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ABSTRACT

This article presents a study on the parameter estimation of the Normal Inverse Gaus-
sian distribution, which is a specialized instance of the generalized hyperbolic distribution
that is extensively utilized in the analysis of financial time series. Conventionally, the max-
imum likelihood method and the method of moment are used to estimate the parameters;
however, these methods have a restriction on the feasible domain of possible skewness and
excess kurtosis values. Therefore, we propose an alternative parameter estimation method
for the Normal Inverse Gaussian distribution based on the Metropolis Hasting exponential
maximum likelihood method. Moreover, the performance of this method will be compared
with the maximum likelihood estimator, the epsilon maximum likelihood estimator, the ex-
ponential maximum likelihood estimator, using both simulated and real-world datasets. For
simulation, we use the smallest root mean square error and provide descriptive statistics, in-
cluding means and standard deviations to evaluate the performance of the model. For real
data application, the selection of the model is guided by a goodness-of-fit test using the
Anderson-Darling test statistics criterion. Furthermore, the model selection should demon-
strate the smallest AD value alongside the highest p-value.

Keywords: Financial Time Series; Generalized hyperbolic; Maximum likelihood; Metropo-
lis Hasting; Normal Inverse Gaussian distribution

1. Introduction Nielsen [[I] in 1977. It is derived by mix-
The Generalized Hyperbolic (GH) ing Normal variance-mean mixtures distri-
distribution was presented by Barndorff- bution with generalized inverse Gaussian
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(GIG) mixing distribution. The GH distri-
bution has advantaged in capturing stylized
empirical facts in financial assets. We are
interested in the special case of GH distribu-
tion, namely the Normal Inverse Gaussian
(NIG) distribution. It was introduced by
Barndorff-Nielsen [2], obtained by mixing
the Inverse Gaussian (IG) distribution with
the Normal variance-mean mixtures distri-
bution. Many authors have successfully fit-
ted the NIG distribution in financial time se-
ries. For example, in 2006, Trejo et al. [3]
examined the performance of the NIG dis-
tribution using stock data from the Ameri-
can and Mexican markets. In 2017, Shen et
al. [4] illustrated the ability of the NIG dis-
tribution to fit gold and other precious met-
als and in 2018, Nufiez et al. [5] showed the
efficacy of the NIG distribution to fit the in-
dexes of the BRIC economies.

Some authors studied on the parame-
ter estimation of the NIG distribution. For
instance, in 2002, Dimitris Karlis [6] intro-
duced the application of the Expectation-
Maximization (EM) algorithm to imple-
ment the Maximum Likelihood Estimator
(MLE) method for estimating parameters
of the NIG distribution. The focus of this
study pertained to the calculation of param-
eters for the NIG distribution with a spe-
cific application to the general index of the
Athens Stock Exchange. In 2011, Figueroa-
Lopez et al. [[7] used the method of mo-
ment estimator (MOM) to estimate parame-
ters of NIG and Variance Gamma (VG) dis-
tribution for high-frequency financial data.
In 2014, Ghysels and Wang [§] showed the
first four moments estimators of the NIG
distribution, the VG distribution, and the
generalized skewed t (GST) distribution as
well as demonstrated a feasible domain of
the MOM method for the NIG, the VG,
and the GST distributions. Next, Yoon
and Song [9] considered the feasible do-
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main problem and proposed the epsilon es-
timation for NIG parameters in 2016. Re-
cently, in 2020, Yoon et al. [10] com-
pared the performance of parameter estima-
tion methods for the NIG distribution, con-
sidering the problem related to the feasi-
ble domain. They used the MLE method,
the MOM method, the epsilon MLE (e-
MLE) method by Yoon and Song in 2016
[9], and the exponential MLE (exp-MLE)
method by Kim [|11]. In 2021, Dhull and
Kumar [[12] introduced the first-order auto-
regressive (AR 1) model with the NIG inno-
vation by using the EM algorithm. They
used the NIG autoregressive (NIGAR(1))
model to fit the historical financial data as-
sociated with Google equity. In this re-
search, we aim to propose an alternative
parameter estimation method for the NIG
distribution involving the Metropolis Hast-
ing algorithm and the exponential maxi-
mum likelihood (MH-exp-MLE) method.
We check the performance of the alternative
parameter estimation method by comparing
the alternative parameter estimation among
the MLE method, the e-MLE method, and
the exp-MLE method. Furthermore, we
evaluate the goodness of fit of the NIG dis-
tribution using the Anderson-Darling (AD)
test statistics. The selection of an appro-
priate model is based on the criterion that
the chosen model should exhibit the small-
est AD value and the highest p-value. The
subsequent sections of the article are orga-
nized as follows. In section 2, the NIG dis-
tribution is briefly reviewed. In Section 3
describes the estimation methods utilized in
this study. The derivation of the alterna-
tive parameter estimation method based on
MH-exp-MLE is presented in Section 4. In
Section 5, the simulations of all parame-
ter estimation methods are shown and dis-
cussed. In Section 6, the application re-
sults using the bitcoin data are presented
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and explained. In section 7, we conclude
this study. Last section discusses the study.

2. The Normal Inverse Gaussian dis-
tribution

The NIG distribution is a special case
of the GH distribution which we focus on
the A = —1/2 [ll]]. The NIG distribution is a
semi-heavy-tailed distribution which can be
obtained as a normal mean—variance mix-
ture with Inverse Gaussian as mixing dis-
tributions. Since the NIG distribution is
the normal mean-variance mixture, it can be
showed that the marginal distribution of X
in the pair (X, Z), where the condition prob-
ability X|Z is given in Eq. (2.1)):

X|Z=z7z~N(u+pz,2), 2.1

where u is mean. Additionally, the
variable Z is the IG(vy, §) distribution with
parametersyand 6. The IG distribution is a
special case of the GIG distribution when
replaced 2 = —1/2[2]. The probability den-
sity function (pdf) of IG distribution can be
written in Eq. (2.2):

0
f(z) v

exp (6y) 22

The mean and the variance of the IG dis-
tribution are E (Z) = §/y and Var(Z) =
§/v3. Therefore, the result of mixing be-
tween two distributions is the NIG distri-
bution with four parameters «, 3, 9, and
u denoted as NIG(«a, 8,6, u), where a =
\y2 + 2. The pdf of the NIG distribution
can be written in Eq. (2.3):

(x) = L exp (6 (Va2 = 2) - ).

8 (2.3)
where ¢ (x) = 1+ [@ * and K, (x) is
the modified Bessel function of the third or-
der with index 1 [6]. We used the property
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of the modified Bessel function to calculate
the modified Bessel function of the third or-
der which is

K_, (x) =K, (x), and

K> (x) = Ko (x) + (2/x) K1 (x) .

We need to computeKy (x) and Ki (x). It
was introduced by Abramowirz and Stegum
[13]. Furthermore, 0 < |B| < @, @ > 0,8 >
0,u € R. As seen from the pdf of NIG
distribution in Eq. (2.3), the shape of NIG
density is very flexible indeed owing to its
definition through the utilization of four pa-
rameters, making it possible to adjust many
kinds of shape and with many decay rates
of the tail. Moreover, the four parameters
of the NIG distribution have an interest-
ing characterization as follows: « parame-
ter is a steepness of the density and reflects
the tail behavior, in sense that the steepness
of density increases monotonically with in-
creasing . Thus, we can describe the tail
behavior that a small values of @ implies
heavy tails, while larger values of @ im-
ply lighter tails. Next, the 8 parameter is
a skewness. The 8 < 0 is insinuated that
a density skew to the left, but 8 > 0 is in-
sinuated that a density skew to the right and
the 8 = 0 is insinuated a symmetric around
u. The final two parameters, the ¢ and the
¢ are location and scale, respectively. The
moment generating function of the NIG dis-
tribution can be demonstrated in Eq. (2.4) in
term of @, B, 6 and u by

My (1) =exp (i0) exp (5o = 52)

exp (—6\/02 - (B+ t)2). (2.4)

From Eq. (.3), the pdf of the NIG distribu-
tion is rather complicated. From Eq. (2.4),
we can write the mean, the variance, the
skewness (S), and the kurtosis (K) of the
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NIG distribution. It is easily derived the
four moments of the NIG distribution if we
let y = ya? -2 in the following Egs.
®.3-R-9).

E(X)=p+ % (2.5)
2
Var (X) = = (2.6)
Y
__3p
=71 s (2.7)
3 (1 + 4 )
K=y= 5y (2.8)

3. Estimation methods
3.1 Method of Moment

The moment of the NIG distribution
which is given in Eq. (2.5). We calculate es-
timators of NIG parameters «, ﬁ 5, A, from
the MOM [[14], respectively. The parame-
ters &/, 8, 6, fi can be shown from Eq. (B.1)

to Eq. (8.9):

. 3
0% :—2, 3.1)
S\/372 =57,
= o252
5_ Y157V
p="5 (32)
~ S2 53
0 =—"—, (3.3)
B +y
36
a=x-2 (3.4)
Y
& =\y2 + B2 (3.5)

where X, s2 are the sample mean and
variance, respectively. We denote

Y1 =u3/p2?, and

Yo =Ha/us® - 3,

while g = n 'YL (-0,
the sample skewness and the kurtosis,
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respectlvely The parameter estimation
, B, 6, [ can be seen in the Eq. (3.1)
to Eq. (3.5), the parameters do not exist if
37,—57,> < 0. We show the MOM method
because it can be used for setting the initial
value in parameter estimation process.

3.2 Maximum likelihood

The MLE method is employed for
the determination of statistical model pa-
rameters by finding the parameter values
that optimize the likelihood function. When
confronted with a random sample of size
n drawn from the NIG(a, 3,6, u) distri-
bution, the likelihood function can be ex-

pressed in Eq. (B.6):

La, B, 6, 1) = (%)"x

en&y . e_nﬁﬂ . eZ?:l ﬁxi

?:1 V62 +(x; — ,u)2 *
ﬁ K1 (0/6\/62 + (x; — ,u)2) )
i=1

(3.6)

To solve the MLE method, it suf-
fices to calculate the likelihood function
and maximize it concerning the parame-
ter of interest. The easy way for fixing
this problem, we used the natural logarithm
(In) of the likelihood function, called log-
likelihood function. It can be shown in

Eq. ..
InL(a,B,6,u) =nln(a) —nln ()

+n(8y = Bu)+ B ) xi

i=1

- %Zln (62 + (x; —,u)2)
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+ Zn:ln (Kl (a6\/62 +(x; — u)2)) )
3.7)

Due to the intricacies associated with
the Bessel function appearing in the deriva-
tive of the log-likelihood function, direct
computation of the maximum likelihood be-
comes highly complex and challenging for
estimating parameters. Consequently, im-
plemented the Expectation-Maximization
(EM) algorithm as an alternative method to
derive parameter estimators for the NIG dis-
tribution [6]. The EM algorithm iterates be-
tween two steps, namely E-step and M-step.

E-step: In this step, let 6 = (a, B, d, u) be
the parameter vector for computing
the expectation of the log-likelihood
of complete data with respect to the
conditional distribution. Upon ob-
taining the parameter values at the
kth iteration, denoted as 6% repre-
senting a current parameter value, the
pseudo-values s; and w; are com-

puted in Eq. (8.8) and Eq. (B.9), re-
spectively.

si =E (Zi|xi, H(k))

sR k) (x,)2
T o

Ko (5(k>9<k) (xi)%)

., (3.8)
K (5<k>9<k) (xi)a)
w; =E (Zi_1|xi,9(k))
@k
5RgW) ()3
Ks (5<k>9<k) (xi)%)
(3.9)

K, (5(k)9(k) (xi)%)’

M-step:

&9

fori=1,2,3,...,k,

and ¢ (x) =1+ S

<>}

Update the parameters using the
pseudo-values that calculated during
E-step. Calculate

n

tM:Z%, and

i=1

" -1
o1
n E w; — M ,
i=1

then update the following terms from

Eqgs. (8.10)-(B.14):

s+ = Az (3.10)
6(k+1)
yE = (3.11)
M
gl Dieg Xiwi = X iy Wi
n— EZ:‘L:l Wl ’

(3.12)

Iu(k+1) x ﬁ(k+1)_ (313)

1

o+ = [ (k+1) ﬁ(k+1)) ]
(3.14)

where § =3I, 2.

3.3 Epsilon maximum likelihood
Referring to Eq. (2.7) and Eq. (2.8),

we can simplify those equations to reveal

the following relationship in Eq. (B.13):

0\aT

3K —58% = ——;
a%d

(3.15)

Consequently, it is obvious that 3K —
582 > 0. However, during attempts to fit
the NIG distribution to real data and com-
pute sample moments, instances may occur
where 3K — 552 < 0. In such scenarios,
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issues may happen in parameter estimation
using the NIG distribution, as highlighted
by Yoon and Song [9]. According to Yoon
and Song, conventional the MLE method
becomes unstable, and the MOM method
cannot be computed when 3K — 552 < 0.
To address this challenge, Yoon and Song
[9] set up a valuee to substitute for 3K —552
when 3K — 552 < . This approach is re-
ferred to as the g-estimation method, and
we will denote the MLE with 3K — 552
replaced by max{3K — 552, £} as e-MLE.
The specific value for € is chosen by Yoon
and Song [9] through the computation of
&-MLE using 1,000 simulated observations
across arange of parameters. Subsequently,
this process is iterated 1,000 times to cal-
culate the root mean square error (RMSE)
ofe-MLE, and the value ofg is selected to
minimize the overall RMSE. The RMSE is

defined in Eq. (B.16) :

—~ 2
o)

(3.16)

RMSE (é) - % >

=1

where 8,,, is the estimated parameter
value for m'" replication and 6 is the true
parametre value.

3.4 Exponential maximum likelihood
Exponential-estimation method is in-
troduced as an innovative alternative to the
MLE method, with a specific focus on mit-
igating the limitations associated with pa-
rameter estimation for the NIG distribution.
The primary objectives of Exponential-
estimation encompass achieving a more sta-
ble distribution of estimated parameters and
capitalizing on the strengths inherent in the
MLE method, particularly within contexts
involving extreme distributions. We define
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the condition for the estimators of the NIG
parameters, denoted as

—a<f<a a>0,andd > 0,

we write

a=+p%Z+e" and S =e".

Suppose u, B, w, 1 are a new parameteriza-
tion. We can express the pdf of the ex-
ponential maximum likelihood method in

Eq. B.19):
f (%) :ewx/,m

eew+%+ﬁ(x_,u)
ﬂ-w/eQw+(x—,u)2
o (Ve e -,

(3.17)

where u = log (a? — 8%) and w
log (6). We will refer the MLE under this
parameterization as exp-MLE, which was
used in, for example, the study research of
in Kim []11f].

4. The Metropolis-Hasting with ex-
ponential maximum likelihood

The Metropolis Hasting (MH)
method extensively employed in the
analysis of numerous intricate probability
distributions. This approach, introduced
by Metropolis et al. [|1§], is a notable
member of the Markov Chain Monte
Carlo (MCMC) algorithms. In this study,
we apply the MH method with the exp-
MLE method, namely Metropolis-Hasting
exponential maximum likelihood (MH-
exp-MLE) method, to estimate parameters
of the NIG distribution. Moreover, the
MH algorithm has two distributions: the
target distribution () and the proposal
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distribution ¢ (u*, B*, w*, u*|lu, B, w, u).
For the former distribution, we can show
the equation of the target distribution in

Eq. (1))
InL (u,B,w, u) =nln (\/,82 + ew)

= nln () +n (ye™ = ) +B ) xi
i=1

1 C 2w 2
—Ezllln(e +(xi—,u))

+ an In (K1 (eW\/,B2 +e4q/62 + (x; — ,u)Q)) .
i=1

4.1

For the latter distribution, we discussed in
this article that the proposal distribution is
symmetric satisfying. It can be shown in

Eq. (#.2).

q @, B° W', W, Bow,p) =
q (l/l, ,8’ Waﬂlu*’ ﬂ*’ W*9 lu*) . (42)

Therefore, let (u*, B*, w*, u*) be the can-
didate value that is created by the pro-
posal distribution.  The acceptance of
(u*, B*, w*, u*) depended on the proba-
bility min {1, r} when

_ L (M*,B*, W*,ll*|)€) T (M*,ﬁ*,w*,ll*)
L(u,ﬁ,w,ﬂli)ﬂ(u,ﬁ,w,ﬂ)

Let (u~V, pU=D (=D 1, (=1} e a cur-
rent state of Markov chain when ¢ is an iter-
ationt = 1, 2, 3, ..., n and let the initial
valuebe u@, B w© 1O The procedu-
ral steps of the MH algorithm can be delin-
eated as follows:

1. Initial value: (@, B0 O ,O)

2. Repeatfort=1, 2, 3, ..., n.
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2.1

2.2

2.3

24

Generate ¢ = (&1, &92,€3,&4)
from a multivariate normal dis-
tribution characterized by a
zero-vector mean and a covari-
ance matrix denoted by

o2 0 0 0
0 oz 0 0
0 0 o2 0
0 0 0 o}

Furthermore, let

w* =u"Y 4+ gy,
ﬂ* :ﬁ(t_l) +82,

w* =wD 4 g3, and

/-1* :lu(t—l) +ey.
Calculate
p =min{l,r}
where

L, Bt wh, )% m(ut, B, wr, 1)
L(u,B,w,ulx)n (u,B,w,u)

Generate random variable V
from a uniform distribution v ~
U(,1).

Ifv < p then
u®, g0 w0 0 =
u®, g W ),

respectively with probability p.
Otherwise, v > p then

W, B0 0 0 =
W=D, gU=D =D D),

respectively with probability
p-—1.
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The choice of the covariance matrix
is often tuned during the exploration pro-
cess. You might start with an initial guess
for the covariance and then adapt it based
on the acceptance rate of proposed points. If
the acceptance rate is too low, you may need
to increase the exploration by increasing the
variances in covariance and vice versa

5. Simulation

In this research, the R-studio pro-
gram was employed for analysis. For
parts of simulation, we discuss and com-
pare the performance of the MLE,e-MLE,
exp-MLE, and MH-exp-MLE by using the
RMSE, mean and standard deviation. To
obtain the mean and standard deviation, we
can compute from Eq. (5.1) to Eq. (5.2)

14
mean (6) = In 60,

m=1

(5.1)

and

standard deviation (é) =

1
(5.2)
respectively.
We showed the steps for choosing the
€ value in this study as follows:

1. Select dataset.

2. Compute the daily log return of
dataset.

3. Calculate 3K — 552:

3.1 Calculate 3K — 55 for the first
200 consecutive days from the
daily log return data.

3.2 Drop the first day and add a new
day.

3.3 Calculate 3K — 552 for the next
200 consecutive days of the
daily log return data.
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3.4 Repeat steps (3.2) to (3.3) until
the end of the daily log return
data.

4. dentify three distinct sets from step
(3) where 3K — 552 closed to 0.

5. Record the parameter values of the
three distinct sets from step (4).

6. Set the sample size n and the parame-
ter vector 6 = (a, B, 6, i) in each set
of parameter values from step (5).

7. Generate a random sample from the
NIG distribution with various param-
eters from each set of parameter val-
ues and sample size in step (6) and
check the goodness of fit test for
the NIG distribution by using the
Anderson-Darling test at 0.05 signif-
icant level.

8. Estimate the parameters in step (7)
using the e-MLE method by varying
€ values from 0.005 to 0.12 by 0.005.

9. Repeat steps (7) to (8) until we have
1,000 estimated parameter vectors.

10. Calculate the RMSE of parameter

vectors in each set of € values from
step (9).

Plot graph between RMSE and all ¢
values for each parameter.

I1.

12. Select the £ value.

To determine the ¢ value, we adhered
to the approach outlined by Yoon etal. [[10].
We discussed to use the daily log return be-
tween January 1, 2001 and 31 December,
2021. Next, we first computed 3K — 552
with 200 consecutive from the daily log re-
turn of the dataset. Subsequently, we omit-
ted the first day and added a new day at the
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end of the dataset. Following this compu-
tation, we identified three distinct sets, as
illustrated in Table [Il.

Table [l displays the selected param-
eter values in three distinct sets: Firstly,
3K—552. is0.0841 in Set 1. Next, 3K —552
is 0.1046 in Set2. Finally, 3K — 552 is
0.3800 in Set 3.

For each set of parameter values, we
applied the e-MLE method to estimate pa-
rameter «, 3, 6, 4 with & varying from 0.005
to 0.12 by 0.005 using 1,000 simulated
observations. The procedure is repeated
1,000 times The details of each data sets are
shown in Table [I.

Table 1. Parameter values in the three distinct

sets.
Set 1 Set 2 Set 3
a 8.3179 21.0295 4.3862
B -1.3563  2.0793 -1.0337
0 0.0081 0.0457  0.0224
u 0.0006 -0.0112 -0.0046
E(X) -0.0007 -0.0067 -0.0101
Var(X) 0.0011 0.0022  0.0056
S -5.4603 13914  -4.7900
K 49.7195 3.2616 38.3668

The results of all data sets follow
from the procedure of Yoon et al. [[10]. Fig.
1 shows the RMSEs of e-MLE method by
changing from 0.005 to 0.012 by 0.005 for
the three data sets in Table [[.

In Fig. 1, the RMSEs for @ and
the RMSE for 8 exhibit a sharp initial de-
cline followed by a gradual increase in Set
2 around & = 0.03 and 0.04. Conversely, for
6 and u, the RMSEs display a distinct pat-
tern compared to @ and 8, remaining rela-
tively stable except in Set 2. Consequently,
we have chosen to utilize € = 0.035 in our
subsequent studies.
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Fig. 1. The RMSEs of the e-MLE by changing
from 0.005 to 0.012 by 0.005 for the three data
sets in Table 1.
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We demonstrated the steps of param-
eter estimation for simulation studies as fol-
lows:

1. Follow the steps (1) to (3) from the
choosing the ¢ value steps.

2. Identify two scenarios from step (1)

2.1 Scenario 1: 3K =552 close to 0.
2.2 Scenario 2: 3K — 552 > 0.

3. Record the parameter values of the
two scenarios from step (2).

4. Set the sample size n and the parame-
ter vector 6§ = (@, B, 9, u) in each sce-
nario from step (3).

5. Generate a random sample from the
NIG distribution with various param-
eters of each scenario in step (4) and
sample size and check the goodness
of fit test for the NIG distribution
by using the Anderson-Darling test at
0.05 significant level.

6. Set initial value into two cases:

6.1 Case 1: start witha = 1,8 =
0,0=1,u=0.

6.2 Case 2: start with e-MOM.

7. Estimate parameters in step (5) using
the MLE, the e-MLE, the exp-MLE,
and the exp-MH-MLE methods with
the two initial value cases in step (6).

8. Repeat steps (5) to (7) until we have
1,000 estimated parameters vectors.

9. Calculate the RMSE in step (8).

10. Select the appropriate parameter es-
timation method with the smallest

RMSE value.
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We explored two sets of parameter
estimation denoted as Scenario 1 and Sce-
nario 2, respectively. In Scenario 1, we
suppose that 3K — 552 is 0.0628 which ap-
proximates to 0. In the contrast, Scenario 2
involved a much larger parameter value of
3K — 58 that is 15.7818.

Table [ provides the parameter val-
ues and the first four moments for both sce-
narios.

Table 2. Parameter values are used in simula-
tions: 3K — 552 = 0.0628 in Scenario 1 and
3K — 552 = 15.7818 in Scenario 2.

Scenariol  Scenario2
a 24.5794 18.0046
B -2.2436 0.6146
o 0.0546 0.0285
u 0.0047 0.0026
E(X) -0.0003 0.0036
Var(X) 0.0022 0.0016
S -1.1743 0.6066
K 2.3192 5.8738

In each scenario, we generate 1,000
observations to compute estimates, repeat-
ing this process 1,000 times for robustness.
Additionally, we consider the impact of the
initial value in the MLE by considering two
sets. In Case 1, the maximization procedure
startsata = 1, B =0, = land u = 0.
Conversely, in Case 2, we initiate the proce-
dure at e-MOM because the MOM is com-
monly used as the initial values for numer-
ical optimization.

For the e-MOM, we referred to the
MOM method in the Eq. (B.1]). Let us exam-
ine in term of 3K — 552 which must be posi-
tive. In the contrast, we sometimes observe
that 3K — 552 is negative. Therefore, we re-
placed 3K —55? with max{3K —552, £} that
we call £ -MOM. We set up the £ = 0.035
in all scenarios.
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Table 3. RMSE of estimations in Scenario 1: Initial values are @ = 1,8 =0,6 = 1, u = 0 in Case 1
and e-MOM in Case 2.

a B 0 u

Case 1: Initial valuesarea =1,8=0,6 =1,u=0

MLE 19.0940 2.2398 0.3409 0.0047
&-MLE 10.4691 298.4482 0.1812 0.3949
exp-MLE 22.1614 2.2409 0.2037 0.0047
MH-exp-MLE 5.8320 1.9376 0.0081 0.0034
Case 2: Initial values are e-MOM

MLE 6.4009 1.0523 0.0118 0.0021
&-MLE 19.0909 333.1603 0.1055 0.1499
exp-MLE 19.7468 1.9377 0.0235 0.0030
MH-exp-MLE 5.8911 1.9367 0.0082 0.0034

Table 4. Means and standard deviations of estimators in Scenario 1: Initial values are @ = 1,8 =
0,6 =1,u =01n Case 1 and e-MOM in Case 2.

a B 0 u

True value 24.5794 -2.2436 0.0546 0.0047
Case 1: Initial valuesarea =1,8=0,0=1,u =0
MLE 34.1358 -3.3399 0.0736 0.0069

(6.0661) (2.5469) (0.0113) (0.0049)

15.4982 -323.9366 0.1641 0.2452
&-MLE

(-14.3329) (-358.5014) (-0.1459) (-0.1905)

4.7301 -0.3059 0.0311 0.0017
exp-MLE

(0.1416) (0.2267) (0.0012) (0.0015)

18.6505 -0.3061 0.0466 0.0013
MH-exp-MLE

(2.1514) (0.2289) (0.0039) (0.0013)
Case 2: Initial values are e-MOM
MLE 25.0735 -2.3433 0.0555 0.0049

(3.3074) (1.7490) (0.0057) (0.0034)

0.2948 -323.9336 0.1641 0.2452
&-MLE

(0.5055) (358.5014) (0.1459) (0.1905)

15.4982 -0.3059 0.0311 0.0017
exp-MLE

(14.3329) (0.2267) (0.0012) 0.0015

18.5924 -0.3070 0.0465 0.0013
MH-exp-MLE

(2.1401) (0.2298) (0.0040) (0.0013)
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Table 5. RMSE of estimations in Scenario 2: Initial values are @ = 1,8 =0,0 = 1, u = 0 in Case 1

and e-MOM in Case 2.

a B 0 u
Case 1: Initial valuesarea =1,8=0,6 =1,u=0
MLE (12.5879) 0.6132 0.3627 0.0012
&-MLE 16.9941 0.6140 0.8812 0.00119
exp-MLE 15.6627 0.6136 0.2257 0.0012
MH-exp-MLE 4.3758 0.4718 0.0029 0.0008
Case 2: Initial values are e-MOM
MLE 1.4162 0.9978 0.0012 0.0011
&-MLE 18.0290 178.9601 0.0946 0.0679
exp-MLE 12.9341 0.4737 0.0065 0.0008
MH-exp-MLE 43073 0.4713 0.0029 0.0008

Tables [ and [ illustrate the impact
of initial values on estimation. Notably, the
MLE demonstrates a significant improve-
ment from Case 1 to Case 2, as evident
from the bold-faced numbers in Table . In
contrast, the MH-exp-MLE is less affected
by initial values compared with the MLE;
nevertheless, the means of MH-exp-MLE in
Table § converge closer to the true values
for all parameters. Overall, the best perfor-
mance for fitting the Scenario 1 is the MH-
exp-MLE method.

Tables [ and [ are the RMSEs and
the means and the standard deviations of the
parameter estimation method in Scenario 2,
respectively. In this scenario, the RMSEs
are much smaller that those with the Sce-
nario 1, since 3K — 552 is much larger than
0 in this scenario. Note that, the RMSEs in
Table 5 and the means and standard devia-
tion in Table 6 of the MLE are very large in
Case 1. This indicates that the MLE can of-
ten provide etremely large value. The per-
formance of the MLE, e-MLE, exp-MLE,
and MH-exp-MLE are similar. However,
the MH-exp-MLE still shows the best per-
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formance for all parameters to fit the data in
the Scenario 2.

6. Application

In a real data application, we esti-
mated the parameters of the NIG distribu-
tion by using the MLE, the e-MLE, exp-
MLE, and MH-exp-MLE methods. These
methods were specifically applied to ana-
lyze the daily log-return of the bitcoin over
a peroid spaning from January 1, 2018 to
December 31, 2018. The total 365 obser-
vations were recorded. The price of bitcoin
data is illustrated in Fig.2.

For the analysis, we divided the Bit-
coin data into two distinct parts. In the
first part, we initialized the parameters with
a=1,6=0,0 =1and g = 0. In the sec-
ond part, an alternative set of initial values
was established using the e-MOM method.
We fitted the NIG distribution, which has
been recommended as a suitable model for
such financial data. Additionally, we con-
ducted AD test statistic to assess the appro-
priateness of the NIG distribution in rep-
resenting the characteristics of the bitcoin
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Fig. 2. The price of the bitcoin data.

dataset. The AD test statistic, along with
corresponding p-values, served as criteria
for model fitting and facilitated the com-
parison of the efficacy of each estimation
method. Both of cases of parameter values
for each estimation method are presented in
Table f7.

The AD test statistic and p-value
were presented in Table 8. The method
of estimating in this way shows that the
method with the smallest AD value and
highest p-value performed the best [L6].
In Table [§, the bold-faced p-values are
found to be smaller than 0.05, accompa-
nied by higher AD values, for the e-MLE
in both Case 1 and Case 2. This discrep-
ancy with the acknowledge in [[16] indicates
that the e-MLE method is not well-suited
for estimating Bitcoin data in this study.
Conversely, the MH-exp-MLE exhibits the
most favorable performance, as evidenced
by the smallest AD value and the highest
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p-value when compared to other methods.
Consequently, the MH-exp-MLE is deemed
suitable for accurately estimating parameter
values in Bitcoin data.

7. Conclusion

The MH-exp-MLE method, com-
bined with the NIG distribution, is a highly
effective approach for modelling and fitting
Bitcoin data. This study examines the pe-
riod from January 1, 2018, to December
31, 2018, providing valuable insights into
the behavior of the cryptocurrency during
this time. The choice of the NIG distribu-
tion is noteworthy due to its semi-heavy-tail
nature and the flexibility it offers with its
four parameters. In financial modelling, us-
ing distributions that accurately capture the
complex dynamics of asset prices is crucial,
and the NIG distribution has proven effec-
tive for this purpose. However, a challenge
in this process is directly deriving the like-
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Table 6. Means and standard deviations of estimators in Scenario 2: Initial values are @ = 1,8 =

0,6 =1,u =0in Case | and e-MOM in Case 2.

a B 0 u

True value 18.0046 0.6146 0.0285 0.0026
Case 1: Initial valuesarea =1,8=0,6 =1,u =0

5.4062 0.0013 0.3912 0.0035
MLE
(0.0053) (0.0036) (0.0007) (0.0011)

1.0000 0.0006 0.9097 0.0032
e-MLE

(0.0000) (0.0016) (0.0012) (0.0012)

1.1410 1.1851 1.1537 1.1325
exp-MLE

(2.2864) (2.4755) (2.4616) (2.4072)

13.6560 0.1575 0.0258 0.0030
MH-exp-MLE

(1.8586) (0.2915) (0.0019) (0.0009)
Case 2: Initial values are e-MOM

18.8113 0.6746 0.0294 0.0026
MLE

(1.5765) (1.2445) (0.0012) (0.0014)

15.4982 -323.9336  0.1641 0.2452
e-MLE

(14.3329) (358.5014)  (0.1459) (0.1905)

5.0600 0.1519 0.0220 0.0030
exp-MLE

(0.2150) (0.2795) (0.0008) (0.0010)

13.7067 0.1580 0.0258 0.0030
MH-exp-MLE

(1.8301) (0.2916) (0.0019) (0.0009)

lihood function within the MH-exp-MLE
method due to the Bessel function, making
the equation complex to solve. To over-
come this challenge, we resort to using the
natural logarithm, a common practice in sta-
tistical modeling, enabling a more manage-
able and efficient computation of the likeli-
hood function within the exp-MLE method
framework. Furthermore, in applying this
method to real data, the outcomes stand out
as the most fitting and appropriate for the
given Bitcoin data. This is evident in both
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initial cases, as it yields the smallest AD
value and the highest p-value.

8. Discussion

An inherent difficulty faced when
utilizing Maximum Likelihood Estimation
(MLE) for estimating parameters in the
Normal-Inverse Gaussian (NIG) distribu-
tion is the vulnerability of estimates to in-
stability. This instability becomes particu-
larly pronounced when working with lim-
ited data or encountering extreme observa-
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Table 7. The value of parameter estimation of the NIG distribution in different initial value: @ =
1,=0,6=1,u =01n Case 1 and e-MOM in Case 2.

a B 0 u

Case 1: Initial valuesarea =1,8=0,6 =1,u=0

MLE 23.3752 4.6788 0.0415 0.0782
&-MLE 35.1148 4.6789 0.0415 0.0782
exp-MLE 4.6205 1.0319 0.0222 0.0815
MH-exp-MLE 15.9283 1.0141 0.0314 0.0823
Case 2: Initial values are e-MOM

MLE 15.2142 3.4215 0.0297 0.0798
&-MLE 46.0007 3.4215 0.0297 0.0798
exp-MLE 4.6205 1.0319 0.0222 0.0815
MH-exp-MLE 16.3284 1.1608 0.0318 0.0821

Table 8. The AD test statistics and p-value of the goodness of fit test for the NIG distribution in
different initial value: @ =1,8=0,6 = 1, u = 0 in Case 1 and e-MOM in Case 2.

AD value p-value
Case 1: Initial valuesarea =1,8=0,0 =1,u =0
MLE 1.1121 0.3034
e-MLE 3.0771 0.0250
exp-MLE 0.9240 0.3997
MH-exp-MLE 0.8956 0.4169
Case 2: Initial values are e-MOM
MLE 0.9617 0.3780
e-MLE 17.8740 0.0000
exp-MLE 0.9240 0.3997
MH-exp-MLE 0.8878 0.4217
tions. To address this issue, MH-exp-MLE even in challenging scenarios where stan-
introduces an innovative estimation frame- dard methods falter.

work aimed at bolstering stability. Di-
verging from traditional MLE techniques,
MH-exp-MLE incorporates adjustments to
foster more robust parameter estimations,
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However, this approach has lim-
itations, especially in high-dimensional
spaces, where exploring the distribution be-
comes more arduous. In such cases, the ac-
ceptance rate of proposed adjustments may
diminish, resulting in poor mixing and pro-
tracted convergence times. To overcome
this, we propose exploring alternative pa-
rameter estimation methods, such as those
employing the Gibbs algorithm, in future
endeavors.
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