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ABSTRACT
In semigroup theory, transformations play a crucial role. This paper explores a specific

type of transformation semigroup, denoted by𝑇𝐸 (𝑋). Here, 𝑋 is a non-empty set, and𝑇𝐸 (𝑋)
consists of all transformations on 𝑋 that preserve the equivalence classes established by an
equivalence relation 𝐸 on 𝑋 . We delve into the internal structure of 𝑇𝐸 (𝑋) by exploring how
to partition its elements into the coarsest and finest possible partitions while preserving the
validity of the transformation operation within each partition. These partitions correspond to
maximal and minimal congruences on 𝑇𝐸 (𝑋), respectively. We then address the existence of
a specific type of congruence on 𝑇𝐸 (𝑋) where each equivalence class forms a subsemigroup
itself.

Keywords: Maximal congruences; Minimal congruences; Transformation semigroups

1. Introduction and Preliminaries
A non-identity congruence 𝜎 on a

semigroup 𝑆 is called maximal if, whenever
𝜎 ⊆ 𝜌 ⊆ 𝑆 × 𝑆 for some congruence 𝜌
on 𝑆, then 𝜌 = 𝜎 or 𝜌 = 𝑆 × 𝑆. A non-
identity congruence 𝜎 on 𝑆 is called mini-
mal if, whenever 𝜌 ⊆ 𝜎 for some congru-
ence 𝜌 on 𝑆, then 𝜌 is the identity congru-
ence or 𝜌 = 𝜎.

Let 𝑋 be an arbitrary nonempty set

and let 𝑇 (𝑋) be the full transformation
semigroup consisting of all mappings from
𝑋 into 𝑋 under composition. It is well-
known that 𝑇 (𝑋) is a regular semigroup,
as shown in Reference [1]. Various sub-
semigroups of 𝑇 (𝑋) have been studied in
different years. In 2007, Sanwong and
Sullivan [2] investigated all the maximal
congruences on the semigroup 𝑇 (𝑋). All
the maximal congruences on the semigroup
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of all non-negative integers under multi-
plication were also described. In 2009,
Sanwong, Sullivan and Singha [3] char-
acterized all the maximal congruences on
the semigroup Z𝑛 under multiplication and
they determined the maximal congruence
for 𝑇 (𝑋,𝑌 ), the semigroup of all elements
of 𝑇 (𝑋) whose range is contained in 𝑌 for
arbitrary fixed subset 𝑌 of 𝑋 . They shown
that the maximal congruence on 𝑇 (𝑋,𝑌 ) is
unique. Moreover, they found all the mini-
mal congruences on 𝑇 (𝑋,𝑌 ).

Let 𝐸 be an equivalence relation on
a set 𝑋 . Consider the following subset of
𝑇 (𝑋):

𝑇𝐸 (𝑋) = {𝛼 ∈ 𝑇 (𝑋) : ∀𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈
𝐸 implies (𝑥𝛼, 𝑦𝛼) ∈ 𝐸}.

It is obvious that if 𝐸 is a non-trivial equiv-
alence relation, then 𝑇𝐸 (𝑋) is a proper sub-
semigroup of𝑇 (𝑋) and if 𝐸 is the identity or
universal relation, then𝑇𝐸 (𝑋) and𝑇 (𝑋) are
identical. In 1994 and 1996, Pei discussed
𝛼-congruences and some regular subsemi-
group inducing a certain lattice on 𝑇𝐸 (𝑋)
(see [4, 5]). In 2005, Pei [6] investigated
regularity of elements and Green’s relations
on the semigroup 𝑇𝐸 (𝑋). In [7], Pei de-
termined the rank of the homeomorphism
group and considered the rank of 𝑇𝐸 (𝑋)
when 𝑋 is a finite set and each class of
the equivalence 𝐸 has the same cardinal-
ity. Furthermore, he also studied the rank
of Γ(𝑋), the semigroup of all closed func-
tion 𝛼 on a topological space 𝑋 for which 𝐸
classes form a basis. In 2008, Sun, Pei and
Cheng [8] characterized the natural partial
order on the semigroup 𝑇𝐸 (𝑋). The com-
patibility of multiplication and all compati-
ble elements were investigated. Moreover,
they found maximal, minimal and cover-
ing elements with respect to the order. In
2011, Pei and Zhou [9] considered the re-
lations L∗ and R∗ on the semigroup 𝑇𝐸 (𝑋)

and they gave the condition for the equiv-
alence relation 𝐸 under which 𝑇𝐸 (𝑋) be-
comes abundant. In 2019, Sun [10] in-
vestigated the left and right compatibility
with respect to the natural partial order on
𝑇𝐸 (𝑋).

In this paper, we focus on some spe-
cial congruences on 𝑇𝐸 (𝑋). We start with
a congruence 𝛾 which is defined in section
2. We prove that a semigroup 𝑇 (𝑋,𝑌 ) is
exactly 𝛾-class whenever 𝑌 ∈ 𝑋/𝐸 . In sec-
tion 3, we define a maximal congruence on
𝑇𝐸 (𝑋) and show that amaximal congruence
on 𝑇𝐸 (𝑋) is not unique. In the last section,
we also determine all the minimal congru-
ences on 𝑇𝐸 (𝑋).

In the rest of this section, we recall
some notions that will be used in this pa-
per. Let 𝑆 be a semigroup and let 𝜌 be
an equivalence relation on 𝑆. The relation
𝜌 is left compatible if (𝑎, 𝑏) ∈ 𝜌 implies
(𝑐𝑎, 𝑐𝑏) ∈ 𝜌 for all 𝑐 ∈ 𝑆. Similarly, 𝜌
is right compatible if (𝑎, 𝑏) ∈ 𝜌 implies
(𝑎𝑐, 𝑏𝑐) ∈ 𝜌 for all 𝑐 ∈ 𝑆. If an equivalence
𝜌 is both left and right compatible, then 𝜌
is called a congruence on 𝑆. The quotient
semigroup 𝑆/𝜌 is the semigroup whose ele-
ments are the congruence classes of 𝜌, and
whose operation ∗ is defined by

(𝑎)𝜌 ∗ (𝑏)𝜌 = (𝑎𝑏)𝜌,

for all 𝑎, 𝑏 ∈ 𝑆 and (𝑎)𝜌 is a 𝜌-class con-
taining 𝑎.

A subset 𝐼 of a semigroup 𝑆 is called
an ideal of 𝑆 if both 𝑆𝐼 and 𝐼𝑆 are subsets
of 𝐼, where 𝑆𝐼 = {𝑠𝑥 : 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝐼} and
similarly for 𝐼𝑆. An ideal 𝑃 of 𝑆 is called
prime if 𝑃 ≠ 𝑆 and for all 𝑎, 𝑏 ∈ 𝑆, 𝑎𝑏 ∈ 𝑃
implies 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃. Let 𝐼 be an ideal
of a semigroup 𝑆. We define the relation 𝐼∗

on 𝑆 by

𝑥𝐼∗𝑦 if either 𝑥 =
𝑦 or both 𝑥 and 𝑦 are in 𝐼 .
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Then 𝐼∗ is an equivalence relation on 𝑆. The
equivalence classes under 𝐼∗ are the single-
ton sets {𝑥} with 𝑥 not in 𝐼 and the set 𝐼.
Since 𝐼 is an ideal of 𝑆, the relation 𝐼∗ is a
congruence on 𝑆. The quotient semigroup
𝑆/𝐼∗ is called the Rees factor semigroup of
𝑆 modulo 𝐼.

Lemma 1.1. [6] Let 𝛼 ∈ 𝑇𝐸 (𝑋). Then for
each 𝐵 ∈ 𝑋/𝐸, there exists 𝐵′ ∈ 𝑋/𝐸 such
that 𝐵𝛼 ⊆ 𝐵′. Consequently, for any 𝐴 ∈
𝑋/𝐸, 𝐴𝛼−1 is either ∅ or a union of some
𝐸-classes.

2. Congruence 𝛾
In this section, we will consider the

relation 𝛾 on 𝑇𝐸 (𝑋) which is defined by:

𝛼 𝛾 𝛽 if 𝑋𝛼, 𝑋𝛽 ⊆ 𝐴 for some 𝐴 ∈ 𝑋/𝐸 or
𝛼 = 𝛽.

We will obtain that 𝛾 is a congruence on
𝑇𝐸 (𝑋). And each 𝛾-class is either a single-
ton or a subsemigroup of 𝑇𝐸 (𝑋).

Theorem 2.1. The relation 𝛾 is a congru-
ence on 𝑇𝐸 (𝑋).

Proof. Clearly, 𝛾 is an equivalence relation
on 𝑇𝐸 (𝑋). Let (𝛼, 𝛽) ∈ 𝛾 be such that 𝛼 ≠
𝛽 and let 𝛿 ∈ 𝑇𝐸 (𝑋). Then 𝑋𝛼, 𝑋𝛽 ⊆ 𝐴
for some 𝐴 ∈ 𝑋/𝐸 . Since 𝛿 ∈ 𝑇𝐸 (𝑋) and
Lemma 1.1, there exists 𝐴′ ∈ 𝑇𝐸 (𝑋) such
that 𝐴𝛿 ⊆ 𝐴′. Hence 𝑋𝛼𝛿 ⊆ 𝐴𝛿 ⊆ 𝐴′

and 𝑋𝛽𝛿 ⊆ 𝐴𝛿 ⊆ 𝐴′. Thus (𝛼𝛿, 𝛽𝛿) ∈
𝛾 which means that 𝛾 is right compatible.
Note that 𝑋𝛿 ⊆ 𝑋 . Therefore 𝑋𝛿𝛼 ⊆ 𝑋𝛼 ⊆
𝐴. Similarly, 𝑋𝛿𝛽 ⊆ 𝐴. Hence (𝛿𝛼, 𝛿𝛽) ∈
𝛾 and so 𝛾 is left compatible. Therefore, we
conclude that 𝛾 is a congruence on 𝑇𝐸 (𝑋).

□

Theorem 2.2. Let 𝑄1 = {𝛼 ∈ 𝑇𝐸 (𝑋) :
𝑋𝛼 ⊆ 𝐴 for some 𝐴 ∈ 𝑋/𝐸}. Then 𝑄1 is
an ideal of𝑇𝐸 (𝑋) and 𝛾 is a subcongruence
of 𝑄∗

1.

Proof. Assume that 𝛼 ∈ 𝑇𝐸 (𝑋) and 𝛽 ∈
𝑄1. Then 𝑋𝛽 ⊆ 𝐴 for some 𝐴 ∈ 𝑋/𝐸 .
By Lemma 1.1, there exists 𝐴′ ∈ 𝑋/𝐸 such
that 𝐴𝛼 ⊆ 𝐴′. From 𝑋𝛽 ⊆ 𝐴, we have
𝑋𝛽𝛼 ⊆ 𝐴𝛼 ⊆ 𝐴′. Thus 𝛽𝛼 ∈ 𝑄1. Since
𝑋𝛼 ⊆ 𝑋 , we obtain 𝑋𝛼𝛽 ⊆ 𝑋𝛽 ⊆ 𝐴. So
𝛼𝛽 ∈ 𝑄1. Hence 𝑄1 is an ideal of 𝑇𝐸 (𝑋).
It is clear that 𝛾 ⊆ 𝑄∗

1. □

Theorem 2.3. Let (𝛼)𝛾 be a 𝛾-congruence
class containing 𝛼 where 𝛼 ∈ 𝑇𝐸 (𝑋). Then
| (𝛼)𝛾 | = 1 or (𝛼)𝛾 = 𝑇 (𝑋, 𝐴) for some 𝐴 ∈
𝑋/𝐸 .

Proof. Suppose that | (𝛼)𝛾 | > 1. Let 𝛽 ∈
𝑇𝐸 (𝑋) be such that 𝛼 𝛾 𝛽. Then 𝑋𝛼, 𝑋𝛽 ⊆
𝐴 for some 𝐴 ∈ 𝑋/𝐸 . This means that
𝑇 (𝑋, 𝐴) = (𝛼)𝛾 . □

From the definition of 𝑄1, we ob-
serve that𝑄1 is the union of 𝛾-classes, each
of which is a subsemigroup of 𝑇𝐸 (𝑋). Re-
call that a semigroup 𝑆 is called right zero if
for any 𝑥, 𝑦 in 𝑆, 𝑥𝑦 = 𝑦. With this in mind,
we obtain the following result.

Theorem 2.4. 𝑄1/𝛾 is a right zero sub-
semigroup of 𝑇𝐸 (𝑋)/𝛾.

Proof. Let 𝛼, 𝛽 ∈ 𝑄1. Then 𝑋𝛽 ⊆ 𝐴 for
some 𝐴 ∈ 𝑋/𝐸 . We obtain that (𝛼𝛽, 𝛽) ∈ 𝛾
since 𝑋𝛼𝛽 ⊆ 𝐴. Hence (𝛼)𝛾 (𝛽)𝛾 = (𝛽)𝛾 ,
as required. □

3. Maximal congruences on 𝑇𝐸 (𝑋)
In this section, we let 𝑋/𝐸 be a fi-

nite set. We define a relation 𝜎 on 𝑇𝐸 (𝑋)
and show that 𝜎 is a maximal congruence
but not only one maximal congruence on
𝑇𝐸 (𝑋).

Theorem 3.1. Let 𝑄2 = {𝛼 ∈ 𝑇𝐸 (𝑋) :
𝑋𝛼 ∩ 𝐴 = ∅ for some 𝐴 ∈ 𝑋/𝐸}. Then
𝑄2 is a prime ideal of 𝑇𝐸 (𝑋).
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Proof. Assume that 𝛼 ∈ 𝑇𝐸 (𝑋) and 𝛽 ∈
𝑄2. Let 𝑋/𝐸 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} for some
a natural number 𝑛. Without loss of gener-
ality, we may assume that 𝑋𝛽 ∩ 𝐴𝑛 = ∅.
Since 𝑋𝛼 ⊆ 𝑋 , we have 𝑋𝛼𝛽 ⊆ 𝑋𝛽. Thus
𝑋𝛼𝛽 ∩ 𝐴𝑛 ⊆ 𝑋𝛽 ∩ 𝐴𝑛 = ∅. So 𝛼𝛽 ∈ 𝑄2.
On the other hand, if 𝛼 ∈ 𝑄2, then 𝛽𝛼 ∈ 𝑄2.
Suppose that 𝛼 ∉ 𝑄2. Then 𝑋𝛼 ∩ 𝐴𝑖 ≠ ∅
for all 𝑖 ∈ {1, 2, . . . , 𝑛}. From 𝛼 ∈ 𝑇𝐸 (𝑋)
and 𝐴𝑛 ∈ 𝑋/𝐸 , we have 𝐴𝑛𝛼 ⊆ 𝐴 𝑗 for
some 𝑗 ∈ {1, 2, . . . , 𝑛}. Since 𝑋/𝐸 is finite
and Lemma 1.1, we get that 𝐴𝑖𝛼 ∩ 𝐴 𝑗 = ∅
for each 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}. Therefore
𝑋𝛽𝛼 ⊆ (𝑋\𝐴𝑛)𝛼which implies that 𝑋𝛽𝛼∩
𝐴 𝑗 ⊆ (𝑋 \ 𝐴𝑛)𝛼 ∩ 𝐴 𝑗 = ∅. This means that
𝛽𝛼 ∈ 𝑄2. Thus 𝑄2 is an ideal of 𝑇𝐸 (𝑋).
Next, we will show that 𝑄2 is prime. Let
𝛼, 𝛽 ∈ 𝑇𝐸 (𝑋) be such that 𝛼, 𝛽 ∉ 𝑄2. Then
𝑋𝛼 ∩ 𝐴𝑖 ≠ ∅ and 𝑋𝛽 ∩ 𝐴𝑖 ≠ ∅ for all
𝑖 ∈ {1, 2, . . . , 𝑛}. Let 𝑗 ∈ {1, 2, . . . , 𝑛}.
There exists 𝑚 ∈ {1, 2, . . . , 𝑛} such that
𝐴𝑚𝛼 ⊆ 𝐴 𝑗 . Since 𝑋𝛽 ∩ 𝐴𝑚 ≠ ∅, there
is 𝑘 ∈ {1, 2, . . . , 𝑛} such that 𝐴𝑘 𝛽 ⊆ 𝐴𝑚.
This implies that 𝐴𝑘 𝛽𝛼 ⊆ 𝐴𝑚𝛼 ⊆ 𝐴 𝑗 .
Hence ∅ ≠ 𝐴𝑘 𝛽𝛼 ⊆ 𝑋𝛽𝛼 ∩ 𝐴 𝑗 . Therefore
𝛽𝛼 ∉ 𝑄2 and so 𝑄2 is prime. □

Theorem 3.2. A relation 𝜎 = (𝑄2 ×𝑄2) ∪
(𝑇𝐸 (𝑋) \ 𝑄2 × 𝑇𝐸 (𝑋) \ 𝑄2) is a maximal
congruence on 𝑇𝐸 (𝑋).

Proof. Clearly, 𝜎 is an equivalence relation
on 𝑇𝐸 (𝑋). We will show that 𝜎 is compat-
ible. Let (𝛼, 𝛽) ∈ 𝜎 and 𝛾 ∈ 𝑇𝐸 (𝑋).
Case 1 : (𝛼, 𝛽) ∈ 𝑄2 × 𝑄2. Since 𝑄2 is an
ideal of 𝑇𝐸 (𝑋), we obtain that (𝛼𝛾, 𝛽𝛾) ∈
𝑄2 ×𝑄2.
Case 2 : (𝛼, 𝛽) ∈ 𝑇𝐸 (𝑋) \𝑄2×𝑇𝐸 (𝑋) \𝑄2.
If 𝛾 ∈ 𝑄2, then (𝛼𝛾, 𝛽𝛾) ∈ 𝑄2 × 𝑄2. If
𝛾 ∉ 𝑄2, then (𝛼𝛾, 𝛽𝛾) ∈ 𝑇𝐸 (𝑋) \ 𝑄2 ×
𝑇𝐸 (𝑋) \ 𝑄2 since 𝑄2 is prime. This means
that 𝜎 is right compatible. Similarly, 𝜎 is
left compatible. Hence 𝜎 is a congruence
on 𝑇𝐸 (𝑋). We will show that 𝜎 is a max-
imal congruence on 𝑇𝐸 (𝑋). Assume that

𝜌 is a congruence on 𝑇𝐸 (𝑋) with 𝜎 ⊊ 𝜌.
Then there exists (𝛼, 𝛽) ∈ 𝜌 \ 𝜎. With-
out loss of generality, we may assume that
𝛼 ∈ 𝑄2 and 𝛽 ∉ 𝑄2. Note that 𝛽, 𝑖𝑑𝑋 ∉ 𝑄2.
Thus (𝛽, 𝑖𝑑𝑋 ) ∈ 𝜎 ⊆ 𝜌. We let 𝛿 be ar-
bitrary constant mapping in 𝑇𝐸 (𝑋). Then
𝛿 ∈ 𝑄2. Hence (𝛿, 𝛼) ∈ 𝜎 ⊆ 𝜌 and
so (𝛿, 𝑖𝑑𝑋 ) ∈ 𝜌 from the transitivity of 𝜌.
Let 𝜂, 𝜃 ∈ 𝑇𝐸 (𝑋). Consider (𝜂𝛿, 𝜂𝑖𝑑𝑋 ) =
(𝛿, 𝜂) ∈ 𝜌 since 𝜌 is left compatible. Simi-
larly, (𝜃𝛿, 𝜃𝑖𝑑𝑋 ) = (𝛿, 𝜃) ∈ 𝜌. From 𝜌 is an
equivalence relation, we get that (𝜂, 𝜃) ∈ 𝜌.
It follows that 𝜌 is the universal congruence
on 𝑇𝐸 (𝑋). Therefore 𝜎 is maximal. □

Theorem 3.3. Let 𝜌 be a maximal con-
gruence on 𝑇𝐸 (𝑋). Then all constants in
𝑇𝐸 (𝑋) are 𝜌-equivalent.

Proof. If 𝜌 = 𝜎, then the proof is done. As-
sume that 𝜌 ≠ 𝜎. Let (𝛼, 𝛽) ∈ 𝜌 \ 𝜎. We
may assume that 𝛼 ∈ 𝑄2 and 𝛽 ∉ 𝑄2. Then
there exists 𝐴 ∈ 𝑋/𝐸 such that 𝑋𝛼∩𝐴 = ∅.
Let 𝜃, 𝜆 ∈ 𝑇𝐸 (𝑋) be such that 𝑋𝜃 = {𝑎} and
𝑋𝜆 = {𝑏}. Define 𝛿 : 𝑋 → 𝑋 by

𝑥𝛿 =

{
𝑎 if 𝑥 ∈ 𝐴,

𝑏 otherwise,

for all 𝑥 ∈ 𝑋 . It is easy to verify that 𝛿 ∈
𝑇𝐸 (𝑋). From 𝛽 ∉ 𝑄2, we choose 𝑧 ∈ 𝐴𝛽−1

and 𝑦 ∈ 𝑋 \ 𝐴𝛽−1. Let 𝐶 ∈ 𝑋/𝐸 be such
that 𝑎 ∈ 𝐶. Define 𝛾 : 𝑋 → 𝑋 by

𝑥𝛾 =

{
𝑧 if 𝑥 ∈ 𝐶,

𝑦 otherwise,

for all 𝑥 ∈ 𝑋 . Clearly, 𝛾 ∈ 𝑇𝐸 (𝑋) and then

𝑥𝛾𝛽𝛿 =

{
𝑎 if 𝑥 ∈ 𝐶,

𝑏 otherwise,

and 𝛾𝛼𝛿 = 𝜆. From the compatibility of
𝜌, we have (𝜆, 𝛾𝛽𝛿) ∈ 𝜌. From 𝜌 is left
compatible, we obtain that (𝜆, 𝜃) ∈ 𝜌. □
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Theorem 3.4. Let 𝑄3 = {𝛼 ∈ 𝑇𝐸 (𝑋) :
|𝐴𝛼 | = 1 for all 𝐴 ∈ 𝑋/𝐸}. Then 𝑄3 is
an ideal of 𝑇𝐸 (𝑋).

Proof. Assume that 𝛼 ∈ 𝑄3 and 𝛽 ∈
𝑇𝐸 (𝑋). Then |𝐴𝛼 | = 1 for all 𝐴 ∈ 𝑋/𝐸 .
Let 𝐴 ∈ 𝑋/𝐸 and then 𝐴𝛼 = {𝑎} for some
𝑎 ∈ 𝑋 . Thus 𝐴𝛼𝛽 = {𝑎𝛽} and hence
𝛼𝛽 ∈ 𝑄3. Note that 𝛽 ∈ 𝑇𝐸 (𝑋), then there
exists 𝐴′ ∈ 𝑋/𝐸 such that 𝐴𝛽 ⊆ 𝐴′. There-
fore 1 ≤ |𝐴𝛽𝛼 | ≤ |𝐴′𝛼 | = 1 since 𝛼 ∈ 𝑄3.
Hence 𝑄3 is an ideal of 𝑇𝐸 (𝑋). □

Theorem 3.5. Let 𝜌 be a maximal congru-
ence on 𝑇𝐸 (𝑋). If 𝜌 ≠ 𝜎, then 𝑄∗

3 ⊆ 𝜌.

Proof. Let (𝛼, 𝛽) ∈ 𝜌 \ 𝜎. Assume that
𝛼 ∈ 𝑄2 and 𝛽 ∉ 𝑄2. Let 𝐴 ∈ 𝑋/𝐸 such
that 𝑋𝛼 ∩ 𝐴 = ∅. For each 𝐵 ∈ 𝑋/𝐸 , there
exists a unique 𝐵′ ∈ 𝑋/𝐸 such that 𝐵′𝛽 ⊆
𝐵. For each 𝐵 ∈ 𝑋/𝐸 , we fix 𝑏 ∈ 𝐵. Define
𝛿 : 𝑋 → 𝑋 by

𝑥𝛿 = 𝑏 if 𝑥 ∈ 𝐵 and 𝐵 ∈ 𝑋/𝐸 ,
for all 𝑥 ∈ 𝑋 . Clearly, 𝛿 ∈ 𝑇𝐸 (𝑋).
Note that 𝐵𝛿 ∩ 𝐵 ≠ ∅ which implies that
𝛿 ∉ 𝑄2. Since 𝑄2 is prime, we obtain that
𝛽𝛿 ∉ 𝑄2 and 𝛼𝛿 ∈ 𝑄2. Now, we as-
sume that 𝑋𝛼𝛿 = {𝑏1, 𝑏2, . . . , 𝑏𝑘 } where
𝑘 < 𝑛 = |𝑋/𝐸 | and choose 𝑐𝑖 ∈ 𝑏𝑖 (𝛼𝛿)−1
for each 𝑖 ∈ {1, 2, . . . , 𝑘}. Let B = {𝐵 ∈
𝑋/𝐸 : 𝑐𝑖 ∉ 𝐵 for all 𝑖 = 1, 2, . . . , 𝑘} and
B ′ = {𝐵 ∈ 𝑋/𝐸 : 𝑏𝑖 ∉ 𝐵 for all 𝑖 =
1, 2, . . . , 𝑘}. From (𝑐𝑖 , 𝑐 𝑗) ∉ 𝐸 if 𝑖 ≠ 𝑗 ,
we then have |B| = |B ′ | = 𝑛 − 𝑘 . Assume
that B = {𝐵1, 𝐵2, . . . , 𝐵𝑛−𝑘 } and B ′ =
{𝐵′

1, 𝐵
′
2, . . . , 𝐵

′
𝑛−𝑘 }. Choose 𝑑 𝑗 ∈ 𝐵 𝑗 for all

𝑗 = 1, 2, . . . , 𝑛 − 𝑘 . Now, we rewrite 𝑋/𝐸
as the set {𝐴1, ..., 𝐴𝑛} where 𝑏𝑖 ∈ 𝐴𝑖 for
𝑖 = 1, ..., 𝑘 and 𝐴𝑖 = 𝐵′

𝑖−𝑘 for 𝑖 = 𝑘+1, ..., 𝑛.
Define 𝜃 : 𝑋 → 𝑋 by

𝑥𝜃 =


𝑐𝑖+1 if 𝑥 ∈ 𝐴𝑖; 𝑖 < 𝑘,

𝑑1 if 𝑥 ∈ 𝐴𝑘 ,

𝑑𝑖−𝑘+1 if 𝑥 ∈ 𝐴𝑖; 𝑘 < 𝑖 < 𝑛,

𝑐1 otherwise,

for all 𝑥 ∈ 𝑋 . Clearly, 𝜃 ∈ 𝑇𝐸 (𝑋) and
𝜃 ∉ 𝑄2. Note that 𝑋𝛼𝛿𝜃𝛼𝛿 ⊊ 𝑋𝛼𝛿 and
𝛽𝛿𝜃𝛽𝛿 ∉ 𝑄2. From the right compati-
bility of 𝜌 that (𝛼𝛿𝜃, 𝛽𝛿𝜃), (𝛼𝛿, 𝛽𝛿) ∈ 𝜌.
Therefore (𝛼𝛿𝜃𝛼𝛿, 𝛽𝛿𝜃𝛽𝛿) ∈ 𝜌 since 𝜌 is
a congruence. It follows from the construc-
tion of 𝜃 that there exists 𝑚 ∈ N such that
(𝛼𝛿)(𝜃𝛼𝛿)𝑚 is a constant mapping. This
implies that ((𝛼𝛿) (𝜃𝛼𝛿)𝑚, (𝛽𝛿)(𝜃𝛽𝛿)𝑚) ∈
𝜌. Let 𝛾 = (𝛼𝛿) (𝜃𝛼𝛿)𝑚 and 𝜙 =
(𝛽𝛿) (𝜃𝛽𝛿)𝑚. Assume that 𝑋𝛾 = {𝑎}. Let
𝑋𝜙 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑏 ∈ 𝑋𝜙 \
{𝑎}. Clearly, 𝑥𝑖𝜙−1 ∈ 𝑋/𝐸 for each 𝑖 ∈
{1, 2, . . . , 𝑛}. Suppose that (𝑎, 𝑥1) ∈ 𝐸 .
Let 𝑃 ⊆ 𝑋 with 𝑎 ∈ 𝑃 and |𝑃 | ≤ 𝑛.
For arbitrary mapping 𝜋 : 𝑋𝜙 → 𝑃 with
𝑥1𝜋 = 𝑎. Define 𝜉 : 𝑋 → 𝑋 by 𝑥𝜉 = 𝑥𝑖𝜋
where (𝑥, 𝑥𝑖) ∈ 𝐸 for some 𝑥𝑖 ∈ 𝑋𝜙. Thus
𝜉 ∈ 𝑇𝐸 (𝑋) and (𝛾, 𝜙𝜉) = (𝛾𝜉, 𝜙𝜉) ∈ 𝜌. It
follows that (𝛾, 𝜏) ∈ 𝜌 for all 𝜏 ∈ 𝑄3 and
𝑎 ∈ 𝑋𝜏. From this fact and right compat-
ibility of 𝜌, we deduce that each constant
map 𝛾′ and 𝜏′ ∈ 𝑄3 such that 𝑋𝛾′ = {𝑏}
and 𝑏 ∈ 𝑋𝜏′ will satisfy (𝛾′, 𝜏′) ∈ 𝜌. Fi-
nally, from Theorem 3.3 and 𝜌 is an equiv-
alence relation, we obtain that 𝑄3 × 𝑄3 ⊆
𝜌. □

Finally, we give a particular example
which show that there exists a maxmimal
congruence on 𝑇𝐸 (𝑋) which is not equal to
𝜎.

Example 3.6. Let 𝑋 be a finite set and 𝐵 =
{𝛼 ∈ 𝑇𝐸 (𝑋) : 𝛼 is a bijection}. Define 𝜌 =
(𝐵 × 𝐵) ∪ (𝑇𝐸 (𝑋) \ 𝐵 ×𝑇𝐸 (𝑋) \ 𝐵). Since
𝑋 is finite, we have 𝑇𝐸 (𝑋) \ 𝐵 is a prime
ideal and hence 𝜌 is a maximal congruence
on 𝑇𝐸 (𝑋) such that 𝜌 ≠ 𝜎.
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4. Minimal Congruence
In this section, we show that there

is only one minimal congruence on 𝑇𝐸 (𝑋).
Now, we let the relation 𝜎 on 𝑇𝐸 (𝑋) be de-
fined as follows:

𝛼 𝜎 𝛽 if |𝑋𝛼 | = |𝑋𝛽 | = 1 and 𝑋𝛼, 𝑋𝛽 ⊆ 𝐴
for some 𝐴 ∈ 𝑋/𝐸 or 𝛼 = 𝛽.

We get that 𝜎 is a congruence on 𝑇𝐸 (𝑋).

Theorem 4.1. A relation 𝜎 is the only min-
imal congruence on 𝑇𝐸 (𝑋).

Proof. Clearly, 𝜎 is an equivalence rela-
tion on 𝑇𝐸 (𝑋). Let (𝛼, 𝛽) ∈ 𝜎 be such
that 𝛼 ≠ 𝛽 and let 𝛾 ∈ 𝑇𝐸 (𝑋). Then
|𝑋𝛼 | = |𝑋𝛽 | = 1 and 𝑋𝛼, 𝑋𝛽 ⊆ 𝐴 for
some 𝐴 ∈ 𝑋/𝐸 . Thus 𝑋𝛼 = {𝑎} and
𝑋𝛽 = {𝑏} where 𝑎, 𝑏 ∈ 𝐴. This implies
that 𝑋𝛼𝛾 = {𝑎𝛾} and 𝑋𝛽𝛾 = {𝑏𝛾}. Since
𝛾 ∈ 𝑇𝐸 (𝑋) and by Lemma 1.1, there exists
𝐴′ ∈ 𝑇𝐸 (𝑋) such that 𝐴𝛾 ⊆ 𝐴′. Consider
𝑋𝛼𝛾 ⊆ 𝐴𝛾 ⊆ 𝐴′. Similarly, 𝑋𝛽𝛾 ⊆ 𝐴𝛾 ⊆
𝐴′. Thus (𝛼𝛾, 𝛽𝛾) ∈ 𝜎 and so 𝜎 is right
compatible. Note that 𝑋𝛾 ⊆ 𝑋 . There-
fore 𝑋𝛾𝛼 = {𝑎} and 𝑋𝛾𝛽 ⊆ 𝑋𝛽 = {𝑏}.
Hence (𝛾𝛼, 𝛾𝛽) ∈ 𝜎 and so 𝜎 is left com-
patible. We conclude that𝜎 is a congruence
on 𝑇𝐸 (𝑋). We will show that 𝜎 is a min-
imal congruence on 𝑇𝐸 (𝑋). Assume that
𝜌 is a non-identity congruence on 𝑇𝐸 (𝑋)
with 𝜌 ⊆ 𝜎. Then there exists (𝛼, 𝛽) ∈ 𝜌
and 𝛼 ≠ 𝛽. So, there is 𝑥 ∈ 𝑋 such that
𝑥𝛼 ≠ 𝑥𝛽. Since (𝛼, 𝛽) ∈ 𝜌 ⊆ 𝜎, we have
|𝑋𝛼 | = |𝑋𝛽 | = 1 and 𝑋𝛼, 𝑋𝛽 ⊆ 𝐴 for some
𝐴 ∈ 𝑋/𝐸 . Let 𝑋𝛼 = {𝑎} and 𝑋𝛽 = {𝑏}
where 𝑎 ≠ 𝑏. Let (𝛿, 𝛾) ∈ 𝜎 with 𝛿 ≠ 𝛾.
Then |𝑋𝛿 | = |𝑋𝛾 | = 1 and 𝑋𝛿, 𝑋𝛾 ⊆ 𝐵
for some 𝐵 ∈ 𝑋/𝐸 . Let 𝑋𝛿 = {𝑐} and
𝑋𝛾 = {𝑑} where 𝑐 ≠ 𝑑. Define 𝜃 : 𝑋 → 𝑋
by

𝑥𝜃 =

{
𝑐 if 𝑥 = 𝑎,

𝑑 otherwise,

for all 𝑥 ∈ 𝑋 . Clearly that 𝜃 ∈ 𝑇𝐸 (𝑋) since
𝑋𝜃 ⊆ 𝐵. Then 𝑋𝛼𝜃 = {𝑐} = 𝑋𝛿 and
𝑋𝛽𝜃 = {𝑑} = 𝑋𝛾. From the right compat-
ible of 𝜌, we obtain (𝛿, 𝛾) = (𝛼𝜃, 𝛽𝜃) ∈ 𝜌.
Therefore 𝜎 ⊆ 𝜌 and so 𝜌 = 𝜎. Hence
𝜎 is minimal. Next, we will show that 𝜎
is the only minimal congruence on 𝑇𝐸 (𝑋).
Suppose that 𝜌 is a minimal congruence on
𝑇𝐸 (𝑋). From 𝜌 is not the identity, there
exists (𝛼, 𝛽) ∈ 𝜌 such that 𝛼 ≠ 𝛽. Thus
𝑧𝛼 ≠ 𝑧𝛽 for some 𝑧 ∈ 𝑋 . We claim that
𝜎 ⊆ 𝜌. Let (𝛿, 𝛾) ∈ 𝜎 be such that 𝛿 ≠ 𝛾.
Then |𝑋𝛿 | = |𝑋𝛾 | = 1 and 𝑋𝛿, 𝑋𝛾 ⊆ 𝐴
for some 𝐴 ∈ 𝑋/𝐸 . Let 𝑋𝛿 = {𝑐} and
𝑋𝛾 = {𝑑} where 𝑐 ≠ 𝑑. Define 𝜃 : 𝑋 → 𝑋
by 𝑥𝜃 = 𝑧 for all 𝑥 ∈ 𝑋 . Thus 𝑋𝜃𝛼 = {𝑧𝛼}
and 𝑋𝜃𝛽 = {𝑧𝛽}. Define 𝜙 : 𝑋 → 𝑋 by

𝑥𝜙 =

{
𝑐 if 𝑥 = 𝑧𝛼,

𝑑 otherwise,

for all 𝑥 ∈ 𝑋 . Since 𝑋𝜙 ⊆ 𝐴, we have
𝜙 ∈ 𝑇𝐸 (𝑋). Therefore 𝑋𝜃𝛼𝜙 = {𝑐} = 𝑋𝛿
and 𝑋𝜃𝛽𝜙 = {𝑑} = 𝑋𝛾. From the compati-
bility of 𝜌, we get (𝛿, 𝛾) = (𝜃𝛼𝜙, 𝜃𝛽𝜙) ∈ 𝜌.
So 𝜎 ⊆ 𝜌. By minimality of 𝜌, we obtain
that 𝜌 = 𝜎. Hence 𝜎 is the only minimal
congruence on 𝑇𝐸 (𝑋). □
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