelvis/lumbar spine. These were impera-
tive for deducing associated probabilities.
Model evaluations demonstrated acceptable
discrimination (0.79 for collision-related
scenarios, 0.77 for non-collision scenarios)
and calibration.

Fracture distribution patterns re-
vealed inconsistencies between collision
and non-collision accidents. Forearm
fractures in collision scenarios were asso-
ciated with an odds ratio of 1.4 in driver
identification, diverging from non-collision

cases. Collision-involved drivers exhibited
a higher frequency of wrist and hand
fractures compared to their non-collision
counterparts, likely due to the positioning
of limbs during impact. Conversely, femur
and lower leg fractures, inclusive of ankle
fractures, were predominantly observed in
passengers, contradicting previous studies
suggesting minimal differences between
drivers and passengers [8, 15]. Factors
such as the drivers’ foot placement and the
protective barrier of the motorcycle’s front
frame influenced fracture distributions
[16]. Additionally, the angle of impact
altered risk profiles, with an increased
angle intensifying femur fracture risks for
passengers [17].

The study embraced a method analo-
gous to an autopsy guide prediction score
utilized for discerning drivers from pas-
sengers in fatal automobile collisions, ac-
knowledging the caveat of model overfit-
ting [18]. A stepwise backward elimination
methodology was employed, and the model
distilled all the factors down to six salient
predictors, balancing predictor sufficiency
and sample size adequacy.
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Fig. 3. Predicted probability chart at each specific condition.

Table 5. Sensitivity, Specificity, Positive, and Negative likelihood ratio for each predicted probability
of being driver in both models.

Predicted probability Sensitivity Specificity LR+ LR-
(95% CI) (95% CI) (95% CI) (95% CI)

Prediction mode for collision with another vehicle
0.95 27.4(24.6-30.4) 95.9 (91.3-98.5) 6.7 (3.1-14.8) 0.8 (0.7-0.8)
0.9 58.5 (55.3-61.6) 80.3 (72.9-86.4) 3.0 (2.1-4.1) 0.5 (0.5-0.6)
0.85 79.3 (76.6-81.8) 65.3 (57.0-73.0) 2.3 (1.8-2.9) 0.3 (0.3-0.4)
0.8 81.5 (78.9-83.9) 61.2 (52.8-69.1) 2.1 (1.7-2.6) 0.3 (0.3-0.4)
0.75 93.3 (91.5-94.8) 38.8 (30.9-47.2) 1.5 (1.3-1.7) 0.2 (0.1-0.2)
Prediction mode for non-collision
0.95 30.2 (26.7-34.0) 94.2 (87.0-98.1) 5.2 (2.2-12.3) 0.7 (0.7-0.8)
0.9 68.5 (64.7-72.1) 72.1 (64.4-81.2) 2.5 (1.7-3.5) 0.4 (0.4-0.5)
0.85 83.1 (79.9-85.9) 58.1 (47.0-68.7) 2.0 (1.5-2.6) 0.3 (0.2-0.4)
0.8 85.0 (81.9-87.7) 53.5 (42.4-64.3) 1.8 (1.5-2.3) 0.3 (0.2-0.4)
0.75 92.4 (90.1-94.3) 41.9 (31.2-53.0) 1.6 (1.3-1.9) 0.2 (0.1-0.3)
Abbreviation: CI; confidential interval, LR+; positive likelihood ratio, LR-; negative likelihood ratio
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The fracture distribution as predic-
tors was underscored, devising distinct
models for collision and non-collision inci-
dents to refine diagnostic specificity. Lim-
itations included retrospective data analy-
sis, incomplete documentation on helmet
usage, protective gear, and bioengineer-
ing data. Outcome data, based on self-
reporting, held a potential bias due to the ab-
sence of extensive evidence such as CCTV
footage. Sensitivity analyses accounted for
the variability in fault determination, main-
tainingmodel robustnesswithin a 25% error
margin. The study predominantly included
participants capable of self-reporting seat
positions, hence possibly not capturing the
full spectrum of high-energy trauma cases.
External validation is recommended to af-
firm the model’s efficacy and applicability.

The development and internal valida-
tion of these models aim to support health-
care and forensic professionals in accu-
rately identifying the driver in motorcycle
accidents. Despite promising results, fur-
ther external validation is essential prior to
widespread application.
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