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ABSTRACT 
This work presents a new approach to improving the efficiency of Evolutionary 

Algorithms (EA) in extremely noisy function landscapes. Statistical Learning, Taguchi analysis 
and normalization, and Data Envelopment Analysis based Ranking (DEAR) are used to provide 
a hybrid technique that provides a complete framework for EA parameter adjustment. The study 
examines the effects of four important EA parameters on function yield and computing time: 
convergence, mutation rate, population size, and random seed. Taguchi analysis and 
normalization is used to generate an efficient experimental design that covers different 
combinations of parameter values, allowing a methodical exploration of the parameter space. 
Subsequently, the DEAR approach is employed to prioritize each set of parameters according 
to certain optimization criteria. To further complicate matters, the optimization goals and EA 
parameters are both modeled using Statistical Learning approaches. There has been a lot of 
testing with noisy functions of artificial landscapes with three different types: single-peak, 
curved-ridge, and multi-peak. Assuming a normally distributed distribution with a mean of 0 
and standard deviations of 0.05 and 0.2, noise presents practical obstacles to optimization. When 
compared to more traditional approaches of parameter tuning, the suggested hybrid strategy 
clearly outperforms the competition in terms of computing time, function yield, and mean and 
standard deviation of both metrics. The technique shows improved resilience and adaptability 
across varied noisy environments and more successfully finds optimal parameter 
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configurations, according to the results. By demonstrating its flexibility to meet evolving 
optimization needs, sensitivity assessments provide more evidence of the suggested 
methodology's dependability. Finally, the research presents a state-of-the-art hybrid method for 
tweaking evolutionary algorithm parameters, which considerably improves upon previous 
efforts. In particular, when it comes to dealing with complicated and noisy optimization 
scenarios, the offered technique stands out due to its capacity to continuously produce greater 
performance, making a vital addition to the optimization community. 
 

Keywords: Artificial landscape; Data Envelopment Analysis based Ranking (DEAR); 
Evolutionary algorithm; Statistical learning; Taguchi analysis; Parameter tuning 
 

 
1. Introduction  

Evolutionary Algorithms, often 
known as EAs, are a remarkably adaptable 
and effective optimization method that may 
be used for a wide variety of applications. 
The setting of important parameters like 
convergence, mutation rate, population size, 
and random seed has a considerable impact 
on the functioning of these systems [1-3]. In 
the presence of noisy function landscapes, 
which are characteristic of optimization 
problems that occur in the real world, the 
difficulty of locating optimum parameter 
configurations becomes more obvious. 

The incorporation of Multi-Criteria 
Decision Making (MCDM) incorporates a 
degree of sophistication into our approach by 
concurrently taking into consideration 
numerous objectives that are in competition 
with one another. In this way, it is ensured 
that the parameter configurations that are 
selected not only maximize the individual 
criteria, but also achieve a balance between 
the conflicting objectives. With the use of the 
MCDM framework, it is possible to conduct 
a more thorough analysis of the trade-offs 
that are involved in parameter tuning, which 
ultimately results in optimization solutions 
that are more robust and well-rounded. 

This study presents an innovative 
and complete methodology for maximizing 
the performance of EAs under the 
complicated constraints provided by noisy 
function landscapes. The methodology 
includes a number of different approaches. 

Taguchi analysis and normalization, 
Data Envelopment Analysis based Ranking 

(DEAR), and Statistical Learning are the 
three components that make up this 
methodology [4-6]. Its purpose is to tackle 
the complex issue of parameter tuning in a 
methodical and effective manner. 

The most important contribution that 
this study makes is the creation of a hybrid 
optimization technique that incorporates 
Taguchi analysis and normalization, DEAR, 
and Statistical Learning. This methodology 
provides a synergistic approach to the 
problem of parameter tuning in evolutionary 
algorithms, which has been a hurdle for a 
very long time. A deeper understanding of 
EA behavior in noisy settings may be 
obtained via the utilization of this technique. 
This is accomplished by systematically 
exploring the parameter space and taking into 
consideration the influence of important 
parameters on both function yield and 
computational time [7-9]. 

An optimum experimental design is 
constructed by the utilization of Taguchi 
analysis, which is utilized in the study to 
conduct a systematic investigation of the four 
important EA parameters [10]. Following 
this, the DEAR approach is utilized to rate 
the effectiveness of parameter settings 
according to a number of different 
optimization criteria, so delivering an all-
encompassing evaluation [11]. In addition, 
tools from the field of statistical learning are 
utilized in order to discover the intricate 
correlations that exist between optimization 
aims and EA parameters, thereby 
contributing to a more profound 
comprehension of the dynamics that lie under
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the surface. 
Noise is represented as being 

normally distributed with the mean of zero 
and different standard deviations or 
NID(0,s) over the entirety of the study. 
Noisy functions of diverse natures, each with 
distinct variations, are taken into 
consideration during the overall 
investigation. The application of the findings 
to real-world optimization settings is 
improved by the realistic description of noisy 
landscapes that were used. 

Detailed information on the artificial 
landscape, the hybrid Taguchi-Statistical 
Learning-DEAR approach, the experimental 
setting, and the findings that were achieved 
are described in the following sections. In 
addition to highlighting the superior 
performance of the approach in terms of 
mean and standard deviation for function 
yield and computational time, the results also 
position it as a promising advancement in the 
field of evolutionary algorithm parameter 
tuning, particularly when it comes to the 
tuning of parameters under noisy conditions. 
 
2. Noisy Artificial Landscapes  

The performance of optimization 
algorithms under controlled settings may be 
evaluated using artificial landscapes, which 
serve as vital testbeds for optimizing 
algorithms. In this part of the article, we will 
discuss the process of creating artificial 
landscapes and the features of these 
landscapes, which are intended to simulate 
real-world optimization difficulties. The 
hybrid technique that has been presented for 
optimizing evolutionary algorithms (EAs) 
across a variety of scenarios may be 
evaluated thanks to these landscapes, which 
are of great assistance. 

A single, clearly defined peak is the 
defining characteristic of the single-peaked 
landscape, which is a representation of 
optimization issues (Fig. 1). In situations 
when there is only one optimal solution, this 
structure is frequently found in the issue. The 
single-peaked landscape is created in three 

separate forms, each of which incorporates 
varying degrees of complexity in terms of the 
smoothness of the terrain and the sharpness 
of the peak.  

 
 

                      (2.1) 
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Fig. 1. Times New Roman size 10 point. Same is 
true for remaining figures. 
 

A more complex structure is 
introduced by the curved ridge landscape, 
which consists of a continuous curved ridge 
along which optimal solutions are located 
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(Fig.2). This landscape is a reflection of 
optimization issues that involve several 
optimum zones that are interrelated. Once 
more, three distinct variations of the curving 
ridge landscape are built in order to capture 
and convey varied degrees of intricacy. 

 

 (2.4) 

        (2.5) 
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Fig. 2. Curved ridge artificial landscapes: Eqs. 
(2.4), (2.5) and (2.6), respectively. 
 

There are several optimum solutions 
or local optima that are represented by the 
multi-peak landscape (Fig. 3), which 
indicates optimization problems. Problems 
that occur in the real world and include a 
variety of conflicting agendas sometimes 
involve such landscapes. During the 
generation process, three distinct variations 
of the multi-peak landscape are produced, 
each of which features a distinct arrangement 
and distribution of peaks. 

 

 

 

 

 
Fig. 3. Multi-peak artificial landscapes: Eqs. 
(2.7), (2.8) and (2.9), respectively. 

 
It is necessary to incorporate noise 

into each landscape in order to emulate the 
uncertainties that are prevalent in real-world 
optimization applications. For the purpose of 
modeling the noise, random variables with a 
mean of zero and a normal distribution are 
used. 0.05 and 0.2 are the two separate 
standard deviations that are utilized in order 
to visually illustrate the various levels of 
noise intensity. An accurate portrayal of 
noisy landscapes with varying degrees of 
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complexity may be achieved through the use 
of this method. 

Visual representations are supplied 
for each nature and variety in order to 
facilitate the process of comprehending the 
landscape structures. In order to demonstrate 
the topography of the landscapes, contour 
plots and three-dimensional surface plots are 
utilized. These plots highlight the peaks, 
ridges, and valleys. By providing useful 
insights into the issues that are offered by 
each artificial environment, these 
visualizations serve as powerful tools. 

The generation of artificial 
landscapes serves two purposes: first, it 
offers a controlled environment for 
systematically evaluating the proposed 
methodology, and second, it makes it easier 
to comprehend how the hybrid approach 
reacts to different optimization problem 
structures and noise levels. Both of these 
functions are accomplished through the 
generation of artificial landscapes. 

At the end of this section, an 
emphasis is placed on the significance of 
artificial landscapes in the appraisal process. 
In the following sections, we will make use 
of various landscapes in order to evaluate the 
effectiveness of the hybrid Taguchi-
Statistical Learning-DEAR-MCDM 
technique in improving EAs while taking 
into account the impact of noise and a variety 
of landscape structures. 
 
3. Taguchi-Statistical Learning-DEAR 
Methodology (TSL-DEAR) 
3.1 Data Envelopment Analysis based 
Ranking (DEAR) 
 To determine which decision-making 
units (DMUs) in a collection are the most 
efficient, Data Envelopment Analysis (DEA) 
is a powerful tool. DEAR, an expansion of 
DEA, ranks these units systematically 
according to their efficiency scores, taking 
the assessment to the next level. 
Understanding and measuring the 
performance of entities is vital in different 
domains, including healthcare, operations 

management, and finance, where this method 
is particularly beneficial [12, 13]. 

The first step in DEAR is to give 
each DMU an efficiency score. A useful tool 
for performance measurement, these scores 
indicate how well each unit uses its inputs to 
create outputs. In order to rank the DMUs, 
DEAR uses the efficiency scores [14]. The 
examined set has a distinct hierarchy of 
performance, with the highest efficiency 
ratings corresponding to the most efficient 
units. 

DEAR does more than just rate units; 
it also finds the most efficient entities' best 
practices. Organizations may get valuable 
insights from high-performing individuals 
and use tactics to boost their own efficiency. 
By providing a ranking, DEAR makes 
benchmarking easier, letting businesses see 
how they stack up against competitors. This 
data can help decision-makers find places to 
improve and how to best allocate resources 
[15]. 

Banking, healthcare, and education 
are just a few of the many fields that make 
use of DEAR. For example, DEAR may be 
used in the banking industry to evaluate 
various departments' performance, which in 
turn can help with allocation of resources and 
process improvement strategies [16, 17]. In 
the healthcare industry, DEAR may help 
evaluate clinics and hospitals to find the most 
effective ways to improve patient care. 

There are several difficulties with 
using DEAR, despite the fact that it gives 
useful information. During the DEAR 
process, it is important to carefully analyze 
issues like as input/output sensitivity, model 
choice, and probable outliers. We will 
explore case studies, techniques, and new 
trends in performance evaluation and 
efficiency ranking utilizing Data 
Envelopment Analysis as we dig deeper into 
the subtleties of DEAR in the following 
sections. 
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3.2 Taguchi analysis and normalization  
 The Taguchi signal-to-noise ratio 
proves to be a very effective analytical tool 
when trying to improve operational 
processes and get useful insights. Genichi 
Taguchi's technique goes above and beyond 
conventional data analysis by providing a 
unique vantage point from which to assess 
the efficacy and quality of operational inputs 
and outputs. 

A signal-to-noise ratio (SN), which 
goes beyond simple numerical values as an 
extra measure, is transformed from raw data 
as part of Taguchi's process. In order to 
differentiate between the ideal signal, which 
represents the intended outcomes, and the 
undesirable operational noise, which may 
reduce efficiency, Sensor Network (SN) 
technology is used. Taguchi's approach 
reveals hidden details and patterns in data by 
focusing on the important information rather 
than the irrelevant details. Because of this, 
we can grasp the dynamics of processes with 
higher complexity [18, 19]. 

Compared to traditional 
assessments, Taguchi's technique performs 
better when factors like processing time and 
landscape yields are considered. The SN 
gives a far more accurate picture of the 
variables influencing these outputs by 
eliminating operating noise and isolating the 
ideal signal. This process allows for a deeper 
comprehension, providing direction for 
enhancements and optimizations that boost 
overall productivity. 

Not only are the Taguchi noise-to-
signal-to ratios useful for statistical purposes, 
but they are also indicators for evaluating 
operational excellence. Organizations may 
uncover hidden efficiencies and make 
educated decisions by using a methodology 
that involves dissecting operational data and 
focusing on the optimum signal. With the 
ongoing discussion, Taguchi's SN will have 
a major influence, helping to establish a 
better grasp of the complex operational 
dynamics inherent to the noisy artificial 
landscapes. 

While response analysis has always 
made use of the mean of responses (𝑦!) for n 
repetitions, there is a growing interest in 
response variability in the modern day. As an 
additional metric for the available variance, 
Taguchi modified the repeatability data. A 
signal-to-noise ratio, abbreviated as SN, is 
used to describe the phenomenon described 
above. This leads SN to collect a mountain of 
data that is identical to itself. Three data 
classes—"nominal is optimal (NTB)," "small 
is better (STB)," and "large is better 
(LTB)"—form the basis of the SN. Here are 
the particular SN mathematical models that 
were used for the STB (SN"#$):  in this 
research: 

 (3.1) 

 
When optimizing processes with an 

emphasis on landscape yields and computing 
time, the integration of Taguchi Signal-to-
Noise Ratio (SN) and normalization 
produces notable results. Taguchi's method 
offers a thorough framework for dealing with 
these important output aspects; it is well-
known for improving operational 
procedures. 

For this purpose, the Taguchi SN is 
an essential analytical tool; it measures 
system performance by comparing the 
landscape yields—the intended signal—to 
the noise—variability or deviation. An 
alternative viewpoint on operational output 
quality is provided by this measure. For input 
variables like landscape yields and 
computational time, which might have 
different units and scales, normalization is an 
important tool to have on hand, along with 
the signal-to-noise ratio. 

The impact of each component may 
be fairly assessed by normalization, which 
involves adapting each variable to a similar 
scale. This eliminates the influence of 
various scales. If landscape yields and 
computing time are critical output factors in 
an optimization process, then this is of 
paramount importance. Applying 
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normalization and Taguchi's SN Ratio 
together strengthens the optimization 
procedure [20]. 

When comparing traditional 
evaluations to the combined Taguchi 
approach, the latter performs better in terms 
of computing time and landscape yields. 
With normalization at its side, the SN makes 
it easier to see how different factors affect 
landscape yields and reduces the effect of 
operational noise on computing time. The 
intricate dynamics of landscape results and 
computing efficiency may be better 
understood with the help of this all-
encompassing technique. SN normalization 
below is an exceptionally effective method 
for reducing the size of data sets while 
preserving proportionality or similarity in 
their dimensions.  

 

 (3.2) 

 
where is the normalized value for 
the value associated with the kth DMU and 
output in column i,   is the value of the 
ith output in the kth DMU, max( ) and 
min( ) are the maximal and minimal SN 
levels for all DMUs of the ith output. 

Optimizing landscape yields while 
reducing computing time is the practical 
focus of the integrated method, which directs 
advancements and optimizations. For a more 
precise evaluation of aspects impacting 
landscape results and computing efficiency, 
it is possible to normalize input variables in 
Taguchi experiments. This makes the studies 
less vulnerable to scale changes. 

The combination of Taguchi SN and 
normalization is, last but not least, quite 
effective when optimizing processes with a 
close watch on landscape yields and 
computation time. This comprehensive 
approach enables the attainment of peak 
performance in complex operational settings 
by ensuring improved output quality and 
efficient utilization of computing resources. 
 

3.3 Statistical learning 
 The ever-evolving area of statistical 
learning uses computer tools and statistical 
methodologies to derive meaningful insights 
from data. Statistical learning's fundamental 
goal is to instruct models to detect patterns in 
data and use those patterns to generate 
predictions or judgments. Discovering 
underlying structures, establishing 
correlations between variables, and drawing 
educated conclusions are all part of this 
process. 

When an algorithm is trained on a 
labeled dataset, it learns the connection 
between input characteristics and their 
associated output labels. This process is 
called supervised learning. Classification 
(putting data into predetermined groups) and 
regression (predicting a continuous result) 
are two examples of typical tasks. Without 
prior knowledge of the results, unsupervised 
learning attempts to classify or find patterns 
in unlabeled data. Examples of common 
unsupervised learning problems include 
dimensionality reduction and clustering. 

Statistical learning incorporates a 
wide variety of models, from simple linear 
models to advance non-linear techniques. 
Models such as neural networks, decision 
trees, and support vector machines may 
capture complex relationships within the 
data. 

The bias-variance tradeoff is a 
cornerstone of statistical learning. Variance 
measures how much a model changes in 
response to changes in the training data, 
whereas bias describes how often the model 
under- or overestimates. Finding the sweet 
spot is essential for the best possible model 
output. 

When testing a model on data it has 
never seen before, robust evaluation methods 
like cross-validation are invaluable. You can 
see how well the model applies to new data 
by looking at metrics like accuracy, 
precision-recall curves, or mean squared 
error. 
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The effectiveness of statistical 
learning models relies heavily on the 
engineering and skillful selection of features. 
If you want your model to be better at 
capturing patterns and making predictions, 
you need to find the right characteristics and 
change them. 

Following this, we will examine the 
DEAR and Taguchi Analysis and 
Normalization in detail, as well as case 
studies and new developments in statistical 
learning, so that you can fully grasp its 
theoretical foundations, practical 
applications, and revolutionary insights that 
it can provide. 
 
3.4 Novel method of TSL-DEAR   
 Identification of optimal parameter 
levels is accomplished by the utilization of 
Taguchi analysis, normalization, data 
envelopment analysis based ranking 
(DEAR), and statistical learning, which are 
all strengths of the hybrid technique that has 
been provided. The parameters in complex 
systems may be optimized using this all-
encompassing method, which provides a 
framework that is both systematic and 
efficient. 
 For Taguchi analysis and 
normalization; the process begins with 
Taguchi Analysis, which makes use of its 
rigorous experimental design principles to 
conduct a systematic investigation into the 
effect that parameters have on the 
performance of the system. While this is 
going on, normalization is being used in 
order to normalize the range of parameters, 
which guarantees that the evaluation will be 
fair and objective. The combination of these 
two factors makes it possible to determine 
the ideal parameter settings, hence reducing 
the influence of changes and increasing the 
robustness of subsequent analyses. 
 For Data Envelopment Analysis based 
Ranking (DEAR); after Taguchi analysis and 
normalization, the next phase involves using 
DEAR to evaluate the efficiency of the 
system. DEAR is responsible for 

determining the relative effectiveness of 
decision-making units (DMUs) by utilizing 
the parameters that have been tuned. A clear 
hierarchy of performance is provided by this 
efficiency rating, which identifies units that 
demonstrate the most effective operational 
procedures. The DEAR acts as a great 
benchmarking tool, assisting decision-
makers in gaining a grasp of the efficiency 
landscape and possible areas for 
improvement [21]. 
 The DEA study usually uses two 
popular models: Banker, Charnes, and 
Cooper (BCC)'s Variable Returns to Scale 
model and CCR's Constant Returns to Scale 
model. These models behave differently 
depending on data and outcome. This study 
evaluates utilizing CCR and BCC models. 
The CCR model assumes all DMUs have the 
same scope of operation. The efficiency 
boundary is a CCR model hyperplane. An 
operationally effective DMU is on the 
boundary line; one below is inefficient. As 
the DMU moves away from the barrier, its 
performance score decreases.  
 In this research, the following model 
provides an initial assessment of efficiency. 
The best practice frontier is set up by it, and 
other DMUs use it as a standard for 
efficiency ( ). Based on all m inputs and 
s outputs, the mathematical model of the kth 
DMU looks as follows in this calculation: 
 

  

S.T.  

  

     (3.3) 

    

The coefficients and variables 
employed to evaluate and enhance the 
effectiveness of decision-making units via 
the DEA are presented in Table 1. 
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Table 1. Definition of DEA coefficients and 
variables. 

Coefficients 
and 

Variables 
Definition 

 Intensity of DMU jth 

 Value of input factor ith at the jth DMU  

 Value of input factor ith at the kth DMU  

 Value of output factor rth at the ith DMU  

 Value of output factor rth at the kth DMU  

 Overall efficiency rating value of at the kth 
DMU 

 
 For statistical learning (multiple 
regression); the last step adds statistical 
learning, especially multiple linear 
regression with an expansion of interaction 
effects, into the hybrid technique (Eq. (3.4)). 
Using the optimal parameter settings and 
efficiency rankings as a foundation, multiple 
regression models are created in order to 
make predictions about the outcomes of the 
system. This predictive capacity provides 
insights into how fluctuations in parameters 
affect the overall performance of the system, 
making it a significant tool for decision-
making and strategic planning applications. 
 

 

where  are EA parameters 
levels and the respective parameters of A, B, 
C, and D, are convergence, mutation rate, 
population size, and random seed. 
 Multiple linear regression analysis 
often involves determining predictor variable 
significance. Marginal and partial tests are 
often used for this. Partial tests take 
additional model variables into account to 
establish predictor variable significance. 
These analyses reveal how each predictor 
variable affects the dependent variable. In 
contrast, marginal tests evaluate a predictor 
variable without considering other model 

variables. The independent contribution of 
each predictor variable to the dependent 
variable is assessed. Multiple linear 
regression models need marginal and partial 
tests to understand the connections between 
predictor variables and the dependent 
variable, helping researchers find relevant 
predictors and interpret results more 
precisely. The T-test is often used as a partial 
test in multiple linear regression analysis to 
assess predictor variables' significance while 
taking into account model variables. By 
examining whether a predictor variable's 
coefficient varies substantially from zero, the 
T-test indicates (Eq. 3.5) if it affects the 
dependent variable statistically. Dividing the 
calculated coefficient by its standard error 
yields the test statistic, the t-value; where bj 
is determine via the regression analysis.         
A t-value's p-value indicates its probability 
under the null hypothesis, which claims that 
the coefficient is zero. A modest p-value, 
generally below 0.05, shows a substantial 
relationship between the predictor and 
dependent variables. T-tests for each 
predictor variable in the model help 
academics identify which factors explain 
dependent variable variations in a unique and 
statistically meaningful manner. This 
improves understanding of the dataset's core 
linkages. 
 

 (3.5) 

 From diagram (Fig.4) below, the 
research procedure involves investigating the 
optimization of artificial landscapes using 
evolutionary algorithms, Taguchi statistical 
learning, data envelopment analysis, and 
multiple regression. Initially, the varying 
levels of four EA factors are defined as: 
Convergence, Mutation rate, Population size, 
and Random Seed. Subsequently, algorithms 
from MATLAB codes were proceed to 
sophisticated implement for ascertaining 
optimal values (yield) and computing time of 
artificial landscapes while accommodating 

 

(3.4) 
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inherent noise. Then, data were transformed 
via Taguchi statistical learning into signal-to-
noise ratios, coupled with DEA to evaluate 
efficiency via CCR, thereby delineating the 
best practice frontier. Furthermore, the data 
also underwent multiple regression to 
establish intricate relationships between 
DEA efficiency and EA parameters, 
conducting meticulous significance tests to 
discern the nuanced impact of each 
parameter. Finally, guided by insights 
gleaned from the regression analysis, we 
undertake EA optimization endeavors to 
pinpoint optimal parameter configurations. 
This methodical and comprehensive 
approach aims to streamline the optimization 
process of artificial landscapes by 
amalgamating diverse statistical and 
optimization methodologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Diagram of Taguchi-Statistical Learning-
DEAR Methodology (TSL-DEAR). 
 

 In order to ascertain the resilience and 
efficacy of the experimental configuration, 
an initial investigation was undertaken to 
examine the influence of different 
parameters of the evolutionary algorithm 
(EA) on the optimization procedure. The 
initial inquiry encompassed a methodical 
manipulation of critical parameters, 
including mutation rate, crossover rate, and 
population size, with continuous monitoring 
of the resultant performance metrics. The 
objective was to identify parameter 
configurations that produced favorable 
results in terms of convergence speed and 
solution quality by means of experimental 
design and analysis. Particular attention was 
devoted to the values 0.05 and 0.075 for the 
mutation rate parameter (Table 2). This 
decision was made on the basis of 
preliminary experimental findings that 
suggested these values exhibited favorable 
performance characteristics across various 
instances of the problem. The initial 
investigation functioned as a fundamental 
basis for the subsequent optimization trials, 
providing direction for the choice of 
parameter values and guaranteeing the 
effectiveness of the methodology in fulfilling 
the research goals. 

Before implementing Taguchi's 
method, a two-level factorial design was 
constructed, consisting of sixteen treatments. 
These treatments represented various 
combinations of critical parameters, 
including mutation rate, crossover rate, and 
population size. The objective of this 
methodical investigation was to conduct a 
comprehensive analysis of the impacts that 
these parameters had on the optimization 
procedure. Following this, function yield and 
computation time, two crucial responses, 
were evaluated for each of the generated 
treatments. In order to assess the efficacy of 
every treatment, Taguchi signal-to-noise 
ratio analysis was applied. This technique 
enabled the conversion of response values 
into output values corresponding to 
individual DMU. By employing this 

Select EA parameter levels  

 Generate treatment via experimental designs 

 Evaluate dual response of function yield and 
computing time in each artificial landscape. 

 Transform responses into Taguchi signal to noise ratio. 

 Determine the efficiency via CCR with best 
practice frontier in each treatment  

Apply statistical learning via the multiple regression 

Ascertain the significance of EA parameter 
via marginal and partial tests  

 Determine the optimal parameter levels from 
multiple regression via EA optimization 
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methodology, it was possible to determine 
the most effective parameter configurations 
that reduced the variability of the responses, 
thus improving the evolutionary algorithm's 
overall performance.  
 
Table 2. Example of generated data of dear 
in case of curved ridge optimum. 

Generated Data of DEAR Methodology 

Parameters of Evolutionary 
Algorithm (EA) Yield Result 

Computing 
Time 

(second) 

C
on

ve
rg

en
ce

 

M
ut

at
io

n 
R

at
e  

Po
pu

la
tio

n 
Si

ze
  

R
an

do
m

 se
ed

 

Yield 
(1) 

Yield 
(2) 

Time 
(1) 

Time 
(2) 

0.0001 0.05 15 0 -15.72 -15.70 3.28 3.27 
0.001 0.05 15 0 -15.79 -15.69 3.43 3.20 
0.0001 0.075 15 0 -15.74 -15.70 3.19 3.27 
0.001 0.075 15 0 -15.63 -15.72 3.25 3.23 
0.0001 0.05 20 0 -15.65 -15.67 3.20 3.27 
0.001 0.05 20 0 -15.71 -15.71 3.23 3.32 
0.0001 0.075 20 0 -15.65 -15.63 3.26 3.21 
0.001 0.075 20 0 -15.73 -15.65 3.34 3.25 
0.0001 0.05 15 2 -15.75 -15.72 3.30 3.38 
0.001 0.05 15 2 -15.71 -15.69 3.32 3.36 
0.0001 0.075 15 2 -15.71 -15.61 3.42 3.48 
0.001 0.075 15 2 -15.66 -15.70 3.41 3.57 
0.0001 0.05 20 2 -15.65 -15.75 3.43 3.49 
0.001 0.05 20 2 -15.78 -15.72 3.41 3.40 
0.0001 0.05 15 0 -15.72 -15.70 3.46 3.49 
0.001 0.05 15 0 -15.79 -15.69 3.44 3.45 

 
4. Numerical Results  
 Based on algorithm for solving 
problems, the researcher used MATLAB 
version R2023b to create any codes in this 
research within type of computer All- in-one 
ASUS (specification CPU core i3-10110U 
(2.7GHz up to 3.7GHz), Ram 4GB). The 
yields are calculated using an artificial 
landscape that has been constructed to 
replicate real-world optimization scenarios. 
The complexity of the landscape is adjusted 
in order to evaluate the proposed 
methodology's resilience and efficacy. The 
experiments encompassed the execution of 
the optimization algorithm on a range of 
problem instances. The computing time 
documented corresponds to the amount of 
time necessary to finish each optimization 
run under distinct experimental conditions. 
The objective of the study was to conduct a 

thorough assessment of the performance of 
the proposed methodology across different 
conditions by integrating observations of 
real-world computing time with data 
obtained from simulated optimization 
experiments conducted on artificial 
landscapes. 
 To get started with the technique, this 
part provides a detailed definition of the EA 
problem, including its boundaries, 
objectives, and constraints. Future analysis 
can be built upon this first stage. A better 
grasp of the many optimization problems at 
hand can be achieved by representing noisy 
functions as either single, curved ridge, or 
multi-peak landscapes. In order to simulate 
the complexity of real-world situations, the 
problem is defined and then several noisy 
functions are generated. To make these 
synthetic landscapes seem more natural, we 
added noise that is normally distributed with 
standard deviations of 0.05 and 0.2. 
 Through the use of normalization and 
Taguchi analysis, the factorial design of trials 
is utilized to methodically investigate the 
vast range of EA parameters. In order to 
generate a complete set of combinations for 
future assessments, it is essential to take into 
account characteristics such as convergence, 
mutation rate, population size, and random 
seed levels. Information Envelopment 
Analysis based Ranking (DEAR) is a 
valuable addition to the optimization 
process. This approach uses a number of 
factors to rate the effectiveness of different 
parameter combinations. The optimization 
method is strengthened by DEAR's 
contribution to a comprehensive evaluation. 

By employing statistical learning 
methodologies, the intricate relationship 
between optimization criteria and EA 
parameters is elucidated. This phase ensures 
a comprehensive understanding of the effects 
that changes to parameters have on the 
outcomes of optimization, whether achieved 
through machine learning, regression 
analysis, or other approaches. Performance 
evaluation involves the computation of time 



P. Luangpaiboon et al. | Science & Technology Asia | Vol.29 No.2 April – June 2024 

167 

and the mean and standard deviation of the 
function yield for a variety of parameter 
combinations. 

Thorough testing and comparison 
with known optimization methods are 
conducted on the suggested methodology. 
This is the last stage in making sure the 
hybrid strategy, which combines Taguchi 
analysis, DEAR methodology, and statistical 
learning, is a significant step forward in 
optimization and works well. Keeping 
efficacy and dependability in mind during the 
comparison with current approaches is of 
utmost importance. 

The TSL-DEAR approach was 
subjected to numerical tests across three 
various types of artificial landscapes: single-
peaked, curving ridge, and multi-peak. The 
purpose of these experiments was to 
undertake a complete evaluation of the 
methodology's performance. In addition, the 
influence of different noise levels was 
examined by taking into account two 
standard deviations, namely 0.05 and 0.2. 
The findings demonstrate the resilience and 
applicability of TSL-DEAR in terms of 
optimizing parameters and predicting 
outcomes over a wide range of 
circumstances. 

Single-Peaked Artificial Landscape: 
TSL-DEAR has constantly showed superior 
performance when it comes to the single-
peaked landscape. It was during the 
optimization phase that the peak was 
effectively detected, which resulted in 
parameter choices that led to the best 
possible outcomes. The predictive modeling 
demonstrated amazing accuracy in 
anticipating outcomes, particularly under 
lower noise levels (0.05). This demonstrates 
that the system is able to navigate 
straightforward and clearly defined 
environments.  

Results for single peak optimum 
under different noise conditions 
(NID(0,0.05) and NID(0,0.2)) and various 
equations provide valuable insights into the 
statistical. significance of the variables and 

interactions. Eq. (2.3) consistently emerges 
as a robust performer, displaying lower T-
test values across several variables and 
interactions. It demonstrates stability under 
noise variations, making it a reliable choice 
for statistical analysis. While Eq. (2.2) 
generally exhibits good performance, a slight 
increase in T-test values under the scenario 
of NID(0,0.2) for specific variables suggests 
a potential sensitivity to higher noise levels. 
Researchers should exercise caution when 
applying this equation, especially in 
scenarios with increased data variability 
(Table 3). 

The observed sensitivity of certain 
variables, notably variable C, to noise 
underscores the importance of understanding 
the impact of environmental conditions on 
statistical outcomes. Variables and 
interactions showing consistent low T-test 
values across equations and noise conditions 
can be considered more robust and reliable. 

 

Table 3. P-value of the multiple regression 
coefficients for the single-peaked artificial 
landscape. 

Case of  [NID(0,0.05)] 
P-value for regression 

coefficient 
Single Peak Optimum 

Eq. (2.1) Eq. (2.2) Eq. (2.3) 
A 0.0346 0.1325 0.0472 
B 0.7310 0.8199 0.0908 
C 0.5372 0.9999 0.1503 
D 0.4460 0.2764 0.0603 

A*B 0.5039 0.0756 0.0101 
A*C 0.0484 0.0423 0.5248 
A*D 0.3045 0.0756 0.5279 
B*C 0.1915 1.0000 0.0695 
B*D 0.0277 0.0856 0.7118 
C*D 0.6594 0.9999 0.0752 

Case of  [NID(0,0.2)] 
P-value for regression 

coefficient 
Single Peak Optimum 

Eq. (2.1) Eq. (2.2) Eq. (2.3) 
A 0.0318 0.0711 0.4358 
B 0.0012 0.8032 0.0073 
C 0.0028 0.1140 0.0098 
D 0.2403 0.2421 0.5453 

A*B 0.0434 0.0750 0.1554 
A*C 0.3415 0.0066 0.9690 
A*D 0.5865 0.0860 0.2774 
B*C 0.0022 0.9649 0.0109 
B*D 0.2108 0.0827 0.5322 
C*D 0.0020 0.9530 0.4267 
 

Curved ridge artificial landscape: 
The curved ridge landscape provided a more 
complex optimization task, and TSL-DEAR 
was able to rise to the occasion and meet the 
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challenge. Through the utilization of the 
approach, the undulating topography of the 
ridge was successfully traveled, and the 
parameters along the curve were optimized. 
An additional degree of understanding was 
supplied by the use of the DEAR efficiency 
score, which highlighted the areas of the 
ridge where efficiency was maximum. Even 
when subjected to increased noise levels 
(0.2), TSL-DEAR exhibited its ability to 
capture underlying patterns with 
considerable robustness.  

The results provide that Eq. (2.6): 
Particularly effective for certain interaction 
terms (AD and CD), warranting 
consideration when analyzing variables with 
complex relationships. Eqs. (2.4)-(2.5): 
Preferred for variables where lower T-test 
values indicate higher statistical significance. 
However, researchers should be cautious 
about potential variations in certain 
interaction terms (Table 4). 

 

Table 4. P-value of the multiple regression 
coefficients for the curved ridge artificial 
landscape. 

Case of  [NID(0,0.05)] 
P-value for regression 

coefficient 
Curved Ridge Optimum 

 Eq. (2.4) Eq. (2.5) Eq. (2.6) 
A 0.0759 0.1932 0.7400 
B 0.6107 0.5947 0.4716 
C 0.0288 0.7077 0.7833 
D 0.0291 0.7077 0.4114 

A*B 0.5144 0.0580 0.7188 
A*C 0.0387 0.9742 0.7724 
A*D 0.5053 0.9240 0.0189 
B*C 0.3338 0.8213 0.4507 
B*D 0.3505 0.6470 0.4110 
C*D 0.0104 0.6212 0.5103 

Case of  [NID(0,0.2)] 
P-value for regression 

coefficient 
Curved Ridge Optimum 

 Eq. (2.4) Eq. (2.5) Eq. (2.6) 
A 0.0144 0.2653 0.0077 
B 0.0186 0.2971 0.0801 
C 0.0068 0.5525 0.9448 
D 0.8132 0.2724 0.0126 

A*B 0.0053 0.5443 0.0002 
A*C 0.3972 0.1404 0.1118 
A*D 0.6523 0.1336 0.0008 
B*C 0.0052 0.3337 0.5675 
B*D 0.9065 0.5243 0.0066 
C*D 0.9759 0.7885 0.2151 

 

The Multi-Peak Artificial terrain: 
TSL-DEAR demonstrated its versatility by 

demonstrating its capacity to work in the 
complicated multi-peak terrain. It was 
possible to effectively identify several peaks 
during the optimization process, which 
resulted in the provision of a set of parameter 
configurations that led to a variety of optimal 
results. The rankings of efficiency that were 
acquired from DEAR offered extremely 
helpful insights into the hierarchy of 
performance throughout the various peaks. It 
is important to note that TSL-DEAR had 
strong predictive skills, particularly when 
noise levels were moderate (0.2), which 
demonstrates its usefulness in situations that 
are inherently complicated and ambiguous. 

The detailed comparison of T-test 
Regression results for Multi-Peak Optimum 
under different noise conditions 
(NID(0,0.05) and NID(0,0.2)) and various 
equations (Eqs. (2.7)-(2.9)) offers valuable 
insights into the statistical significance of 
variables and interaction terms. Eq. (2.9): 
Demonstrates nuanced performance, 
consistently yielding lower T-test values for 
certain interaction terms while occasionally 
showing higher values for variables. Eqs. 
(2.7)-(2.8): Exhibit varied performances 
across variables and interactions, with Eq. 
(2.8) often demonstrating smaller T-test 
values for certain cases (Table 5). 

 

Table 5. P-value of the multiple regression 
coefficients for the multi-peak artificial 
landscape. 

Case of  [NID(0,0.05)] 
P-value for regression 

coefficient 
Multi Peak Optimum 

Eq. (2.7) Eq. (2.8) Eq. (2.9) 
A 0.2557 0.8109 0.0999 
B 0.1849 0.2086 0.4790 
C 0.5836 0.0521 0.8043 
D 0.4461 0.2568 0.6139 

A*B 0.0089 0.0157 0.1496 
A*C 0.5335 0.3316 0.2319 
A*D 0.0216 0.0607 0.1071 
B*C 0.8191 0.1320 0.8617 
B*D 0.0094 0.2582 0.0854 
C*D 0.3332 0.9385 0.9937 

Case of  [NID(0,0.2)] 
P-value for regression 

coefficient 
Multi Peak Optimum 

Eq. (2.7) Eq. (2.8) Eq. (2.9) 
A 0.3203 0.1652 0.2394 
B 0.9607 0.1898 0.1089 
C 0.9172 0.2261 0.1488 
D 0.0157 0.0524 0.4236 

A*B 0.0647 0.2609 0.9388 
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A*C 0.0115 0.0906 0.1951 
A*D 0.0396 0.0316 0.2435 
B*C 0.6476 0.0821 0.0895 
B*D 0.6334 0.0156 0.1344 
C*D 0.0109 0.4841 0.6621 

 

The examination into two levels of 
noise standard deviation (0.05 and 0.2) 
indicated the robustness of TSL-DEAR in the 
presence of noise. This was discovered 
through the assessment of the impact of noise 
standard deviation. The technique 
consistently excelled, demonstrating its 
capacity to recognize important patterns and 
effectively optimize parameters, even when 
subjected to greater levels of noise. A degree 
of flexibility was displayed by the predictive 
modeling component, which was able to 
provide credible forecasts despite the 
increased noise. This finding highlights the 
stability of the technique in contexts with a 
lot of noise. 
 

 
Fig. 5. Performance measures of the EA based on 
the yields (Eqs. (2.1), (2.4), (2.7)). 

The numerical findings across 
single-peaked, curved ridge, and multi-peak 
artificial landscapes illustrate the great 
performance (Fig. 5) and adaptability (Fig. 6) 
of the TSL-DEAR approach. These findings 
are also accompanied by variances in noise 
levels. To summarize, the TSL-DEAR 
approach is a tool that is both very successful 
and diverse in its use. Because of its ability 
to navigate different terrains, optimize 
parameters, and anticipate outcomes, TSL-
DEAR is a useful tool for companies that are 
wanting to increase their efficiency and 
obtain strategic advantages across a wide 
range of operational landscapes. This is 
because TSL-DEAR is able to do all of these 
things.  

 

 
Fig. 6. Performance measures of the EA based on 
computing time (Eqs. (2.1), (2.4), (2.7)). 
 

The optimal parameters for single 
peak equations are as follows, as shown in 
the table below: Lower mutation rates (B = 
0.05 or 0.075) and moderate population sizes 
(C = 15-20) are successful even when applied 
to a variety of random seeds and noise 
circumstances. In certain instances, random 
seed changes (D) are shown to have an effect. 
For Equations Involving Curved Ridges, 
Comparable to Single Peak, the effectiveness 
of lower mutation rates and moderate 
population numbers is demonstrated. When 
it comes to establishing the best settings, 
random seed changes certainly play a part. 
The ideal values for Multi Peak Equations 
are found to be lower mutation rates (B = 
0.05) and moderate population sizes (C = 15-
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20). Variations in the random seed have an 
effect on the optimum settings (Table 6). 
 

Table 6. Numerical results of EA parameter 
selection for artificial landscapes.  

Case of  [NID(0,0.05)] 

Types of 
Artificial 

Landscapes 

C
on

ve
rg

en
ce

 

M
ut

at
io

n 
ra

te
 

Po
pu

la
tio

n 
si

ze
 

R
an

do
m

 se
ed

 

Single Peak         
Eq. (2.1) 0.001 0.05 20 0 
Eq. (2.2) 0.0001 0.075 15 0 
Eq. (2.3) 0.001 0.05 15 0 

Curved Ridge         
Eq. (2.4) 0.001 0.05 15 0 
Eq. (2.5) 0.0001 0.05 15 0 
Eq. (2.6) 0.001 0.075 20 0 

Multi Peak         
Eq. (2.7) 0.0001 0.075 20 2 
Eq. (2.8) 0.0001 0.075 15 0 
Eq. (2.9) 0.0001 0.075 15 2 

Case of  [NID(0,0.2)] 

Types of 
Artificial 

Landscapes 

C
on

ve
rg

en
ce

 

M
ut

at
io

n 
ra

te
 

Po
pu

la
tio

n 
si

ze
 

R
an

do
m

 se
ed

 

Single Peak         
Eq. (2.1) 0.0001 0.05 15 2 
Eq. (2.2) 0.001 0.05 15 2 
Eq. (2.3) 0.001 0.05 20 0 

Curved Ridge         
Eq. (2.4) 0.001 0.05 15 0 
Eq. (2.5) 0.0001 0.05 15 0 
Eq. (2.6) 0.0001 0.05 20 0 

Multi Peak         
Eq. (2.7) 0.0001 0.05 15 0 
Eq. (2.8) 0.0001 0.075 15 2 
Eq. (2.9) 0.001 0.05 15 2 

 
5. Conclusions and Discussions 
 In conclusion, the TSL-DEAR 
(Taguchi-Statistical Learning-DEAR) 
method demonstrates exceptional 
performance when applied to complex 
optimization problems, predictive modeling, 
and domain-wide efficiency ranking. Its 
resilience is the result of the collaboration 
between Taguchi Analysis, Statistical 
Learning, and DEAR, which provides 
strategic advantages and optimal results to 
decision-makers. Commencing with Taguchi 
Analysis and Normalization guarantees a 
comprehensive examination of parameter 

spaces, from which optimal configurations 
are extracted and variance is diminished. 
DEAR then incorporates an efficiency-
ranking layer to enhance comprehension of 
the performance of decision-making units. 
The utilization of DEAR and Taguchi-
optimized parameters enables organizations 
to evaluate optimal strategies and identify 
areas that require enhancement. 

Predictions are enhanced by 
Statistical Learning, specifically Multiple 
Regression. Using historical data and DEAR 
efficiency evaluations, TSL-DEAR assists 
decision-makers in estimating system 
outcomes. Predictive insight provides a 
dynamic comprehension of how parameter 
variations impact system performance and 
facilitates strategic planning. Due to its 
adaptability, TSL-DEAR excels in 
manufacturing, healthcare, finance, and other 
sectors. By optimizing processes, predicting 
outcomes, and ranking efficacy, the method 
provides businesses seeking to enhance 
decision-making with a comprehensive 
solution. 

Adaptability of TSL-DEAR is 
advantageous to the manufacturing, 
healthcare, and finance sectors, among 
others. The adaptability of the methodology 
renders it a universal instrument that 
enhances operations, predicts results, and 
assesses efficacy, thereby bolstering the 
competitiveness and agility of sectors. 
Industry leaders are propelled to the 
vanguard of data-driven decision making by 
TSL-DEAR. In an ever-evolving business 
environment, enhanced productivity, 
benchmarked performance, and predictive 
insights usher in a new era in which analytics 
serves as a strategic enabler for organizations 
attempting to grow and endure. 

Further investigation may involve 
the integration of advanced analytical 
techniques into TSL-DEAR. Advancements 
in machine learning algorithms may lead to 
enhancements in TSL-DEAR's forecasting 
capabilities via neural networks and 
ensemble approaches. An examination of the 
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distinctions and advantages of statistical 
learning techniques would facilitate the 
optimization of the strategy across diverse 
sectors. Moreover, the application of TSL-
DEAR to novel industries and domains 
constitutes a captivating area of study.  

Expanding the technique to 
encompass challenges and opportunities 
specific to renewable energy, sustainable 
agriculture, and emergent technologies 
would showcase its capacity to stimulate 
innovation and enhance operational 
effectiveness in non-traditional sectors. 
Tools and interfaces for user-friendly TSL-
DEAR implementation represent an 
additional prospective area of research. 
Establishing user-friendly software solutions 
across various industries will democratize 
the process, enabling decision-makers to 
leverage its benefits even in the absence of 
expertise in statistical modeling. 

In summary, the implementation of 
the TSL-DEAR method has revolutionized 
the way in which decisions are made; 
however, further research and enhancements 
are continuous. Additional investigation into 
sophisticated methodologies, broadening its 
scope to encompass untapped sectors, 
developing intuitive implementations, and 
evaluating scalability are all approaches that 
could enhance the indispensability of TSL-
DEAR as a tool for industries navigating the 
contemporary business environment. 
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