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ABSTRACT 
The annual emissions of CO2 from land-use change in Albania are the main focus of this 

research. The aim is to analyze the presence of non-linearity and stationarity. A mixed-methods 
strategy is used, which combines descriptive, inferential, and exploratory data analysis in time 
series data. A data sample was obtained from the Our World in Data website, spanning from 1850 
through 2022. After the Isolation Forest technique was employed to identify outliers in the time 
series, the Long-Short-Term Memory model was used to impute them. Exploratory data analysis 
was applied to the original and imputed time series to ensure that the basic characteristics of the 
initial data distribution were preserved. Non-linearity and stationarity were checked in the imputed 
time series before and after applying the first differences. Non-linearity was assessed using the 
BDS test and the Teräsvirta Neural Network test. In the presence of non-linearity, stationarity was 
analyzed using the KPSS test, the Zivot-Andrews Unit Root test, and the Breitung test. The first 
differencing application transformed the non-stationary series into a stationary one, but it was 
insufficient to eliminate non-linearity. This highlights the complex nature of CO2 emissions data 
and the need for sophisticated modeling techniques. 

Keywords: Carbon emissions; Land-use impacts; LSTM imputation; Non-linearity; Stationarity 
tests

1. Introduction
Agriculture, forestry, and other land-use 

sectors are some of the contributors to the total 
greenhouse gas (GHG) emissions in Albania. 
The main emitters are the ‘livestock’ with 41% 

of the total and the ‘land’ with 38% of the total 
GHG emissions. Although forests are believed 
to be a sink of GHG emissions, under the 
category ‘land’, they represent one of the key 
sources of emissions, mostly due to their 
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neglected management in recent years. 
Furthermore, negative impacts in this direction 
have arisen from uncontrolled deforestation, 
massive forest fires, a lack of effective 
investment in forest improvement and 
afforestation, informality, and an absence of 
development reforms [1].  

In an empirical investigation [2] with 
data from Malaysia (1990-2019), it was shown 
that agricultural land expansion by 1% is 
associated with an increase of 0.84% in carbon 
dioxide (CO2) emissions in the long run. 
Meanwhile, a 1% reduction in the wooded 
area, has resulted in a 5.41% long-term impact 
on higher CO2 emissions. 

Carbon dioxide emissions from land-use 
change (CO2-E-LUC) are considered a 
summation of various activities that emit 
carbon stored in vegetation or soil [3, 4]. This 
includes emissions from: deforestation (CO2-
Edef.), forest degradation (CO2-Edeg.), 
conversion of forest land to agriculture (CO2-
Econv.agric.), conversion of natural land to urban 
areas (CO2-Eurb.conv.), soil degradation, and 
wetland drainage (CO2-Esoil deg. and wetland drain.). 
As expressed in a formula we have, 

CO2-E-LUC= CO2-Edef.+ CO2-Edeg. 
+ CO2-Econv.agric.+ CO2-Eurb.conv.

+ CO2-Esoil deg. and wetland drain. ,    (1.1) 

Trajectories of land-use change indicate 
positive and negative relationships between 
man and the environment. Land-use change 
analyses are necessary to assist the 
government in appropriate zoning to minimize 
or eliminate negative environmental impacts. 
With the beginning of land trading in the 
absence of regulatory legislation from 1996 to 
2003 in Albania, land-use changes were more 
dynamic [5]. According to [6], land-use 
change caused 215 and 142 Pg C of global 
emissions and removals, respectively, between 
1961 and 2020, resulting in an average net 
emissions of 1.21 Pg C per year. 

The state of climate change in six 
Western Balkan countries (Albania included) 
was studied in [7]. The development of 

sustainable forestry, the improvement of forest 
management practices, and the rehabilitation 
of degraded forest land are integral parts of the 
strategies that have to do with land-use change 
and forestry. 

The annual emissions of CO2 from 
land-use change in Albania, as measured in 
tonnes per person (CO2-E-LUC per capita), 
are the primary focus of analysis in this 
research, seen from a statistical perspective. 
CO2-E-LUC per capita is expressed by, 

CO2-E-LUC per capita= CO2-E-LUC
population

.          (1.2) 

There are several reasons, such as 
climate change [8, 9], health [10], economic 
development [11, 12], carbon budgets [13], 
etc., why it is important to conduct research on 
the CO2-E-LUC per capita time series data in 
Albania as well as abroad. Further, to our 
knowledge, in Albania, there is a lack of 
studies in the area of CO2 emissions data, 
divided by their categories. 

Albania is committed to implementing 
policies to lower GHG emissions from various 
economic sectors. By December 2022, the 
country had partially aligned with the 
Regulation on the Governance of the Energy 
Union and Climate Action. The level of 
emission reductions planned for 2021-2030 in 
the National Energy and Climate Plan adopted 
in 2021 is 18.7%. The plan relies significantly 
on the reduction of CO2 by forests, but in 
contrast with this, there are very limited 
financial means and capacity allocated to 
protecting and managing forests, including 
measures to promote reforestation and manage 
forest fire risks. In February 2023, a ministerial 
decision approved the National Strategy for 
Development and European Integration 2022-
2030, which sets out a series of priority 
measures like adopting climate secondary 
legislation, climate budgeting, and nature-
based solutions. Furthermore, Albania needs to 
address strategic investment planning, and the 
implementation and monitoring capacity of 
infrastructure projects [14]. 
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The main objective of this research is to 
analyze the presence of non-linearity and 
stationarity in the time series data of annual 
CO2-E-LUC per capita. To further study this 
objective, we raise the following research 
questions: 

- RQ1: Is there non-linearity in the 
time series data? 

- RQ2: Is the time series data 
stationary? 

Non-linearity and non-stationarity are 
processes that are often encountered in time 
series, and they can be the result of complex 
underlying dynamics. If these issues are not 
addressed before building specific predictive 
models, it would compromise the reliability of 
the results. In the context of CO2 emissions, 
since many decision-making policies are based 
on predictive models of time series of 

emissions, they are directly influenced by the 
accuracy of these models. 
 
2. Materials and Methods 
 The present research implemented a 
mixed-methods approach to investigate the 
presence of non-linearity and stationarity in 
the annual CO2-E-LUC per capita series data. 
It is a combination of inferential, descriptive, 
and exploratory methods. Data sampling 
related to Albania’s annual CO2-E-LUC per 
capita was gathered from Our World in Data, 
available for download at [15]. Ritchie in [16] 
provides sources and methods used to produce 
CO2 emissions dataset. The data timeframe 
that is analyzed herein spans from 1850 to 
2022. The variables under study are “annual 
CO2-E-LUC per capita” and “year”, analyzed 
as a time series.

 
Table 1. The non-linearity and stationarity tests applied. 

Purpose Test 
Function utilized  
in R for the test 
implementation 

Null  
hypothesis Alternative hypothesis  

Rejection of 
Null 
hypothesis 

N
on

-li
ne

ar
ity

 te
st

in
g 

R
Q

1 

The Brock-
Dechert-
Scheinkman 
(BDS) Test [17, 
18] 

bds.tst() [19] 
with embedding dimensions 
values (2, 3) and four epsilon 
values 
(0.5SD, 1SD, 1.5SD, 2SD). 

The time series is 
independently and 
identically distributed 
(i.i.d.). 
 

The time series is not 
i.i.d. (exhibits 
nonlinearity or chaotic 
behavior). 

p<0.05  
 

The Teräsvirta 
Neural Network 
Test [20, 21] 

terasvirta.test() [22] The time series follows 
a linear model. 

The time series follows 
a nonlinear 
model. 

p<0.05  
 

St
at

io
na

ri
ty

 te
st

in
g 

 
R

Q
2 

The 
Kwiatkowski-
Phillips-Schmidt-
Shin (KPSS) Test 
[23] 

ur.kpss() [24] 
type= c(“mu”, “tau”) 
lags=c(“short”, “long”)1 

The time series has 
stationarity around a 
mean / deterministic 
trend. 

The time series is not 
level / trend-stationary. 

The test 
statistic 
exceeds the 
critical values 
(1%, 2.5%, 
5%, 10%). 

Zivot-Andrews 
Unit Root Test 
[25] 

ur.za() [24] 
model =c(“intercept”, “trend”, 
"both") 
Optimal lag value2  
 

The time series has a 
unit root and is non-
stationary, with no 
structural break. 

The time series is 
stationary with a 
structural break at some 
unknown point in the 
time series. 

The test 
statistic is less 
than the 
critical value 
values (1%, 
5%, 10%) 

Breitung Test 
(Elliot, 
Rothenberg, and 
Stock Unit Root 
Test) [26, 27] 

ur.ers() [24] 
type=  “P-test” 
model= c(“constant”, “trend”) 

The time series has a 
unit root, it is non-
stationary around a 
constant 
mean/deterministic 
trend. 

The time series is 
stationary around a 
constant 
mean/deterministic 
trend. 
 

The test 
statistic is less 
than the 
critical values 
(1%, 5%, 
10%) 

Note 1: lags= “short” sets the number of lags to 4 " !
"##
#, whereas lags= “long” sets the number of lags to 12 " !

"##
# . 

Note 2: The Akaike Information Criterion (AIC) [28] was used to select the optimal lag length, rotating from 1 to 40, minimizing the 
AIC value. This ensures that the model includes enough lags to capture autocorrelation without overfitting. 
 

The statistical procedure started with 
the identification of time series outliers. 
Their presence and mishandling can affect 

the accuracy of predictive models. The 
Isolation Forest technique [29, 30] was used 
to detect them. This technique effectively 
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identifies anomalies without assuming 
distributional properties, making it well-
suited for non-linear, non-stationary time 
series data. Random binary trees from 
subsets of the data are constructed to isolate 
individual points based on their anomaly 

scores. A range of trees (50, 100, 150, and 
200) were evaluated, and the optimal number 
was selected using cross-validation. Outliers 
were identified as points that exceeded the 
95th percentile threshold of the anomaly 
scores. 

 

 
Fig. 1. Flowchart of statistical procedure steps. 

 
After that, the outliers were replaced 

with NA values. The Long Short-Term 
Memory (LSTM) model [31-34] was chosen 
for the imputation, due to its ability to capture 

complex temporal dependencies in non-linear 
and non-stationary data. The model 
architecture details were as follows: two 
layers, each containing 30 units; a specified 
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timestep of 5; 100 epochs; and a batch size 16. 
Model performance [35, 36] was evaluated 
using metrics: Root Mean Squared Error 
(RMSE), Mean Absolute Percentage Error 
(MAPE), Symmetric Mean Absolute 
Percentage Error (sMAPE), Mean Absolute 
Scaled Error (MASE), and R-squared (R2).  

Furthermore, it was continued with an 
exploratory data analysis of both original and 
imputed time series data to verify if the basic 
characteristics of the initial data distribution 
were preserved. The summary statistics used 
were: minimum (Min), first quartile (Q1), 
median (Q2), mean, third quartile (Q3), 
maximum (Max), standard deviation (SD), 
skewness, and kurtosis. The data was tested for 
normality using the Anderson-Darling 
normality test [37]. Locally estimated 
scatterplot smoothing (LOESS) was obtained 
through the function loess() with span=0.3 [38] 
[39]. 

Graphical representations such as 
boxplots, line plots, density plots, and LOESS 
trend plots, were used to visually see the 
approximation made by the imputation 
method. Before checking for the stationarity of 
a series, it is necessary to analyze its linearity, 
because some tests that assess stationarity 
assume that the series is linear. Conversely, if 
the non-linearity of the series is confirmed, 
then the tests for stationarity should be chosen 
under this circumstance.  

The applied tests to check on the two 
research questions are described with 
implementation details in Table 1. All the 
procedure steps in analyzing the time series 
data are outlined in the flowchart in Fig. 1. The 
statistical computations are gathered using R 
software [40].  

 
3. Results and Discussion 
3.1 Exploratory Data Analysis 
 The optimal number of trees chosen by 
cross-validation was 50, while applying the 
Isolation Forest technique. Nine outliers’ 

values were identified in the time series data of 
annual CO2-E-LUC per capita, using the 
threshold 0.6237087. These values represent 
only 5% of the sample. Together with the 
corresponding years and the imputed values, 
they are presented in Table 2.  
 
Table 2. Outliers, corresponding imputed 
values, and the respective years. 

Year Outlier Imputed 
1951 3.536 3.171 
1954 4.071 3.650 
1955 4.163 3.569 
1956 4.238 3.446 
1957 4.348 3.302 
1959 4.401 3.671 
1960 3.755 3.632 
2002 -0.113 0.048 
2004 -0.312 0.048 

  
Table 3. Summary statistics of time series data 
before and after imputation. 

  
 The LSTM model imputation achieved 
an RMSE of 0.1336, indicating a minimal 
average error, and MAPE of 2.06%, 
emphasizing a low percentage of error. The 
sMAPE of 2.93%, further supported the 
consistency of the imputation. Additionally, 
the MASE of 0.279 showed scaled accuracy, 
while the R² of 0.988 confirmed a near-perfect 
fit between imputed and outliers’ values. 
Future analysis could be conducted to 
investigate what might have occurred in these 
years to result in these extreme values for 
annual CO2-E-LUC per capita, but this is not 
the focus of the current study. 

Statistic Before  After 
Min -0.312 -0.071 
Q1 1.060 1.060 
Q2 2.56 2.56 
Mean 2.08 2.06 
Q3 2.891 2.891 
Max 4.40 4.37 
SD 1.17 1.12 
Skewness -0.499 -0.628 
Kurtosis -0.811 -0.93 

Anderson-
Darling  
Test 

Test Statistic (A): 
8.3608 

Test Statistic (A): 
9.7374 

p-value: 
< 2.2e-16 

p-value: 
< 2.2e-16 
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Fig. 2. Box plots of annual CO2-E-LUC-per capita before and after imputation. 

 
Fig. 3. Density plots of annual CO2-E-LUC-per capita before and after imputation. 

 
 In the following, the imputed time 
series is obtained from the original time 
series, where outlier values have been 
replaced by the imputed values. The 
summary statistics are presented in Table 3.  
The visual representations are given by box 
plots in Fig. 2 and density plots in Fig. 3. 
When comparing the two series, very small 
changes are observed. The central tendency 
of the data is preserved. A reduction in the 
extreme values and less variability is seen 

after imputation. Although a shift in the 
values of skewness and kurtosis is seen, the 
distribution remains moderately left skewed 
and flat. The results from both the original 
and imputed time series indicate that neither 
of them follows a normal distribution 
according to the Anderson-Darling test. Fig. 
4 shows the line plots of the time series, 
highlighting the outliers and imputed points, 
and also provides the LOESS trend plots.

 
Fig. 4. Annual CO2-E-LUC per capita time series plots with outliers and imputed points. LOESS trend of 
the original and imputed time series.
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3.2 Non-linearity and Stationarity 
 

3.2.1 Before First Differencing 
 Based on the results obtained from 
the BDS test (Tables 4-5) applied to the 
imputed time series of CO2-E-LUC per 
capita, the standard normal statistics values 
are high and the p-values are less than 0.001. 
This occurs for all values of epsilon and 
embedding dimensions considered. 
Therefore, the initial hypothesis of the test is 
rejected. This fact indicates the presence of 
non-linearity or dependence in the time series 
data. 
 

Table 4. BDS results for embedding 
dimension = 2, before and after first 
differencing. 

First Differencing Epsilon Standard Normal p-value 

B
ef

or
e 0.5622 47.256 <0.001 

1.1244 44.122 <0.001 
1.6866 39.828 <0.001 
2.2489 34.212 <0.001 

A
ft

er
 0.0932 8.0449 <0.001 

0.1864 6.269 <0.001 
0.2795 5.9787 <0.001 
0.3727 4.9951 <0.001 

 
Table 5. BDS results for embedding 
dimension = 3, before and after first 
differencing. 

First  
Differencing 

Epsilon Standard 
Normal 

(2) 

Standard 
Normal 

(3) 

p-
value 

(2) 

p-
value 

(3) 

B
ef

or
e 

0.5622 46.125 72.716 <0.001 <0.001 
1.1244 42.704 51.523 <0.001 <0.001 
1.6866 38.775 42.586 <0.001 <0.001 
2.2489 33.572 34.694 <0.001 <0.001 

A
ft

er
 

0.0932 8.0288 10.3137 <0.001 <0.001 
0.1864 6.2542 7.5684 <0.001 <0.001 
0.2795 5.9498 6.9286 <0.001 <0.001 
0.3727 4.9703 5.6501 <0.001 <0.001 

 
As can be seen in Table 6, non-

linearity is confirmed also by the Teräsvirta 
Neural Network test, where the p-value is 
4.961e-06 (<0.05). To further continue 
testing stationarity, we use tests that can 
handle non-linearity. 

 

Table 6. Teräsvirta Neural Network test 
result, before and after first differencing. 

First Differencing Statistic 
X-squared Df p-value 

Before 24.428 2 4.961e-06 
After 12.538 2 0.001894 

 

The results of the KPSS test are 
displayed in Table 7. Across both short (4 
lags) and long (13 lags) configurations for the 
KPSS test, the test statistics exceed the 
critical values at 5%, for stationarity around 
the mean (“mu”) and trend (“tau”). For the 
“mu” test, the short lag test statistic is 2.25, 
and the long lag test statistic is 0.8653. In the 
“tau” test, the short lag test statistic is 0.4681, 
and the long lag test statistic is 0.1873. This 
means that the null hypothesis of the test is 
rejected, and the imputed time series of CO2-
E-LUC per capita is neither level nor trend-
stationary.  

Table 8 provides the results of Zivot-
Andrews’s test applied for varying lag 
values, from 1 to 40. Before first 
differencing, the Zivot-Andrew’s test 
provides the following results. In the 
“intercept” model, the test statistic -4.4048 is 
greater than all the critical values considered. 
This suggests that the series is non-
stationary, even considering potential 
structural breaks. A break is identified at 
observation 141, and the optimal lag based on 
AIC is 18, indicating that the model explains 
a significant amount of autocorrelation in the 
data. 

In the “trend” model, the test statistic 
-4.6469 is greater than the critical value at 
1% but less than the critical value at 5% and 
10%. According to this, there is weak 
evidence that the series remains non-
stationary to a trend, and the potential 
structural break is detected at observation 
126. The optimal lag is again 18, signifying 
similar autocorrelation patterns as in the 
“intercept” model. 

In the “both” (intercept and trend) 
model, the test statistic of -6.0411 is less than 
all critical values (10%, 5%, and 1%). This 
suggests that the series is stationary when 
accounting for structural breaks in intercept 
and the trend. The structural break is 
identified at observation 90, and the optimal 
lag remains at 18, emphasizing once more 
long-term dependencies. 
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The data in Table 9 provides the 
results of the Breitung test. In both the 
models considered, we see that the value of 
the test statistic before differencing is greater 
than the critical values at all significance 
levels. This means that the null hypothesis of 
the test cannot be rejected. 

In summary, after applying the three 
tests to check the stationarity of the imputed 
time series for CO2-E-LUC per capita, we 
come to the same conclusion: the series is 
non-stationary. 

 
Table 7. KPSS test results on the imputed time series before and after first differencing.  

Test  
Type  Lag First 

Differencing 
Test 

Statistic 
Critical Values 

(10%) (5%) (2.5%) (1%) 

KPSS  
(mu) 

 Short (4) Before 
After 

2.25 
0.2407 0.347 0.463 0.574 0.739 

 Long (13) Before 
After 

0.8653 
0.1635 

KPSS  
(tau) 

 Short (4) Before 
After 

0.4681 
0.0792 0.119 0.146 0.176 0.216 

 Long (13) Before 
After 

0.1873 
0.0556 

3.2.2 After First Differencing 
To make the series stationary, we take 

the first differences. Then, we re-check if the 
series is non-linear. It turns out from the BDS 
test (Table 4 and Table 5) that the p-values 
remain less than 0.001, thus rejecting the null 
hypothesis of the test. It is noted that the values 
of standard normal statistics have decreased 
significantly compared to those before taking 

the first differences. However, based on this 
test, the series remains non-linear.  

The same phenomenon is observed in 
the Teräsvirta Neural Network test’s output 
(Table 6). Although the value of the test 
statistic has decreased, the p-value (0.001894) 
provides statistical evidence at the 0.05 
significant level that the time series exhibits 
non-linearity.  

 
Table 8. Zivot-Andrews Unit root test results before and after first differencing, with optimal lag 
based on AIC  

Model  
Type 

First 
Differencing 

Test 
Statistic 

Critical Values Potential 
Break Point 

Optimal 
Lag (AIC) 10% 5% 1% 

Intercept Before -4.4048 -4.58 -4.80 -5.34 141 18 
After -10.4096 108 1 

Trend Before -4.6469 -4.11 -4.42 -4.93 126 18 
After -9.214 130 1 

Both Before -6.0411 -4.82 -5.08 -5.57 90 18 
After -10.842 108 1 

The first differencing has some effect 
on reducing non-linearity, but it is insufficient 
to fully eliminate it. Regarding the stationarity 
of the differenced time series, we continue 
testing with the same group of tests as before 
the first differencing due to the same 
conditions related to non-linearity.  

Based on the results of the tests, we 
see that the first differencing has shifted the 
non-stationary series into a stationary one. The 

KPSS test statistics (see Table 7) for both short 
and long lags are found to be less than the 
critical values. For the “mu” test, the short lag 
test statistic dropped to 0.2407, and the long 
lag test statistic fell to 0.1635, both less than 
the critical thresholds, indicating stationary 
around the mean. For the “tau” test, the short 
lag test statistic is 0.0792, and the long lag test 
statistic is 0.0556, providing evidence for trend 
stationarity after differencing. 
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Table 9. Breitung test results on the imputed time series before and after first differencing. 
Test  
Type Model Lag Test Statistic Critical Values 

(10%) (5%) (1%) 

P-test constant 1 Before: 29.112 
After: 0.4701 4.33 3.17 1.91 

P-test trend 1 Before: 36.8543 
After: 1.4403 6.86 5.66 4.05 

After first differencing, the Zivot-
Andrews’s test results (Table 8), present 
statistical evidence that the series becomes 
stationary across all model types. As a result, 
the null hypothesis of a unit root is rejected. In 
the “intercept” model, the test statistic value (-
10.4096) is less than all critical values. The 
structural break shifts to observation 108, and 
the optimal lag based on AIC reduces to 1. In 
the “trend” model, the test statistic is -9.214, 
again less than all critical values, indicating 
that the series is now trend-stationary. The 
structural break occurs at observation 130, and 
the optimal lag is reduced to 1. In the “both” 
(intercept and trend) model, the test statistic of 
-10.842, less than all the critical values 
considered, confirms stationarity in both the 
intercept and trend after differencing. The 
structural break remains at 108, and the 
optimal lag is 1.  

We see that after the first differencing, 
the autocorrelation is largely resolved, 
reducing the optimal lag to 1 in all three 
models, based on the Zivot-Andrews’s test 
results. Structural breaks still exist but occur at 
different points. While differencing eliminates 
non-stationarity, it does not entirely remove 
the impact of key structural changes in the 
series. 

Results of the Breitung test after first 
differencing (Table 9) prove that the test 
statistic’s value becomes less than the critical 
values, in both models. In this case, the time 
series is stationary around a constant mean and 
also in a deterministic trend. 

Taking first differences has 
successfully removed the unit root from the 
time series, making it suitable for further time 
series analysis or modeling. Our results related 
to non-linearity and stationarity of CO2 
emissions data are consistent with other 
studies [41-43]. 

4. Conclusion 
The statistical analysis of Albania's 

annual CO2 emissions from land-use change 
per capita was the main focus of this research. 
The Isolation Forest technique was employed 
to identify the outliers in the time series data 
and the LSTM model for imputation. The 
exploratory data analysis preserved the basic 
characteristics of the initial data distribution 
after imputation. 

The BDS test and the Teräsvirta 
Neural Network test confirm the presence of 
non-linearity in the time series data, both 
before and after applying the first differences. 
The findings from the KPSS, Zivot-Andrews 
Unit Root, and Breitung tests indicate that the 
original time series was non-stationary, but 
first differencing transformed it into a 
stationary series, although non-linearity 
persisted. 

The significance of this research lies 
in its detailed investigation of CO2-E-LUC per 
capita time series data in Albania, focusing on 
assessing the presence of non-linearity and 
stationarity. Furthermore, our study sheds light 
on the dynamic behavior of CO2 emissions 
from land-use changes. This is crucial for 
policymakers and researchers aiming to 
develop accurate predictive models and 
implement effective GHG emission reduction 
strategies. The study's limitations are rooted in 
the non-primary nature of the data we analyze, 
potentially affecting our conclusions. Future 
research on this dataset will employ advanced 
modeling techniques that account for non-
linearity and stationarity, aiming for improved 
accuracy and reliability. 
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