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ABSTRACT

This work presents a new approach to improving the efficiency of Evolutionary
Algorithms (EA) in extremely noisy function landscapes. Statistical Learning, Taguchi analysis
and normalization, and Data Envelopment Analysis based Ranking (DEAR) are used to provide
a hybrid technique that provides a complete framework for EA parameter adjustment. The study
examines the effects of four important EA parameters on function yield and computing time:
convergence, mutation rate, population size, and random seed. Taguchi analysis and
normalization is used to generate an efficient experimental design that covers different
combinations of parameter values, allowing a methodical exploration of the parameter space.
Subsequently, the DEAR approach is employed to prioritize each set of parameters according
to certain optimization criteria. To further complicate matters, the optimization goals and EA
parameters are both modeled using Statistical Learning approaches. There has been a lot of
testing with noisy functions of artificial landscapes with three different types: single-peak,
curved-ridge, and multi-peak. Assuming a normally distributed distribution with a mean of 0
and standard deviations of 0.05 and 0.2, noise presents practical obstacles to optimization. When
compared to more traditional approaches of parameter tuning, the suggested hybrid strategy
clearly outperforms the competition in terms of computing time, function yield, and mean and
standard deviation of both metrics. The technique shows improved resilience and adaptability
across varied noisy environments and more successfully finds optimal parameter
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configurations, according to the results. By demonstrating its flexibility to meet evolving
optimization needs, sensitivity assessments provide more evidence of the suggested
methodology's dependability. Finally, the research presents a state-of-the-art hybrid method for
tweaking evolutionary algorithm parameters, which considerably improves upon previous
efforts. In particular, when it comes to dealing with complicated and noisy optimization
scenarios, the offered technique stands out due to its capacity to continuously produce greater
performance, making a vital addition to the optimization community.

Keywords: Artificial landscape; Data Envelopment Analysis based Ranking (DEAR);
Evolutionary algorithm; Statistical learning; Taguchi analysis; Parameter tuning

1. Introduction

Evolutionary =~ Algorithms, often
known as EAs, are a remarkably adaptable
and effective optimization method that may
be used for a wide variety of applications.
The setting of important parameters like
convergence, mutation rate, population size,
and random seed has a considerable impact
on the functioning of these systems [1-3]. In
the presence of noisy function landscapes,
which are characteristic of optimization
problems that occur in the real world, the
difficulty of locating optimum parameter
configurations becomes more obvious.

The incorporation of Multi-Criteria
Decision Making (MCDM) incorporates a
degree of sophistication into our approach by
concurrently taking into consideration
numerous objectives that are in competition
with one another. In this way, it is ensured
that the parameter configurations that are
selected not only maximize the individual
criteria, but also achieve a balance between
the conflicting objectives. With the use of the
MCDM framework, it is possible to conduct
a more thorough analysis of the trade-offs
that are involved in parameter tuning, which
ultimately results in optimization solutions
that are more robust and well-rounded.

This study presents an innovative
and complete methodology for maximizing
the performance of EAs wunder the
complicated constraints provided by noisy
function landscapes. The methodology
includes a number of different approaches.

Taguchi analysis and normalization,
Data Envelopment Analysis based Ranking
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(DEAR), and Statistical Learning are the
three components that make up this
methodology [4-6]. Its purpose is to tackle
the complex issue of parameter tuning in a
methodical and effective manner.

The most important contribution that
this study makes is the creation of a hybrid
optimization technique that incorporates
Taguchi analysis and normalization, DEAR,
and Statistical Learning. This methodology
provides a synergistic approach to the
problem of parameter tuning in evolutionary
algorithms, which has been a hurdle for a
very long time. A deeper understanding of
EA behavior in noisy settings may be
obtained via the utilization of this technique.
This is accomplished by systematically
exploring the parameter space and taking into
consideration the influence of important
parameters on both function yield and
computational time [7-9].

An optimum experimental design is
constructed by the utilization of Taguchi
analysis, which is utilized in the study to
conduct a systematic investigation of the four
important EA parameters [10]. Following
this, the DEAR approach is utilized to rate
the effectiveness of parameter settings
according to a number of different
optimization criteria, so delivering an all-
encompassing evaluation [11]. In addition,
tools from the field of statistical learning are
utilized in order to discover the intricate
correlations that exist between optimization
aims and EA  parameters, thereby
contributing to a more profound
comprehension of the dynamics that lie under
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the surface.

Noise is represented as being
normally distributed with the mean of zero
and different standard deviations or
NID(0,c) over the entirety of the study.
Noisy functions of diverse natures, each with
distinct  variations, are taken into
consideration during the overall
investigation. The application of the findings
to real-world optimization settings is
improved by the realistic description of noisy
landscapes that were used.

Detailed information on the artificial
landscape, the hybrid Taguchi-Statistical
Learning-DEAR approach, the experimental
setting, and the findings that were achieved
are described in the following sections. In
addition to highlighting the superior
performance of the approach in terms of
mean and standard deviation for function
yield and computational time, the results also
position it as a promising advancement in the
field of evolutionary algorithm parameter
tuning, particularly when it comes to the
tuning of parameters under noisy conditions.

2. Noisy Artificial Landscapes

The performance of optimization
algorithms under controlled settings may be
evaluated using artificial landscapes, which
serve as vital testbeds for optimizing
algorithms. In this part of the article, we will
discuss the process of creating artificial
landscapes and the features of these
landscapes, which are intended to simulate
real-world optimization difficulties. The
hybrid technique that has been presented for
optimizing evolutionary algorithms (EAs)
across a variety of scenarios may be
evaluated thanks to these landscapes, which
are of great assistance.

A single, clearly defined peak is the
defining characteristic of the single-peaked
landscape, which is a representation of
optimization issues (Fig. 1). In situations
when there is only one optimal solution, this
structure is frequently found in the issue. The
single-peaked landscape is created in three
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separate forms, each of which incorporates
varying degrees of complexity in terms of the
smoothness of the terrain and the sharpness
of the peak.
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Fig. 1. Times New Roman size 10 point. Same is
true for remaining figures.

A more complex structure is
introduced by the curved ridge landscape,
which consists of a continuous curved ridge
along which optimal solutions are located
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(Fig.2). This landscape is a reflection of
optimization issues that involve several
optimum zones that are interrelated. Once
more, three distinct variations of the curving
ridge landscape are built in order to capture
and convey varied degrees of intricacy.
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Fig. 2. Curved ridge artificial landscapes: Eqgs.
(2.4), (2.5) and (2.6), respectively.

There are several optimum solutions
or local optima that are represented by the
multi-peak landscape (Fig. 3), which
indicates optimization problems. Problems
that occur in the real world and include a
variety of conflicting agendas sometimes
involve such landscapes. During the
generation process, three distinct variations
of the multi-peak landscape are produced,
each of which features a distinct arrangement
and distribution of peaks.
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Fig. 3. Multi-peak artificial landscapes: Eqgs.
(2.7), (2.8) and (2.9), respectively.

It is necessary to incorporate noise
into each landscape in order to emulate the
uncertainties that are prevalent in real-world
optimization applications. For the purpose of
modeling the noise, random variables with a
mean of zero and a normal distribution are
used. 0.05 and 0.2 are the two separate
standard deviations that are utilized in order
to visually illustrate the various levels of
noise intensity. An accurate portrayal of
noisy landscapes with varying degrees of
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complexity may be achieved through the use
of this method.

Visual representations are supplied
for each nature and variety in order to
facilitate the process of comprehending the
landscape structures. In order to demonstrate
the topography of the landscapes, contour
plots and three-dimensional surface plots are
utilized. These plots highlight the peaks,
ridges, and valleys. By providing useful
insights into the issues that are offered by
each artificial environment, these
visualizations serve as powerful tools.

The  generation of artificial
landscapes serves two purposes: first, it
offers a controlled environment for
systematically evaluating the proposed
methodology, and second, it makes it easier
to comprehend how the hybrid approach
reacts to different optimization problem
structures and noise levels. Both of these
functions are accomplished through the
generation of artificial landscapes.

At the end of this section, an
emphasis is placed on the significance of
artificial landscapes in the appraisal process.
In the following sections, we will make use
of various landscapes in order to evaluate the
effectiveness of the hybrid Taguchi-
Statistical Learning-DEAR-MCDM
technique in improving EAs while taking
into account the impact of noise and a variety
of landscape structures.

3. Taguchi-Statistical Learning-DEAR
Methodology (TSL-DEAR)

3.1 Data Envelopment Analysis based
Ranking (DEAR)

To determine which decision-making
units (DMUs) in a collection are the most
efficient, Data Envelopment Analysis (DEA)
is a powerful tool. DEAR, an expansion of
DEA, ranks these units systematically
according to their efficiency scores, taking
the assessment to the next level.
Understanding and  measuring  the
performance of entities is vital in different
domains, including healthcare, operations
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management, and finance, where this method
is particularly beneficial [12, 13].

The first step in DEAR is to give
each DMU an efficiency score. A useful tool
for performance measurement, these scores
indicate how well each unit uses its inputs to
create outputs. In order to rank the DMUs,
DEAR uses the efficiency scores [14]. The
examined set has a distinct hierarchy of
performance, with the highest efficiency
ratings corresponding to the most efficient
units.

DEAR does more than just rate units;
it also finds the most efficient entities' best
practices. Organizations may get valuable
insights from high-performing individuals
and use tactics to boost their own efficiency.
By providing a ranking, DEAR makes
benchmarking easier, letting businesses see
how they stack up against competitors. This
data can help decision-makers find places to
improve and how to best allocate resources
[15].

Banking, healthcare, and education
are just a few of the many fields that make
use of DEAR. For example, DEAR may be
used in the banking industry to evaluate
various departments' performance, which in
turn can help with allocation of resources and
process improvement strategies [16, 17]. In
the healthcare industry, DEAR may help
evaluate clinics and hospitals to find the most
effective ways to improve patient care.

There are several difficulties with
using DEAR, despite the fact that it gives
useful information. During the DEAR
process, it is important to carefully analyze
issues like as input/output sensitivity, model
choice, and probable outliers. We will
explore case studies, techniques, and new
trends in performance evaluation and
efficiency ranking utilizing Data
Envelopment Analysis as we dig deeper into
the subtleties of DEAR in the following
sections.
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3.2 Taguchi analysis and normalization

The Taguchi signal-to-noise ratio
proves to be a very effective analytical tool
when trying to improve operational
processes and get useful insights. Genichi
Taguchi's technique goes above and beyond
conventional data analysis by providing a
unique vantage point from which to assess
the efficacy and quality of operational inputs
and outputs.

A signal-to-noise ratio (SN), which
goes beyond simple numerical values as an
extra measure, 1s transformed from raw data
as part of Taguchi's process. In order to
differentiate between the ideal signal, which
represents the intended outcomes, and the
undesirable operational noise, which may
reduce efficiency, Sensor Network (SN)
technology is wused. Taguchi's approach
reveals hidden details and patterns in data by
focusing on the important information rather
than the irrelevant details. Because of this,
we can grasp the dynamics of processes with
higher complexity [18, 19].

Compared to traditional
assessments, Taguchi's technique performs
better when factors like processing time and
landscape yields are considered. The SN
gives a far more accurate picture of the
variables influencing these outputs by
eliminating operating noise and isolating the
ideal signal. This process allows for a deeper
comprehension, providing direction for
enhancements and optimizations that boost
overall productivity.

Not only are the Taguchi noise-to-
signal-to ratios useful for statistical purposes,
but they are also indicators for evaluating
operational excellence. Organizations may
uncover hidden efficiencies and make
educated decisions by using a methodology
that involves dissecting operational data and
focusing on the optimum signal. With the
ongoing discussion, Taguchi's SN will have
a major influence, helping to establish a
better grasp of the complex operational
dynamics inherent to the noisy artificial
landscapes.
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While response analysis has always
made use of the mean of responses (y;) for n
repetitions, there is a growing interest in
response variability in the modern day. As an
additional metric for the available variance,
Taguchi modified the repeatability data. A
signal-to-noise ratio, abbreviated as SN, is
used to describe the phenomenon described
above. This leads SN to collect a mountain of
data that is identical to itself. Three data
classes—'"nominal is optimal (NTB)," "small
is better (STB)," and "large is better
(LTB)"—form the basis of the SN. Here are
the particular SN mathematical models that

were used for the STB (SNgtg): in this
research:
n
SNgpp=-— lO]Oglo[Z ylz] (3.1
1=

When optimizing processes with an
emphasis on landscape yields and computing
time, the integration of Taguchi Signal-to-
Noise Ratio (SN) and normalization
produces notable results. Taguchi's method
offers a thorough framework for dealing with
these important output aspects; it is well-
known  for  improving  operational
procedures.

For this purpose, the Taguchi SN is
an essential analytical tool; it measures
system performance by comparing the
landscape yields—the intended signal—to
the noise—variability or deviation. An
alternative viewpoint on operational output
quality is provided by this measure. For input
variables like landscape yields and
computational time, which might have
different units and scales, normalization is an
important tool to have on hand, along with
the signal-to-noise ratio.

The impact of each component may
be fairly assessed by normalization, which
involves adapting each variable to a similar
scale. This eliminates the influence of
various scales. If landscape yields and
computing time are critical output factors in
an optimization process, then this is of
paramount importance. Applying
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SN Ratio
optimization

normalization and Taguchi's
together strengthens the
procedure [20].

When comparing traditional
evaluations to the combined Taguchi
approach, the latter performs better in terms
of computing time and landscape yields.
With normalization at its side, the SN makes
it easier to see how different factors affect
landscape yields and reduces the effect of
operational noise on computing time. The
intricate dynamics of landscape results and
computing efficiency may be better
understood with the help of this all-
encompassing technique. SN normalization
below is an exceptionally effective method
for reducing the size of data sets while
preserving proportionality or similarity in
their dimensions.

max( SN ’.) —SN,.

”"”"ki: max( SNI.) - min( SNI.) ’ 32)

where SN norm. > is the normalized value for
ki

the value associated with the kth DMU and
output in column Z, SN, . is the value of the

ith output in the kth DMU, max(SN ) and
min(SN ) are the maximal and minimal SN

levels for all DMUs of the ith output.

Optimizing landscape yields while
reducing computing time is the practical
focus of the integrated method, which directs
advancements and optimizations. For a more
precise evaluation of aspects impacting
landscape results and computing efficiency,
it is possible to normalize input variables in
Taguchi experiments. This makes the studies
less vulnerable to scale changes.

The combination of Taguchi SN and
normalization is, last but not least, quite
effective when optimizing processes with a
close watch on landscape yields and
computation time. This comprehensive
approach enables the attainment of peak
performance in complex operational settings
by ensuring improved output quality and
efficient utilization of computing resources.
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3.3 Statistical learning

The ever-evolving area of statistical
learning uses computer tools and statistical
methodologies to derive meaningful insights
from data. Statistical learning's fundamental
goal is to instruct models to detect patterns in
data and use those patterns to generate
predictions or judgments. Discovering
underlying structures, establishing
correlations between variables, and drawing
educated conclusions are all part of this
process.

When an algorithm is trained on a
labeled dataset, it learns the connection
between input characteristics and their
associated output labels. This process is
called supervised learning. Classification
(putting data into predetermined groups) and
regression (predicting a continuous result)
are two examples of typical tasks. Without
prior knowledge of the results, unsupervised
learning attempts to classify or find patterns
in unlabeled data. Examples of common
unsupervised learning problems include
dimensionality reduction and clustering.

Statistical learning incorporates a
wide variety of models, from simple linear
models to advance non-linear techniques.
Models such as neural networks, decision
trees, and support vector machines may
capture complex relationships within the
data.

The bias-variance tradeoff is a
cornerstone of statistical learning. Variance
measures how much a model changes in
response to changes in the training data,
whereas bias describes how often the model
under- or overestimates. Finding the sweet
spot is essential for the best possible model
output.

When testing a model on data it has
never seen before, robust evaluation methods
like cross-validation are invaluable. You can
see how well the model applies to new data
by looking at metrics like accuracy,
precision-recall curves, or mean squared
error.
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The effectiveness of statistical
learning models relies heavily on the
engineering and skillful selection of features.
If you want your model to be better at
capturing patterns and making predictions,
you need to find the right characteristics and
change them.

Following this, we will examine the
DEAR and Taguchi Analysis and
Normalization in detail, as well as case
studies and new developments in statistical
learning, so that you can fully grasp its
theoretical foundations, practical
applications, and revolutionary insights that
it can provide.

3.4 Novel method of TSL-DEAR

Identification of optimal parameter
levels is accomplished by the utilization of
Taguchi analysis, normalization, data
envelopment analysis based ranking
(DEAR), and statistical learning, which are
all strengths of the hybrid technique that has
been provided. The parameters in complex
systems may be optimized using this all-
encompassing method, which provides a
framework that is both systematic and
efficient.

For Taguchi analysis and
normalization;, the process begins with
Taguchi Analysis, which makes use of its
rigorous experimental design principles to
conduct a systematic investigation into the
effect that parameters have on the
performance of the system. While this is
going on, normalization is being used in
order to normalize the range of parameters,
which guarantees that the evaluation will be
fair and objective. The combination of these
two factors makes it possible to determine
the ideal parameter settings, hence reducing
the influence of changes and increasing the
robustness of subsequent analyses.

For Data Envelopment Analysis based
Ranking (DEAR); after Taguchi analysis and
normalization, the next phase involves using
DEAR to evaluate the efficiency of the
system. DEAR is responsible for
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determining the relative effectiveness of
decision-making units (DMUs) by utilizing
the parameters that have been tuned. A clear
hierarchy of performance is provided by this
efficiency rating, which identifies units that
demonstrate the most effective operational
procedures. The DEAR acts as a great
benchmarking tool, assisting decision-
makers in gaining a grasp of the efficiency
landscape and  possible areas for
improvement [21].

The DEA study usually uses two
popular models: Banker, Charnes, and
Cooper (BCC)'s Variable Returns to Scale
model and CCR's Constant Returns to Scale
model. These models behave differently
depending on data and outcome. This study
evaluates utilizing CCR and BCC models.
The CCR model assumes all DMUs have the
same scope of operation. The efficiency
boundary is a CCR model hyperplane. An
operationally effective DMU is on the
boundary line; one below is inefficient. As
the DMU moves away from the barrier, its
performance score decreases.

In this research, the following model
provides an initial assessment of efficiency.
The best practice frontier is set up by it, and
other DMUs use it as a standard for
efficiency (HIE,RS). Based on all m inputs and

s outputs, the mathematical model of the kth
DMU looks as follows in this calculation:

3 k
Min 6 CRS

S.T
n
) k -
zl)uj)«[.j < HCRSxik ci=1,2,...,m
J:

n

j:l/l‘l"yf.l' 2 yrk; r=1~2,...,5 (33)
0, 4,20, j#0.
The coefficients and variables

employed to evaluate and enhance the
effectiveness of decision-making units via
the DEA are presented in Table 1.
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Table 1. Definition of DEA coefficients and

variables.
Coefficients
and Definition
Variables
2 Intensity of DMU j*
» Value of input factor i™ at the j" DMU
Xy Value of input factor i at the k* DMU
Y Value of output factor 7" at the i DMU
v Value of output factor 7" at the £ DMU

Overall efficiency rating value of at the "
DMU

For statistical learning (multiple
regression); the last step adds statistical
learning,  especially  multiple  linear
regression with an expansion of interaction
effects, into the hybrid technique (Eq. (3.4)).
Using the optimal parameter settings and
efficiency rankings as a foundation, multiple
regression models are created in order to
make predictions about the outcomes of the
system. This predictive capacity provides
insights into how fluctuations in parameters
affect the overall performance of the system,
making it a significant tool for decision-
making and strategic planning applications.

Kk —
6CRS_

Pot P Xyt P Xyt hXe
+ﬁ4XD +ﬂ5XAXB+ﬁ5XAXB

X X +B.X (34)

+ﬂ6XAXC +ﬂ7 AT D 8

BXC

+B.X X

9B I)+ﬁ]0X

CXI)+ €

where X o Xp XX, are EA parameters

levels and the respective parameters of 4, B,
C, and D, are convergence, mutation rate,
population size, and random seed.

Multiple linear regression analysis
often involves determining predictor variable
significance. Marginal and partial tests are
often used for this. Partial tests take
additional model variables into account to
establish predictor variable significance.
These analyses reveal how each predictor
variable affects the dependent variable. In
contrast, marginal tests evaluate a predictor
variable without considering other model
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variables. The independent contribution of
each predictor variable to the dependent
variable is assessed. Multiple linear
regression models need marginal and partial
tests to understand the connections between
predictor variables and the dependent
variable, helping researchers find relevant
predictors and interpret results more
precisely. The T-test is often used as a partial
test in multiple linear regression analysis to
assess predictor variables' significance while
taking into account model variables. By
examining whether a predictor variable's
coefficient varies substantially from zero, the
T-test indicates (Eq. 3.5) if it affects the
dependent variable statistically. Dividing the
calculated coefficient by its standard error
yields the test statistic, the t-value; where b;
is determine via the regression analysis.
A t-value's p-value indicates its probability
under the null hypothesis, which claims that
the coefficient is zero. A modest p-value,
generally below 0.05, shows a substantial
relationship between the predictor and
dependent variables. T-tests for each
predictor variable in the model help
academics identify which factors explain
dependent variable variations in a unique and
statistically meaningful manner. This
improves understanding of the dataset's core
linkages.

bi_ hypothesized value of ﬂi
t.= — -,
/ Standard Error ( b )
J

(3.5)

From diagram (Fig.4) below, the
research procedure involves investigating the
optimization of artificial landscapes using
evolutionary algorithms, Taguchi statistical
learning, data envelopment analysis, and
multiple regression. Initially, the varying
levels of four EA factors are defined as:
Convergence, Mutation rate, Population size,
and Random Seed. Subsequently, algorithms
from MATLAB codes were proceed to
sophisticated implement for ascertaining
optimal values (yield) and computing time of
artificial landscapes while accommodating
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inherent noise. Then, data were transformed
via Taguchi statistical learning into signal-to-
noise ratios, coupled with DEA to evaluate
efficiency via CCR, thereby delineating the
best practice frontier. Furthermore, the data
also underwent multiple regression to
establish intricate relationships between
DEA efficiency and EA parameters,
conducting meticulous significance tests to
discern the nuanced impact of each
parameter. Finally, guided by insights
gleaned from the regression analysis, we
undertake EA optimization endeavors to
pinpoint optimal parameter configurations.
This methodical and comprehensive
approach aims to streamline the optimization
process of artificial landscapes by
amalgamating diverse statistical and
optimization methodologies.

Select EA parameter levels

v

Generate treatment via experimental designs

v

Evaluate dual response of function yield and
computing time in each artificial landscape.

v

Transform responses into Taguchi signal to noise ratio.

v

Determine the efficiency via CCR with best
practice frontier in each treatment

v

Ascertain the significance of EA parameter
via marginal and partial tests

v

Apply statistical learning via the multiple regression

v

Determine the optimal parameter levels from
multiple regression via EA optimization

Fig. 4. Diagram of Taguchi-Statistical Learning-
DEAR Methodology (TSL-DEAR).
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In order to ascertain the resilience and
efficacy of the experimental configuration,
an initial investigation was undertaken to
examine the influence of different
parameters of the evolutionary algorithm
(EA) on the optimization procedure. The
initial inquiry encompassed a methodical
manipulation of critical parameters,
including mutation rate, crossover rate, and
population size, with continuous monitoring
of the resultant performance metrics. The
objective was to identify parameter
configurations that produced favorable
results in terms of convergence speed and
solution quality by means of experimental
design and analysis. Particular attention was
devoted to the values 0.05 and 0.075 for the
mutation rate parameter (Table 2). This
decision was made on the basis of
preliminary experimental findings that
suggested these values exhibited favorable
performance characteristics across various
instances of the problem. The initial
investigation functioned as a fundamental
basis for the subsequent optimization trials,
providing direction for the choice of
parameter values and guaranteeing the
effectiveness of the methodology in fulfilling
the research goals.

Before  implementing  Taguchi's
method, a two-level factorial design was
constructed, consisting of sixteen treatments.
These treatments represented various
combinations of critical parameters,
including mutation rate, crossover rate, and
population size. The objective of this
methodical investigation was to conduct a
comprehensive analysis of the impacts that
these parameters had on the optimization
procedure. Following this, function yield and
computation time, two crucial responses,
were evaluated for each of the generated
treatments. In order to assess the efficacy of
every treatment, Taguchi signal-to-noise
ratio analysis was applied. This technique
enabled the conversion of response values
into output values corresponding to
individual DMU. By employing this
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methodology, it was possible to determine
the most effective parameter configurations
that reduced the variability of the responses,
thus improving the evolutionary algorithm's
overall performance.

Table 2. Example of generated data of dear
in case of curved ridge optimum.

Generated Data of DEAR Methodology

Parameters pf Evolutionary Vield Result COlTni]i::;mg
Algorithm (EA) (sccond)
5 8 qﬁ =]
S S @ 3
5} =} @ . . . .
oh g S g Yield Yield Time  Time
E g % g M 2 M (o3
(=9 1
] = £ ~
0.0001 0.05 15 0 -1572  -1570 3.28 3.27
0.001 0.05 15 0 -1579 -15.69 3.43 3.20
0.0001 0.075 15 0 -1574 -15.70 3.19 3.27
0.001 0.075 15 0 -1563 -1572 3.25 3.23
0.0001 0.05 20 0 -15.65 -15.67 3.20 3.27
0.001 0.05 20 0 -1571 -15.71 3.23 3.32
0.0001  0.075 20 0 -15.65 -15.63 3.26 3.21
0.001 0.075 20 0 -15.73  -15.65 3.34 3.25
0.0001 0.05 15 2 -1575 -1572 3.30 3.38
0.001 0.05 15 2 -1571  -15.69 332 3.36
0.0001 0.075 15 2 -1571 -15.61 3.42 3.48
0.001 0.075 15 2 -15.66 -15.70 3.41 3.57
0.0001 0.05 20 2 -15.65 -15.75 3.43 3.49
0.001 0.05 20 2 -15.78  -15.72 3.41 3.40
0.0001 0.05 15 0 -1572  -1570 3.46 3.49
0.001 0.05 15 0 -1579 -15.69 3.44 3.45
4. Numerical Results
Based on algorithm for solving

problems, the researcher used MATLAB
version R2023b to create any codes in this
research within type of computer All- in-one
ASUS (specification CPU core i3-10110U
(2.7GHz up to 3.7GHz), Ram 4GB). The
yields are calculated using an artificial
landscape that has been constructed to
replicate real-world optimization scenarios.
The complexity of the landscape is adjusted
in order to evaluate the proposed
methodology's resilience and efficacy. The
experiments encompassed the execution of
the optimization algorithm on a range of
problem instances. The computing time
documented corresponds to the amount of
time necessary to finish each optimization
run under distinct experimental conditions.
The objective of the study was to conduct a
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thorough assessment of the performance of
the proposed methodology across different
conditions by integrating observations of
real-world computing time with data
obtained from simulated optimization
experiments  conducted on artificial
landscapes.

To get started with the technique, this
part provides a detailed definition of the EA
problem, including its  boundaries,
objectives, and constraints. Future analysis
can be built upon this first stage. A better
grasp of the many optimization problems at
hand can be achieved by representing noisy
functions as either single, curved ridge, or
multi-peak landscapes. In order to simulate
the complexity of real-world situations, the
problem is defined and then several noisy
functions are generated. To make these
synthetic landscapes seem more natural, we
added noise that is normally distributed with
standard deviations of 0.05 and 0.2.

Through the use of normalization and
Taguchi analysis, the factorial design of trials
is utilized to methodically investigate the
vast range of EA parameters. In order to
generate a complete set of combinations for
future assessments, it is essential to take into
account characteristics such as convergence,
mutation rate, population size, and random
seed levels. Information Envelopment
Analysis based Ranking (DEAR) is a
valuable addition to the optimization
process. This approach uses a number of
factors to rate the effectiveness of different
parameter combinations. The optimization
method is strengthened by DEAR's
contribution to a comprehensive evaluation.

By employing statistical learning
methodologies, the intricate relationship
between optimization criteria and EA
parameters is elucidated. This phase ensures
a comprehensive understanding of the effects
that changes to parameters have on the
outcomes of optimization, whether achieved
through machine learning, regression
analysis, or other approaches. Performance
evaluation involves the computation of time
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and the mean and standard deviation of the
function yield for a variety of parameter
combinations.

Thorough testing and comparison
with known optimization methods are
conducted on the suggested methodology.
This is the last stage in making sure the
hybrid strategy, which combines Taguchi
analysis, DEAR methodology, and statistical
learning, is a significant step forward in
optimization and works well. Keeping
efficacy and dependability in mind during the
comparison with current approaches is of
utmost importance.

The TSL-DEAR approach was
subjected to numerical tests across three
various types of artificial landscapes: single-
peaked, curving ridge, and multi-peak. The
purpose of these experiments was to
undertake a complete evaluation of the
methodology's performance. In addition, the
influence of different noise levels was
examined by taking into account two
standard deviations, namely 0.05 and 0.2.
The findings demonstrate the resilience and
applicability of TSL-DEAR in terms of
optimizing parameters and predicting
outcomes over a wide range of
circumstances.

Single-Peaked Artificial Landscape:
TSL-DEAR has constantly showed superior
performance when it comes to the single-
peaked landscape. It was during the
optimization phase that the peak was
effectively detected, which resulted in
parameter choices that led to the best
possible outcomes. The predictive modeling
demonstrated  amazing accuracy in
anticipating outcomes, particularly under
lower noise levels (0.05). This demonstrates
that the system is able to navigate
straightforward and  clearly  defined
environments.

Results for single peak optimum
under different noise conditions
(NID(0,0.05) and NID(0,0.2)) and various
equations provide valuable insights into the
statistical. significance of the variables and
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interactions. Eq. (2.3) consistently emerges
as a robust performer, displaying lower T-
test values across several variables and
interactions. It demonstrates stability under
noise variations, making it a reliable choice
for statistical analysis. While Eq. (2.2)
generally exhibits good performance, a slight
increase in T-test values under the scenario
of NID(0,0.2) for specific variables suggests
a potential sensitivity to higher noise levels.
Researchers should exercise caution when

applying this equation, especially in
scenarios with increased data variability
(Table 3).

The observed sensitivity of certain
variables, notably variable C, to noise
underscores the importance of understanding
the impact of environmental conditions on
statistical ~ outcomes.  Variables and
interactions showing consistent low T-test
values across equations and noise conditions
can be considered more robust and reliable.

Table 3. P-value of the multiple regression
coefficients for the single-peaked artificial
landscape.

Case of [NID(0,0.05)]
P-value for regression Single Peak Optimum

coefficient Eq. (2.1 Eq.(22) Eq.(2.3)
A 0.0346 0.1325 0.0472
B 0.7310 0.8199 0.0908
C 0.5372 0.9999 0.1503
D 0.4460 0.2764 0.0603
A*B 0.5039 0.0756 0.0101
A*C 0.0484 0.0423 0.5248
A*D 0.3045 0.0756 0.5279
B*C 0.1915 1.0000 0.0695
B*D 0.0277 0.0856 0.7118
C*D 0.6594 0.9999 0.0752

Case of [NID(0,0.2)]
P-value for regression Single Peak Optimum

coefficient Eq. (2.1 Eq.(22) Eq.(23)
A 0.0318 0.0711 0.4358
B 0.0012 0.8032 0.0073
C 0.0028 0.1140 0.0098
D 0.2403 0.2421 0.5453
A*B 0.0434 0.0750 0.1554
A*C 0.3415 0.0066 0.9690
A*D 0.5865 0.0860 0.2774
B*C 0.0022 0.9649 0.0109
B*D 0.2108 0.0827 0.5322
C*D 0.0020 0.9530 0.4267

Curved ridge artificial landscape:
The curved ridge landscape provided a more
complex optimization task, and TSL-DEAR
was able to rise to the occasion and meet the
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challenge. Through the utilization of the
approach, the undulating topography of the
ridge was successfully traveled, and the
parameters along the curve were optimized.
An additional degree of understanding was
supplied by the use of the DEAR efficiency
score, which highlighted the areas of the
ridge where efficiency was maximum. Even
when subjected to increased noise levels
(0.2), TSL-DEAR exhibited its ability to
capture underlying patterns with
considerable robustness.

The results provide that Eq. (2.6):
Particularly effective for certain interaction

terms (AD and CD), warranting
consideration when analyzing variables with
complex relationships. Egs. (2.4)-(2.5):

Preferred for variables where lower T-test
values indicate higher statistical significance.
However, researchers should be cautious
about potential variations in certain
interaction terms (Table 4).

Table 4. P-value of the multiple regression
coefficients for the curved ridge artificial
landscape.

Case of [NID(0,0.05)]

P-value for regression Curved Ridge Optimum
coefficient
Eq.(24) Eq.(2.5)  Eq.(2.6)
A 0.0759 0.1932 0.7400
B 0.6107 0.5947 0.4716
C 0.0288 0.7077 0.7833
D 0.0291 0.7077 0.4114
A*B 0.5144 0.0580 0.7188
A*C 0.0387 0.9742 0.7724
A*D 0.5053 0.9240 0.0189
B*C 0.3338 0.8213 0.4507
B*D 0.3505 0.6470 0.4110
C*D 0.0104 0.6212 0.5103
Case of [NID(0,0.2)]
P-value for regression Curved Ridge Optimum
coefficient
Eq.(24) Eq.(2.5)  Eq.(2.6)
A 0.0144 0.2653 0.0077
B 0.0186 0.2971 0.0801
C 0.0068 0.5525 0.9448
D 0.8132 0.2724 0.0126
A*B 0.0053 0.5443 0.0002
A*C 0.3972 0.1404 0.1118
A*D 0.6523 0.1336 0.0008
B*C 0.0052 0.3337 0.5675
B*D 0.9065 0.5243 0.0066
C*D 0.9759 0.7885 0.2151

The Multi-Peak Artificial terrain:
TSL-DEAR demonstrated its versatility by
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demonstrating its capacity to work in the
complicated multi-peak terrain. It was
possible to effectively identify several peaks
during the optimization process, which
resulted in the provision of a set of parameter
configurations that led to a variety of optimal
results. The rankings of efficiency that were
acquired from DEAR offered extremely
helpful insights into the hierarchy of
performance throughout the various peaks. It
is important to note that TSL-DEAR had
strong predictive skills, particularly when
noise levels were moderate (0.2), which
demonstrates its usefulness in situations that
are inherently complicated and ambiguous.

The detailed comparison of T-test
Regression results for Multi-Peak Optimum
under different noise conditions
(NID(0,0.05) and NID(0,0.2)) and various
equations (Egs. (2.7)-(2.9)) offers valuable
insights into the statistical significance of
variables and interaction terms. Eq. (2.9):
Demonstrates nuanced performance,
consistently yielding lower T-test values for
certain interaction terms while occasionally
showing higher values for variables. Egs.
(2.7)-(2.8): Exhibit varied performances
across variables and interactions, with Eq.
(2.8) often demonstrating smaller T-test
values for certain cases (Table 5).

Table 5. P-value of the multiple regression
coefficients for the multi-peak artificial
landscape.

Case of [NID(0,0.05)]
P-value for regression Multi Peak Optimum

coefficient Eq.(2.7) Eq.(2.8) Eq.(29)
A 0.2557 0.8109 0.0999
B 0.1849 0.2086 0.4790
C 0.5836 0.0521 0.8043
D 0.4461 0.2568 0.6139
A*B 0.0089 0.0157 0.1496
A*C 0.5335 0.3316 0.2319
A*D 0.0216 0.0607 0.1071
B*C 0.8191 0.1320 0.8617
B*D 0.0094 0.2582 0.0854
C*D 0.3332 0.9385 0.9937

Case of [NID(0,0.2)]
P-value for regression Multi Peak Optimum

coefficient Eq.(2.7) Eq.(2.8) Eq.(29)
A 0.3203 0.1652 0.2394
B 0.9607 0.1898 0.1089
C 0.9172 0.2261 0.1488
D 0.0157 0.0524 0.4236
A*B 0.0647 0.2609 0.9388
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A*C 0.0115 0.0906 0.1951
A*D 0.0396 0.0316 0.2435
B*C 0.6476 0.0821 0.0895
B*D 0.6334 0.0156 0.1344
C*D 0.0109 0.4841 0.6621

The examination into two levels of
noise standard deviation (0.05 and 0.2)
indicated the robustness of TSL-DEAR in the
presence of noise. This was discovered
through the assessment of the impact of noise
standard  deviation. = The  technique
consistently excelled, demonstrating its
capacity to recognize important patterns and
effectively optimize parameters, even when
subjected to greater levels of noise. A degree
of flexibility was displayed by the predictive
modeling component, which was able to
provide credible forecasts despite the
increased noise. This finding highlights the
stability of the technique in contexts with a
lot of noise.

EA Performance measurement for Eq.(2.1)
-3.5990

-3.5992

-3.5994

Yield

-3.5996

-3.5998

—

EA Performance measurement for Eq.(2.4)

-3.6000

0.030

0.025

0.020

Yield

0.015

0.010

0.005

EA Performance measurement for Eq.(2.7)
-1.1240

Yield

-1.1246

-1.1248

-1.1250

Fig. 5. Performance measures of the EA based on
the yields (Egs. (2.1), (2.4), (2.7)).

169

The numerical findings across
single-peaked, curved ridge, and multi-peak
artificial landscapes illustrate the great
performance (Fig. 5) and adaptability (Fig. 6)
of the TSL-DEAR approach. These findings
are also accompanied by variances in noise
levels. To summarize, the TSL-DEAR
approach is a tool that is both very successful
and diverse in its use. Because of its ability
to navigate different terrains, optimize
parameters, and anticipate outcomes, TSL-
DEAR is a useful tool for companies that are
wanting to increase their efficiency and
obtain strategic advantages across a wide
range of operational landscapes. This is
because TSL-DEAR is able to do all of these
things.

EA Performance measurement for Eq.(2.1),(2.4).(2,7)
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Eq. (2.1) Eq. (2.4) Eq. (2.7)

Fig. 6. Performance measures of the EA based on
computing time (Egs. (2.1), (2.4), (2.7)).

The optimal parameters for single
peak equations are as follows, as shown in
the table below: Lower mutation rates (B =
0.05 or 0.075) and moderate population sizes
(C=15-20) are successful even when applied
to a variety of random seeds and noise
circumstances. In certain instances, random
seed changes (D) are shown to have an effect.
For Equations Involving Curved Ridges,
Comparable to Single Peak, the effectiveness
of lower mutation rates and moderate
population numbers is demonstrated. When
it comes to establishing the best settings,
random seed changes certainly play a part.
The ideal values for Multi Peak Equations
are found to be lower mutation rates (B =
0.05) and moderate population sizes (C = 15-
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20). Variations in the random seed have an
effect on the optimum settings (Table 6).

Table 6. Numerical results of EA parameter

selection for artificial landscapes.
Case of [NID(0,0.05)]

§ = g E
Types of o) S o -% ° @
Artificial 5 s =48 £
Landscapes % § ) E
3 A &
Single Peak
Eq. (2.1) 0.001 0.05 20 0
Eq. (2.2) 0.0001  0.075 15 0
Eq. (2.3) 0.001 0.05 15 0
Curved Ridge
Eq. (2.4) 0.001 0.05 15 0
Eq. (2.5) 0.0001  0.05 15 0
Eq. (2.6) 0.001  0.075 20 0
Multi Peak
Eq. (2.7) 0.0001  0.075 20 2
Eq. (2.8) 0.0001  0.075 15 0
Eq. (2.9) 0.0001 _ 0.075 15 2
Case of [NID(0,0.2)]
§ = g E
Types of o) S0 -% ° &
Artificial 5 s =48 £
Landscapes % § 5 E
3 A &
Single Peak
Eq. (2.1) 0.0001  0.05 15 2
Eq. (2.2) 0.001 0.05 15 2
Eq. (2.3) 0.001 0.05 20 0
Curved Ridge
Eq. (2.4) 0.001 0.05 15 0
Eq. (2.5) 0.0001  0.05 15 0
Eq. (2.6) 0.0001  0.05 20 0
Multi Peak
Eq. (2.7) 0.0001  0.05 15 0
Eq. (2.8) 0.0001  0.075 15 2
Eq. (2.9) 0.001 0.05 15 2
5. Conclusions and Discussions
In conclusion, the TSL-DEAR
(Taguchi-Statistical Learning-DEAR)
method demonstrates exceptional

performance when applied to complex
optimization problems, predictive modeling,
and domain-wide efficiency ranking. Its
resilience is the result of the collaboration
between Taguchi Analysis, Statistical
Learning, and DEAR, which provides
strategic advantages and optimal results to
decision-makers. Commencing with Taguchi
Analysis and Normalization guarantees a
comprehensive examination of parameter
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spaces, from which optimal configurations
are extracted and variance is diminished.
DEAR then incorporates an efficiency-
ranking layer to enhance comprehension of
the performance of decision-making units.
The utilization of DEAR and Taguchi-
optimized parameters enables organizations
to evaluate optimal strategies and identify
areas that require enhancement.

Predictions are enhanced by
Statistical Learning, specifically Multiple
Regression. Using historical data and DEAR
efficiency evaluations, TSL-DEAR assists
decision-makers in estimating system
outcomes. Predictive insight provides a
dynamic comprehension of how parameter
variations impact system performance and
facilitates strategic planning. Due to its
adaptability, =~ TSL-DEAR  excels in
manufacturing, healthcare, finance, and other
sectors. By optimizing processes, predicting
outcomes, and ranking efficacy, the method
provides businesses seeking to enhance
decision-making with a comprehensive
solution.

Adaptability of TSL-DEAR is
advantageous to the manufacturing,
healthcare, and finance sectors, among
others. The adaptability of the methodology
renders it a wuniversal instrument that
enhances operations, predicts results, and
assesses efficacy, thereby bolstering the
competitiveness and agility of sectors.
Industry leaders are propelled to the
vanguard of data-driven decision making by
TSL-DEAR. In an ever-evolving business
environment, enhanced  productivity,
benchmarked performance, and predictive
insights usher in a new era in which analytics
serves as a strategic enabler for organizations
attempting to grow and endure.

Further investigation may involve
the integration of advanced analytical
techniques into TSL-DEAR. Advancements
in machine learning algorithms may lead to
enhancements in TSL-DEAR's forecasting
capabilities via neural networks and
ensemble approaches. An examination of the
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distinctions and advantages of statistical
learning techniques would facilitate the
optimization of the strategy across diverse
sectors. Moreover, the application of TSL-
DEAR to novel industries and domains
constitutes a captivating area of study.

Expanding the technique to
encompass challenges and opportunities
specific to renewable energy, sustainable
agriculture, and emergent technologies
would showcase its capacity to stimulate
innovation and enhance operational
effectiveness in non-traditional sectors.
Tools and interfaces for user-friendly TSL-
DEAR implementation represent an
additional prospective area of research.
Establishing user-friendly software solutions
across various industries will democratize
the process, enabling decision-makers to
leverage its benefits even in the absence of
expertise in statistical modeling.

In summary, the implementation of
the TSL-DEAR method has revolutionized
the way in which decisions are made;
however, further research and enhancements
are continuous. Additional investigation into
sophisticated methodologies, broadening its
scope to encompass untapped sectors,
developing intuitive implementations, and
evaluating scalability are all approaches that
could enhance the indispensability of TSL-
DEAR as a tool for industries navigating the
contemporary business environment.
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