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ABSTRACT

The annual emissions of CO2 from land-use change in Albania are the main focus of this
research. The aim is to analyze the presence of non-linearity and stationarity. A mixed-methods
strategy is used, which combines descriptive, inferential, and exploratory data analysis in time
series data. A data sample was obtained from the Our World in Data website, spanning from 1850
through 2022. After the Isolation Forest technique was employed to identify outliers in the time
series, the Long-Short-Term Memory model was used to impute them. Exploratory data analysis
was applied to the original and imputed time series to ensure that the basic characteristics of the
initial data distribution were preserved. Non-linearity and stationarity were checked in the imputed
time series before and after applying the first differences. Non-linearity was assessed using the
BDS test and the Terédsvirta Neural Network test. In the presence of non-linearity, stationarity was
analyzed using the KPSS test, the Zivot-Andrews Unit Root test, and the Breitung test. The first
differencing application transformed the non-stationary series into a stationary one, but it was
insufficient to eliminate non-linearity. This highlights the complex nature of CO2 emissions data
and the need for sophisticated modeling techniques.

Keywords: Carbon emissions; Land-use impacts; LSTM imputation; Non-linearity; Stationarity
tests

1. Introduction

Agriculture, forestry, and other land-use
sectors are some of the contributors to the total
greenhouse gas (GHG) emissions in Albania.
The main emitters are the ‘livestock’ with 41%

of the total and the ‘land’ with 38% of the total
GHG emissions. Although forests are believed
to be a sink of GHG emissions, under the
category ‘land’, they represent one of the key
sources of emissions, mostly due to their
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neglected management in recent years.
Furthermore, negative impacts in this direction
have arisen from uncontrolled deforestation,
massive forest fires, a lack of effective
investment in forest improvement and
afforestation, informality, and an absence of
development reforms [1].

In an empirical investigation [2] with
data from Malaysia (1990-2019), it was shown
that agricultural land expansion by 1% is
associated with an increase of 0.84% in carbon
dioxide (CO2) emissions in the long run.
Meanwhile, a 1% reduction in the wooded
area, has resulted in a 5.41% long-term impact
on higher CO2 emissions.

Carbon dioxide emissions from land-use
change (CO2-E-LUC) are considered a
summation of various activities that emit
carbon stored in vegetation or soil [3, 4]. This
includes emissions from: deforestation (CO2-
Ear), forest degradation (CO2-Egc),
conversion of forest land to agriculture (CO2-
Econv.agric.), conversion of natural land to urban
areas (CO2-Eupconv.), soil degradation, and
wetland drainage (COZ'Esoil deg. and wetland drain.)-
As expressed in a formula we have,

CO2-E-LUC= CO2-Edet+ CO2-Edeq.
+ Coz-Econv.agricAJ" CO2-Eurb.conv.
+ CO2-Exsoil deg. and wetland drain. , (1 . 1)

Trajectories of land-use change indicate
positive and negative relationships between
man and the environment. Land-use change
analyses are necessary to assist the
government in appropriate zoning to minimize
or eliminate negative environmental impacts.
With the beginning of land trading in the
absence of regulatory legislation from 1996 to
2003 in Albania, land-use changes were more
dynamic [5]. According to [6], land-use
change caused 215 and 142 Pg C of global
emissions and removals, respectively, between
1961 and 2020, resulting in an average net
emissions of 1.21 Pg C per year.

The state of climate change in six
Western Balkan countries (Albania included)
was studied in [7]. The development of
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sustainable forestry, the improvement of forest
management practices, and the rehabilitation
of degraded forest land are integral parts of the
strategies that have to do with land-use change
and forestry.

The annual emissions of CO2 from
land-use change in Albania, as measured in
tonnes per person (CO2-E-LUC per capita),
are the primary focus of analysis in this
research, seen from a statistical perspective.
CO2-E-LUC per capita is expressed by,

CO2-E-LUC

population

CO2-E-LUC per capita= (1.2)

There are several reasons, such as
climate change [8, 9], health [10], economic
development [11, 12], carbon budgets [13],
etc., why it is important to conduct research on
the CO2-E-LUC per capita time series data in
Albania as well as abroad. Further, to our
knowledge, in Albania, there is a lack of
studies in the area of CO2 emissions data,
divided by their categories.

Albania is committed to implementing
policies to lower GHG emissions from various
economic sectors. By December 2022, the
country had partially aligned with the
Regulation on the Governance of the Energy
Union and Climate Action. The level of
emission reductions planned for 2021-2030 in
the National Energy and Climate Plan adopted
in 2021 is 18.7%. The plan relies significantly
on the reduction of CO2 by forests, but in
contrast with this, there are very limited
financial means and capacity allocated to
protecting and managing forests, including
measures to promote reforestation and manage
forest fire risks. In February 2023, a ministerial
decision approved the National Strategy for
Development and European Integration 2022-
2030, which sets out a series of priority
measures like adopting climate secondary
legislation, climate budgeting, and nature-
based solutions. Furthermore, Albania needs to
address strategic investment planning, and the
implementation and monitoring capacity of
infrastructure projects [14].
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The main objective of this research is to
analyze the presence of non-linearity and
stationarity in the time series data of annual
CO2-E-LUC per capita. To further study this
objective, we raise the following research
questions:

— RQI1: Is there non-linearity in the
time series data?

— RQ2: Is the time series data
stationary?

Non-linearity and non-stationarity are
processes that are often encountered in time
series, and they can be the result of complex
underlying dynamics. If these issues are not
addressed before building specific predictive
models, it would compromise the reliability of
the results. In the context of CO2 emissions,
since many decision-making policies are based
on predictive models of time series of

emissions, they are directly influenced by the
accuracy of these models.

2. Materials and Methods

The present research implemented a
mixed-methods approach to investigate the
presence of non-linearity and stationarity in
the annual CO2-E-LUC per capita series data.
It is a combination of inferential, descriptive,
and exploratory methods. Data sampling
related to Albania’s annual CO2-E-LUC per
capita was gathered from Our World in Data,
available for download at [15]. Ritchie in [16]
provides sources and methods used to produce
CO2 emissions dataset. The data timeframe
that is analyzed herein spans from 1850 to
2022. The variables under study are “annual
CO2-E-LUC per capita” and “year”, analyzed
as a time series.

Table 1. The non-linearity and stationarity tests applied.

Function utilized

Rejection of

Purpose  Test in R for the test Null . Alternative hypothesis ~ Null
. . hypothesis .
implementation hypothesis
on The Brock- bds.tst() [19] The time series is . L
= . . . . . The time series is not
2 Dechert- with embedding dimensions independently and i.i.d. (exhibits <0.05
2 Scheinkman values (2, 3) and four epsilon identically distributed T . . p=b.
- o nonlinearity or chaotic
£ (BDS) Test [17, values (i.i.d.). behavior)
E 18] (0.5SD, 1SD, 1.5SD, 2SD). )
g - - -
£ The Terésvirta ' The time series follows The time series follows p<0.05
= 5 Neural Network terasvirta.test() [22] a linear model a nonlinear
Z &  Test[20,21] ' model.
The The time series has ;th::istteiit
Kwiatkowski- ur.kpss() [24] . . . ..
oo . e 3 e stationarity around a The time series is not exceeds the
Phillips-Schmidt-  type= c(“mu”, “tau”) L . L
. o A . mean / deterministic level / trend-stationary. critical values
Shin (KPSS) Test  lags=c(“short”, “long”)
23] trend. (1%, 2.5%,
5%, 10%).
ur.za() [24] . . The time series is The. te'st.
. PR A . The time series has a . . statistic is less
Zivot-Andrews model =c(“intercept”, “trend”, . : stationary with a
. " " unit root and is non- than the
Unit Root Test both") . . structural break at some i
[25] Optimal lag value? stationary, with no unknown point in the critical value
structural break. time series values (1%,
K : 5%, 10%)
2 . The time series has a The time series is The test
2 Breitung Test . . . e
> . unit root, 1t 1s non- stationary around a statistic is less
£ (Elliot, ur.ers() [24] .
= Ve \ stationary around a constant than the
= Rothenberg, and type= “P-test s "
= . e I . constant mean/deterministic critical values
S Stock Unit Root model= c(“constant”, “trend”) s o/ o
8 Test) [26, 27] mean/deterministic trend. (1%, 5%,
P ’ trend. 10%)

Note 1: lags= “short” sets the number of lags to 4 (_o)’ whereas lags= “long” sets the number of lags to 12 ( ) .

n
10

n
100

Note 2: The Akaike Information Criterion (AIC) [28] was used to select the optimal lag length, rotating from 1 to 40, minimizing the
AIC value. This ensures that the model includes enough lags to capture autocorrelation without overfitting.

The statistical procedure started with
the identification of time series outliers.
Their presence and mishandling can affect

the accuracy of predictive models. The
Isolation Forest technique [29, 30] was used
to detect them. This technique effectively
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identifies anomalies without assuming
distributional properties, making it well-
suited for non-linear, non-stationary time
series data. Random binary trees from
subsets of the data are constructed to isolate
individual points based on their anomaly

Time Series Data

Outlier Detection
(Isolation Forest technique)

scores. A range of trees (50, 100, 150, and
200) were evaluated, and the optimal number
was selected using cross-validation. Outliers
were identified as points that exceeded the

95th percentile threshold of the anomaly
scores.

Outliers
Detected

Imputation
(LSTM)

Exploratory Data Analysis
Statistical Summary
Visualization
(Line Plots, Boxplots, Density Plots,
LOESS Trend Plots)

Non-Linearity Testing
(BDS Test,
Terasvirta Neural Network Test)

Linearity
confirmed

Stationarity Testing
(Linearity)

\ . . A . . e . .
\ Stationarity /Stationarity /Non-stationarity
" confirmed / confirmed \_ confirmed
\

\ /

Non-Linearity s -
confirmed h

(KPSS Test, Zivot-Andrews Unit Root Test,

Stationarity Testing
(Non-Linearity)

Breitung Test)

on-stationarity
confirmed

|

First Differencing

Fig. 1. Flowchart of statistical procedure steps.

After that, the outliers were replaced
with NA values. The Long Short-Term
Memory (LSTM) model [31-34] was chosen
for the imputation, due to its ability to capture
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complex temporal dependencies in non-linear
and non-stationary data. The model
architecture details were as follows: two
layers, each containing 30 units; a specified
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timestep of 5; 100 epochs; and a batch size 16.
Model performance [35, 36] was evaluated
using metrics: Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error
(MAPE), Symmetric Mean  Absolute
Percentage Error (sSMAPE), Mean Absolute
Scaled Error (MASE), and R-squared (R?).

Furthermore, it was continued with an
exploratory data analysis of both original and
imputed time series data to verify if the basic
characteristics of the initial data distribution
were preserved. The summary statistics used
were: minimum (Min), first quartile (Q1),
median (Q2), mean, third quartile (Q3),
maximum (Max), standard deviation (SD),
skewness, and kurtosis. The data was tested for
normality using the Anderson-Darling
normality test [37]. Locally estimated
scatterplot smoothing (LOESS) was obtained
through the function loess() with span=0.3 [38]
[39].

Graphical representations such as
boxplots, line plots, density plots, and LOESS
trend plots, were used to visually see the
approximation made by the imputation
method. Before checking for the stationarity of
a series, it is necessary to analyze its linearity,
because some tests that assess stationarity
assume that the series is linear. Conversely, if
the non-linearity of the series is confirmed,
then the tests for stationarity should be chosen
under this circumstance.

The applied tests to check on the two
research questions are described with
implementation details in Table 1. All the
procedure steps in analyzing the time series
data are outlined in the flowchart in Fig. 1. The
statistical computations are gathered using R
software [40].

3. Results and Discussion
3.1 Exploratory Data Analysis

The optimal number of trees chosen by
cross-validation was 50, while applying the
Isolation Forest technique. Nine outliers’

43

values were identified in the time series data of
annual CO2-E-LUC per capita, using the
threshold 0.6237087. These values represent
only 5% of the sample. Together with the
corresponding years and the imputed values,
they are presented in Table 2.

Table 2. Outliers, corresponding imputed
values, and the respective years.

Year Outlier Imputed
1951 3.536 3.171
1954 4.071 3.650
1955 4.163 3.569
1956 4.238 3.446
1957 4.348 3.302
1959 4.401 3.671
1960 3.755 3.632
2002 -0.113 0.048
2004 -0.312 0.048

Table 3. Summary statistics of time series data
before and after imputation.

Statistic Before After

Min -0.312 -0.071

Q1 1.060 1.060

Q2 2.56 2.56

Mean 2.08 2.06

Q3 2.891 2.891

Max 4.40 4.37

SD 1.17 1.12

Skewness -0.499 -0.628

Kurtosis -0.811 -0.93
Test Statistic (A):  Test Statistic (A):

Anderson- 8.3608 W 9.7374 W

Darling

Test p-value: p-value:
<2.2e-16 <2.2e-16

The LSTM model imputation achieved
an RMSE of 0.1336, indicating a minimal
average error, and MAPE of 2.06%,
emphasizing a low percentage of error. The
SMAPE of 2.93%, further supported the
consistency of the imputation. Additionally,
the MASE of 0.279 showed scaled accuracy,
while the R? of 0.988 confirmed a near-perfect
fit between imputed and outliers’ values.
Future analysis could be conducted to
investigate what might have occurred in these
years to result in these extreme values for
annual CO2-E-LUC per capita, but this is not
the focus of the current study.
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CO2-E-LUC Per Capita

Type

Indicator e Outers

CO2-E-LUC Per Capita

|

Type

Indicator ® Imputed Values

Fig. 2. Box plots of annual CO2-E-LUC-per capita before and after imputation.

CO2-E-LUC Per Capita

Fig. 3. Density plots of annual CO2-E-LUC-per capita before and after imputation.

In the following, the imputed time
series is obtained from the original time
series, where outlier values have been
replaced by the imputed values. The
summary statistics are presented in Table 3.
The visual representations are given by box
plots in Fig. 2 and density plots in Fig. 3.
When comparing the two series, very small
changes are observed. The central tendency
of the data is preserved. A reduction in the
extreme values and less variability is seen

Original and Imputed Time Series Plots

CO2-E-LUC Per Capita

LOESS Trend Plots

CO2-E-LUC Per Capita

colour

Year

LOESS Trond (mouted) — LOE:

after imputation. Although a shift in the
values of skewness and kurtosis is seen, the
distribution remains moderately left skewed
and flat. The results from both the original
and imputed time series indicate that neither
of them follows a normal distribution
according to the Anderson-Darling test. Fig.
4 shows the line plots of the time series,
highlighting the outliers and imputed points,
and also provides the LOESS trend plots.

\
\
\
\,
\

N—

Trend (Orging

Fig. 4. Annual CO2-E-LUC per capita time series plots with outliers and imputed points. LOESS trend of

the original and imputed time series.
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3.2 Non-linearity and Stationarity

3.2.1 Before First Differencing

Based on the results obtained from
the BDS test (Tables 4-5) applied to the
imputed time series of CO2-E-LUC per
capita, the standard normal statistics values
are high and the p-values are less than 0.001.
This occurs for all values of epsilon and
embedding dimensions considered.
Therefore, the initial hypothesis of the test is
rejected. This fact indicates the presence of
non-linearity or dependence in the time series
data.

Table 4. BDS results for embedding

dimension = 2, before and after first
differencing.
First Differencing Epsilon Standard Normal  p-value
0.5622 47.256 <0.001
35: 1.1244 44.122 <0.001
2 1.6866 39.828 <0.001
2.2489 34212 <0.001
0.0932 8.0449 <0.001
] 0.1864 6.269 <0.001
b 0.2795 5.9787 <0.001
0.3727 4.9951 <0.001
Table 5. BDS results for embedding
dimension = 3, before and after first
differencing.
First Epsilon Standard Standard p- p-
Differencing Normal Normal value value
Q) 3) ) 3)

46.125
42.704
38.775
33.572
8.0288
6.2542
5.9498
4.9703

72.716
51.523
42.586
34.694
10.3137
7.5684
6.9286
5.6501

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

0.5622
1.1244
1.6866
2.2489
0.0932
0.1864
0.2795
0.3727

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Before

After

As can be seen in Table 6, non-
linearity is confirmed also by the Terésvirta
Neural Network test, where the p-value is
4.961e-06 (<0.05). To further continue
testing stationarity, we use tests that can
handle non-linearity.

Table 6. Terdsvirta Neural Network test

result, before and after first differencing.
Statistic

First Differencing

X-squared Df  p-value
Before 24.428 2 4.961¢-06
After 12.538 2 0.001894
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The results of the KPSS test are
displayed in Table 7. Across both short (4
lags) and long (13 lags) configurations for the
KPSS test, the test statistics exceed the
critical values at 5%, for stationarity around
the mean (“mu”) and trend (“tau”). For the
“mu” test, the short lag test statistic is 2.25,
and the long lag test statistic is 0.8653. In the
“tau” test, the short lag test statistic is 0.4681,
and the long lag test statistic is 0.1873. This
means that the null hypothesis of the test is
rejected, and the imputed time series of CO2-
E-LUC per capita is neither level nor trend-
stationary.

Table 8 provides the results of Zivot-
Andrews’s test applied for varying lag

values, from 1 to 40. Before first
differencing, the Zivot-Andrew’s test
provides the following results. In the

“intercept” model, the test statistic -4.4048 is
greater than all the critical values considered.
This suggests that the series is non-
stationary, even considering potential
structural breaks. A break is identified at
observation 141, and the optimal lag based on
AIC is 18, indicating that the model explains
a significant amount of autocorrelation in the
data.

In the “trend” model, the test statistic
-4.6469 is greater than the critical value at
1% but less than the critical value at 5% and
10%. According to this, there is weak
evidence that the series remains non-
stationary to a trend, and the potential
structural break is detected at observation
126. The optimal lag is again 18, signifying
similar autocorrelation patterns as in the
“intercept” model.

In the “both” (intercept and trend)
model, the test statistic of -6.0411 is less than
all critical values (10%, 5%, and 1%). This
suggests that the series is stationary when
accounting for structural breaks in intercept
and the trend. The structural break is
identified at observation 90, and the optimal
lag remains at 18, emphasizing once more
long-term dependencies.
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The data in Table 9 provides the
results of the Breitung test. In both the
models considered, we see that the value of
the test statistic before differencing is greater
than the critical values at all significance
levels. This means that the null hypothesis of
the test cannot be rejected.

In summary, after applying the three
tests to check the stationarity of the imputed
time series for CO2-E-LUC per capita, we
come to the same conclusion: the series is
non-stationary.

Table 7. KPSS test results on the imputed time series before and after first differencing.

Test La First Test Critical Values
Type g Differencing Statistic (10%) (5%) (2.5%) (1%)
Before 2.25
Short (4)
KPSS After 0.2407 0.347 0.463 0.574 0.739
(mu) L (13) Before 0.8653
ong After 0.1635
Before 0.4681
Short (4)
KPSS§ After 0.0792 0.119 0.146 0.176 0216
(tau) L (13) Before 0.1873
ong After 0.0556

3.2.2 After First Differencing

To make the series stationary, we take
the first differences. Then, we re-check if the
series is non-linear. It turns out from the BDS
test (Table 4 and Table 5) that the p-values
remain less than 0.001, thus rejecting the null
hypothesis of the test. It is noted that the values
of standard normal statistics have decreased
significantly compared to those before taking

the first differences. However, based on this
test, the series remains non-linear.

The same phenomenon is observed in
the Terédsvirta Neural Network test’s output
(Table 6). Although the value of the test
statistic has decreased, the p-value (0.001894)
provides statistical evidence at the 0.05
significant level that the time series exhibits
non-linearity.

Table 8. Zivot-Andrews Unit root test results before and after first differencing, with optimal lag

based on AIC

Model First Test Critical Values Potential Optimal

Type Differencing Statistic 10% 5% 1% Break Point Lag (AIC)
Before -4.4048 141 18

Intercept “After 10,4096 -4.58 -4.80 -5.34 108 1
Before -4.6469 126 18

Trend “After 9014 -4.11 -4.42 -4.93 130 1
Before -6.0411 90 18

Both After -10.842 482 508 337 108 1

The first differencing has some effect
on reducing non-linearity, but it is insufficient
to fully eliminate it. Regarding the stationarity
of the differenced time series, we continue
testing with the same group of tests as before
the first differencing due to the same
conditions related to non-linearity.

Based on the results of the tests, we
see that the first differencing has shifted the
non-stationary series into a stationary one. The

KPSS test statistics (see Table 7) for both short
and long lags are found to be less than the
critical values. For the “mu” test, the short lag
test statistic dropped to 0.2407, and the long
lag test statistic fell to 0.1635, both less than
the critical thresholds, indicating stationary
around the mean. For the “tau” test, the short
lag test statistic is 0.0792, and the long lag test
statistic is 0.0556, providing evidence for trend
stationarity after differencing.
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Table 9. Breitung test results on the imputed time series before and after first differencing.

Test . Critical Values

Type Model Lag Test Statistic (10%) (5%) (1%)
Before: 29.112

P-test constant 1 After: 0.4701 4.33 3.17 1.91

P-test trend 1 Before: 36.8543 6.86 5.66 4.05

After: 1.4403

After first differencing, the Zivot-
Andrews’s test results (Table 8), present
statistical evidence that the series becomes
stationary across all model types. As a result,
the null hypothesis of a unit root is rejected. In
the “intercept” model, the test statistic value (-
10.4096) is less than all critical values. The
structural break shifts to observation 108, and
the optimal lag based on AIC reduces to 1. In
the “trend” model, the test statistic is -9.214,
again less than all critical values, indicating
that the series is now trend-stationary. The
structural break occurs at observation 130, and
the optimal lag is reduced to 1. In the “both”
(intercept and trend) model, the test statistic of
-10.842, less than all the critical values
considered, confirms stationarity in both the
intercept and trend after differencing. The
structural break remains at 108, and the
optimal lag is 1.

We see that after the first differencing,
the autocorrelation 1is largely resolved,
reducing the optimal lag to 1 in all three
models, based on the Zivot-Andrews’s test
results. Structural breaks still exist but occur at
different points. While differencing eliminates
non-stationarity, it does not entirely remove
the impact of key structural changes in the
series.

Results of the Breitung test after first
differencing (Table 9) prove that the test
statistic’s value becomes less than the critical
values, in both models. In this case, the time
series is stationary around a constant mean and
also in a deterministic trend.

Taking  first  differences  has
successfully removed the unit root from the
time series, making it suitable for further time
series analysis or modeling. Our results related
to non-linearity and stationarity of CO2
emissions data are consistent with other
studies [41-43].
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4. Conclusion

The statistical analysis of Albania's
annual CO2 emissions from land-use change
per capita was the main focus of this research.
The Isolation Forest technique was employed
to identify the outliers in the time series data
and the LSTM model for imputation. The
exploratory data analysis preserved the basic
characteristics of the initial data distribution
after imputation.

The BDS test and the Terésvirta
Neural Network test confirm the presence of
non-linearity in the time series data, both
before and after applying the first differences.
The findings from the KPSS, Zivot-Andrews
Unit Root, and Breitung tests indicate that the
original time series was non-stationary, but
first differencing transformed it into a
stationary  series, although non-linearity
persisted.

The significance of this research lies
in its detailed investigation of CO2-E-LUC per
capita time series data in Albania, focusing on
assessing the presence of non-linearity and
stationarity. Furthermore, our study sheds light
on the dynamic behavior of CO2 emissions
from land-use changes. This is crucial for
policymakers and researchers aiming to
develop accurate predictive models and
implement effective GHG emission reduction
strategies. The study's limitations are rooted in
the non-primary nature of the data we analyze,
potentially affecting our conclusions. Future
research on this dataset will employ advanced
modeling techniques that account for non-
linearity and stationarity, aiming for improved
accuracy and reliability.
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