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ABSTRACT

This article demonstrates several fixed point theorems of extended Proinov-type, on
the existence and uniqueness of fixed points within the context of non-triangular metric
spaces. Additionally, we provide two applications of our primary result, in solving exis-
tence and uniqueness of a solution for a non-homogeneous linear parabolic partial differen-
tial equation and a stochastic integral equation.

Keywords: Non-triangular Metric Space (NTMS); Proinov Fixed Point Theorem; Initial
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1. Introduction

One of the most essential aspects of
fixed-point theory is its ability to solve a
wide range of operator equations. In 1922,
Banach produced the famous contraction
condition:

d(Tv, Tw) < kd(v,w) forall v,w € X,

(here d is complete metric on X, k € [0, 1)
and T is a self-mapping on X) to prove the

existence and uniqueness of fixed-point for
T. This fixed-point acted as a solution to
an operator equation. Initially, this find-
ing was overlooked as a minor aspect of a
broader project. However, it sparked the
growth of a robust field of study that is cur-
rently prospering.

To contextualize the presented data
and better understand the study’s goals, we
will address these aspects in both ways.
Fixed-point theory requires a combination
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of a generic contraction condition and an
abstract metric space for optimal results. To
contextualize the data and better understand
the study objectives, we will discuss both
ways.

On the other hand, classical metric
spaces marked a crucial breakthrough in
the realm of mathematics. However, these
spaces soon became old-fashioned for mod-
eling natural phenomena. Many generaliza-
tions of the idea of metric were given in an
increasingly abstract manner (see for Exam-
ple: [, 2] etc.) In this field of study, it is
critical to recognize the challenges of exper-
imenting with events that cannot be accu-
rately seen or situations in which random-
ness plays a significant role. For such sce-
narios, the concept of non-triangular met-
ric (NTM) was introduced by Khojasteh and
Khandani [3] in 2020. Due to their gener-
ality and particular features, we are going
to focus our research on a class of spaces
within this type of metric structure. The
topological properties of this space have
been introduced by Aniruddha Deshmukh
and Dhananjay Gopal [4] for the following
reason: It has useful qualities for working
in the realm of fixed-point theory. Clas-
sical metric spaces are a particular type of
NTM spaces, thus we are going to tackle
them separately. We are going to provide
our main result for NTM spaces, since the
former allow for an estimation of weaker re-
strictions.

On the other hand, the contractivity
is the second most important component
of any exploration in this field of study.
Various scholars have proposed significant
modifications to Banach’s theorem, propos-
ing increasingly general contractivity stan-
dards. The contributions that must be cited
are as follows: [511], etc. In 2020 Proinov
[12] unified many contractions. Erdal Kara-
pmar and Juan Martinez-Moreno et al. [|13]

recently extended Proinov’s [[12] outstand-
ing result. In recent years some generalized
fixed-point results like (see for instance:
Quasi-contractions [[14], (4, S)-contraction
[15], (¢, @)-contraction [[16] etc.) have
been established in the context of NTMS.
So, inspired by this type of work, we ex-
tend Proinov contraction result in the setting
of NTMS. Use these results to solve other
problems: for instance, non-homogeneous
linear parabolic partial differential equa-
tions and stochastic mixed-type nonlinear
integral equations.

The article has been organized as fol-
lows. In Section 2, we provide the re-
quired background information to better un-
derstand the development and ideas. In Sec-
tion 3, we propose existence and uniqueness
fixed-point theorems for a modern class of
contractions under the non-triangular met-
ric spaces. In Section 4, our claims can be
supported by applications and examples.

2. Preliminaries

This part collects the concepts and re-
sults that will be used throughout the study.
It has been separated into three subsections.
The first one is dedicated to introducing
the basic concepts of non-triangular metric
spaces. The last two subsections recalls the
basics about Proinov and Extended Proinov
fixed-point theorems.

2.1 Non-triangular metric space

Here, we recall only those definitions
relating to non-triangular metric spaces that
will be crucial in our upcoming work. For a
thorough discussion, we refer the reader to
[3,4].

Definition 2.1 (Non-Triangular Metric
Space). Let us consider X is a non-empty
set. A real valued function d is said to be a
NTM on X, if d is satisfies following:
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(a1) d(v,v) =0 forevery v € X;
(a2) d(v,w) =d(w,v) foreveryv,w € X;

c X
0 and

(az) for every v,w and {v,}
such that lim d(v,,v) =
n—oo

lim d(v,,w) =0thenv=w.
Then (X, d) is a NTMS.

Example 2.2. Consider X = [0, c0) and de-
fined : X x X — R given by

2
(V(I;“)VQH, ifO£v#EwW#0
v fw =
dvw =1 e
s ifv=0
0, ifv=w.

Conditions (a) and (a2) are obvious. We
have to verify condition (a3). Therefore,
we take v,w € X and {v,} € X such
that d(v,,v) — 0, d(v,,w) — 0,n —

2
co. Then implies that r}l_IEo %

lim 22 = 0 and these hold if and

n—oo n

only if lim v, = —v = —w in R and so
n—oo

v = w. Hence, condition (a3) is verified.
So, (X, d) is a NTMS.

Remark 2.3. Consider a NTMS (X, d) and
v,w € X, then d(v,w) = 0 implies v =w by
condition (ag).

Definition 2.4 (Convergence). Let (X, d)
be a NTMS and a sequence {v,,} € X. We
say that {v,},en converges to v € X, if
'}1_1}.}0 d(vy,v) =0.

Remark 2.5. Notice that (a3) in definition
D.1 ensures that the limit of a convergent se-
quence is unique.

Definition 2.6 (Cauchy Sequence). Let
(X,d) be a NTMS and a sequence {v,} €
X. We say that {v,},en is a Cauchy se-
quence ifr}i_{rolo sup{d(vy, vin)|m = n} = 0.

Definition 2.7 (Completeness). A NTMS
(X,d) is considered complete if every
Cauchy sequence in X converges to a point
veX.

Definition 2.8 (Property C). Let (X, d) bea
NTMS; then d is said to satisfy property C,
if for, any sequence {v,,} with d(v,,v) —
0, we have d(v,,w) — d(v,w) for every
w € X.

Definition 2.9 (Fixed Point). Let X be a
non-empty set and 7 be a self-mapping on
X. A point v € X is called fixed point if
T(v) = v. A set of fixed points is denoted
by Fix(7T).

2.2 Proinov contractions in metric space

In this subsection, we review the fun-
damentals of Proinov Contractions in clas-
sical metric spaces. Our primary references
for these topics are [[12, 13]. Proinov re-
cently announced several results that uni-
fied previously known results of fixed point
theory.

Theorem 2.10. Let us consider a complete
metric space (X,d) and T be a self map on
X such that

Y(d(Tv, Tw)) < ¢(d(v,w)) 2.1

for all viw € X,d(Tv,Tw) > 0, where the
real valued functions , ¢ defined on (0, o0)
satisfy the certain conditions:

(b1) ¥ is non decreasing;
(b2) ¢(s) < w(s) for any s > 0,

(b3) lilfn+ sup ¢(s) < 11m+ W (s) for any
e>0, T

Then T has a unique fixed-point vy € X and
the iterative sequence {T'u} converges to
vo for each v € X.

A self-map T on X is considered a Proinov
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contraction if T contains pair of func-
tions r, ¢ satisfied above conditions (by) —
(b3), ensured the contractivity condition

Eq. (@)

2.3 Extended proinov contraction in
metric space

An extended Proinov Contraction is
the most recent generalization of many con-
tractions. In this subsection we give basic
definitions and concepts which are needed
for our work, For further information, refer
to [|13].

Let X denote the family
of pairs of real wvalued functions
W, ¢ defined on (0, o0), which satisfied the
properties:

(X1) since {t,} < [0, 00) with ¥ (tg1) <
¢ (to) forall € € N, then {t;} — O;

(¥X2) since {t;} C [0,00),{s¢} C [0,00)
are converging to the exact same limit
e > 0 witht, > e and ¢ (tp) <

¢ (s¢)forall £eN,soe=0;

(X3) since {te},{s¢} are two se-
quences of non-negative real
numbers with {s;} — 0 and
U (ty) £ ¢(sg)forall £ € N, so
{te} — 0.

Lemma2.11. Lety, ¢ : (0,00) — Rbetwo
functions that satisfy the certain conditions:

(i) Y is non-decreasing;
(ii) ¢(s) < Y (s) foranys > 0;

(iii) limsup ¢(s) < lim Y (s) for any e >
s—et s—et

0.
Then (Y, ¢) € X.

Theorem 2.12. Let us consider a complete
metric space (X,d) and a self-map T on X
for which there exists (W, ¢) € X such that

Y (d(Tv, Tw)) < ¢(d(v,w)) (2.2)

for all v,w € X,d(Tv, Tw) > 0. Then every
Picard sequence {T¢ v} converges to a fixed-
point of T.

Theorem 2.13. Under assumptions of the
theorem consider that (Y, ¢) € X sat-

isfies the certain property:

(X9).: there is a subset S C X such that

Fix(T) < S and y(d(v,w)) >
d(d(v,w)) forall v+weS.

Then T has a unique fixed-point vy € X and
every Piccard sequence {T u} converges to
vo foreachv e X.

Given the preceding outcome, we’ll
describe a self-map T on X as an extended
Proinov contraction with pair of real valued
functions ¢, ¢ defined on (0, o), satisfy the
axioms (i) — (iif) with the contraction con-
dition Eq. (2.2) holds.

3. Main Result

Influenced by the Proinov theo-
rem[[12], we’ll investigate a modern class
of contractions within the context of NTM
spaces, that can be characterized using cer-
tain auxiliary functions.

Let us consider X is the family of
pairs of functions of real valued (i, ¢) de-
fined on (0, co) satisfied the certain proper-
ties:

(X1) Since {tg} c [0, 00) with i (te41) <
¢ (tg) forall £ €N, so {te} — 0;

(X2) since {t;} < [0,00) and {s¢} C
[0, 00) are converging to e > 0 with
te >eand ¥ (tr) < ¢ (sp) forall € e
N,soe=0;

(X3) since {t¢} c [0,00),{s¢} C [0, 0)
with {s;} — 0 and ¢ (t;) <
¢ (s¢)forall € e N,so{t;} — 0.
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Proposition 3.1 ([[L7]). Consider {ve} is
a Picard sequence in a NTMS (X, d) with
{d(ve,ves1)} — 0. Since t1,65 € N such
that €1 < {o and ve, = vy, then there
is {0 € N and vo € X such that vy =
vo forall € > €y (that is, {ve} is constant
from a term on wards). In such a case, vg
will be a fixed-point of operator for which
{ve¢} is a Picard sequence.

Lemma 3.2 ([[17]). If the mapping {v¢}
is a sequence under a NTMS (X, d) with
{d(ve,ves1)} — 0as £ — oo, since the
sequence {v¢} is not Cauchy, then there ex-
ists e > 0 and two partial sub-sequences

o)} and {vqye)} of {ve}een such that

p) <q) <p(t+1)

and e < d(vp(e)+1,Vq(0)+1) for every £ € N,

Bm d(vp o), vg(e)) = lim d(vpeyer, va(e)
= lim d(vp(e), va(e+1)

= }I_I)I;o d(vp(ey+1,Vq(0)+1) = e.

The purpose of this portion is to pro-
vide proof that the pair (¥, ¢) of real valued
functions, along with Proinov contraction,
belongs to X, which is basically the claim
of this statement:

Lemma 3.3 ([17]). If the mapping ¥, ¢ :
(0, 00) — Rsatisfies the certain conditions:

(i) ¥ is non-decreasing;
(ii) ¢(s) < Y (s) forany s > 0;

(iii) limsup ¢(s) < lim Y (s) for any e >
s—et s—et

Then (Y, ¢) in X.

The main result of this section will be
presented next.

Theorem 3.4. Let (X,d) be a complete
NTMS with the property C and T is
a self-map on X for which there exists
pair of functions (Y, ¢) € X such that

Y (d(Tv, Tw)) < ¢(d(v,w)), 3.1

for all viw € X withd(Tv, Tw) > 0. Then
every iterative Picard sequence {T v} con-
verges to a fixed point of T.

Proof. Consider an arbitrary v € X and
let us define vi = v and vpy =
Tve forevery £ € N. If there’s {5 € N
such that vy, = vg41, then vg, is a fixed
point of T. In this case, {d(ve, Ves1) bese, =
0. On the other hand, suppose that vy #
vey1 for every € € N. Then every v, is not
a fixed-point of T and also

and d(Tve, Tveyr) > 0,
for every £ € N.

d(ve,ves1) > 0

Applying the condition Eq. (B.1]), we obtain
that, for every ¢ € N,

Y(d(vVesrt, ver2)) = w(d(Tve, Tveyr))
< ¢ (d(ve,ves1)) -

If we define s, = d(vg,ves1) for every
¢ € N, the previous inequality means that
the sequence {s,} satisfies ¢ (sp+1) < P(s¢)
for every ¢ € N. Under condition X;, we
deduce that {d(ve,ves1)} = {s¢} — 0.
If there are ¢1,¢> € N such that {1 < &{
and vg, = vg,, then proposition 3.1| ensures
that there is {5 € N and vg € X such that
ve = vg for every £ > {y. In such a case,
Vo is a fixed-point of T, and the existence
of fixed points is assured. Next, suppose
that v, # vg, for every €1,{o € N such
that 1 # £, that is, {V¢}sew is an infinite
sequence. In particular, d (TVgl, TVgQ) =
d (vey+1, Vepe1) > 0 forall &1, €5 € N such
that £1 # ¢€3. To show that {v/}sen is a
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Cauchy sequence, consider it is not . In this
case, Lemma .2 say that there exists e > 0
and two partial sub-sequences {Vv¢)}sen
and {Vq(g) }een of {ve}eew such that

p()<q(l)<p(t+1),
and

e < d(Vp(g).,.l,Vq(g).,.l) forall £ € N,
3.2)

Jim d(vp o) Vg(e)) = im d(vp )41, Vg (0)

= lim d(vp (), Vg(o)+1)
= lim d(vp(e)+1, Vg(e)+1) = €. (3.3)

Using the condition Eq. (B.1)) we get, for all
€N,

Y(d(Vpe)+1 Vgo)+1)) = ¥ (d(Tvp ), Tvge)))

< d(d(Vp(e)s Vq(e)))- (34

If we define tr = d(vp(¢)+1, Vg(e)+1) and
se = d(vp(e), Vg(e)) forall £ € N, then Egs.
(8.2)-(B.4) guarantees that

and ¢ (tr)) <@ (se), (3.5)

for all ¢ € N. However, ¢ > 0 contra-
dicts the property (¥X2). This contradiction
comes from the assumption that {v,}secy is
not a d-Cauchy sequence, which demon-
strates that actually {v¢}sen is a d-Cauchy
sequence. As (X, d) is a complete non tri-
angular metric space, there is v € X such
that {vg}een d-converges to vo. As the se-
quence {vg}een is infinite, there is {p € N
such that vp # vg and Tvy # Tvg for ev-
ery { > {y. The contractivity condition Eq.

(B.1)) leads to
Y (d(ves, Tvo))

tr > ¢

=¥ (d(Tve, Tvo))
< ¢ (d(ve,vo)) . (3.6)

It follows from property (X3) that
{d(ves1,Tvg)} — 0, so Tvg = vo.
This completes the proof.

m]

To deduce the uniqueness of the
fixed-point, it is necessary to add an addi-
tional condition.

Theorem 3.5. Assumption of theorem
suppose that the pair of real valued func-
tions (W, @) € X satisfies the certain prop-
erties:

(X4): Sc XwithFix(T) C S, y(d(v,w)) >
o (d(v,w)) for everyv #w € S.

Then T admit a unique fixed-point vy €
X and the iterative Picard sequence {T'v}
converges to v for each v € X.

Proof. For the uniqueness of the fixed-
point of T, consider vi # vo € X such
that v; = T(vy) # T(va) = vo. Therefore
d(Tvy, Tvs) = d(vy, ve) > 0. By the condi-
tion Eq. (B.1)), we have

Y (d(v1,v2))

which contradicts the assumption (¥Xy4).
Hence we have a unique fixed-point. |

The following example supports our
main result:

Example 3. 6 Let X =

{0,1, 3, 3,--- ,i,--} with the non-
triangular metric defined as
1 1 .
d(— _)_ - =1, %f|m—n|¢1
1, iflm-n|=1
and d(%,0) = 2-,d(0,0) =

To show d is not metric: Take X = %, y=

%,Z = 12, by definition of d, d(2, 3) =
Ld(%’ 12) 12’d(12’3) = % Clearly,
seen that d does not satisfy triangle inequal-
ity. Therefore d is not metric.

We define self-map T on X as T(x) =

¢, : (0,00) > R

2s
¢(s>={3’

X
5 and

ifse (0 31,

if s > 37

wino
-

=y(d(Tvy, Tvg)) < ¢ (d(v1,v2)),
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and
s, if s € (0, 1],
2+ 2 cos (155), ifs > 3.

Let us consider xg = 0 and yg = 1 then
eo = d(x0,0) = 3, however limy_,.+ ¢/ (s)
does not exist. Because

2+lcos 3
s 1-3s/|°

lim+ Y(s) = lim

+
s—eq s—%

— §s) :
— y(s)
1 --- Ttz 1

|
&

Function value

L)

=}
1
1
1
1
1
1
1

e
w

o
o
[\
e
\
\
1
1
[}
n \
\
\
\
[}
\
\
\
A
[y
1
A

Fig. 1. Graph of ¥/ (s), ¢(s), and T(x).

So, the conditions (ii) and (iii) of
Lemma B.3 are not satisfied. Therefore,
Lemma .3 cannot be applied, But we claim
that (¢, ¥) belongs to X, such that T'(x) =
[0,0.5], ¢(0,00) = (0, 2] and y((0, 0)) =
[0,1] U [1.5,2.5].

(X1) Let {t,} be a sequence of non-
negative real numbers such that
U(tes1) < ¢(te) for every £ € N.
Then ¥ (tes1) < ¢(te) < 3, So
W (tp+1) belongs to (0, %) for every
¢ € N. This means ty.1 € (0, %]
for every ¢ € N. Therefore this
U(ten) < p(te) that is try < 3t
for every ¢ € N and this ensures that
{;} - 0.

(X2) Let {te} c [0,00),{s¢} < [0,00)
be converging to the exact same limit
e > ( with the property satisfying

te > e, ¥(ty) < @(se) forall £ € N.
Then ¢ (ty) < ¢(se) < %; hence
U (te) € (0, %) forall¢ € Nthatise <
te < % for every ¢ belongs to N. Since
{t¢}, {s¢} are converging to e > O,
there exists {5 € N, such that t¢, s,
belongs to (0, %] for every £ < {p.
In specific ¥ (ty < ¢(s¢)) gives to
tr < %S[ for every ¢ > ¢y, since
{ — o0, s0 we obtain e < %e and
as e > 0 implies e = 0.

(X3) Let {te},{s¢} be two sequences
of non-negative real numbers with
{s¢} — Oand ¥ (ty) < ¢(s¢) for ev-
ery £ € N. Since ¥/(t7) < ¢(s¢) < 2.
Then ¥ (t) € (0,2] = t, € (0, g]
for every € € N.

Moreover,as {s;} — 0, so, there is
{o € N such that t;,s, € (0, %] for
every £ > {p.

Specifically, ¥ (ty) < ¢(s¢) leads &,
te < %sz for every € > €. as {s¢} —
0 = {t;} — 0. Hence (¢, ¢) € .

Now, we can easily check the condition

Y (d(Tv, Tw)) < ¢(d(v,w)),
for all v,w € X with d(Tv, Tw) > 0.

Hence, by using theorems B.4-.9, T
admits a unique fixed-point.

Corollary 3.7. Let (X,d) be complete
NTMS with Property C and T be self map
on X such that

d(Tv, Tw) < ud(v,w) for all v,w € X

and p € [0,1). Then T admit a unique fixed
point vog € X and the iterative Picard se-

quence {T'v} converges to v for each v €
X

Proof. By substituting ¢ (s) = s and ¢(s) =
us into theorems B.4-B.3, a complete proof
is obtained. O
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Example 3. 8 Let X =

{0,1, 3, :1,), ,i,--} with the non-
triangular metric defined as
1_ 1 .
d(l l) i %f|m—n|¢1
1, ifjm—-n|=1
and d(,0) = £-,d(0,0) =

In this function d is a non- trlangular metric
but not a metric because d does not satisfied
triangle inequality.
We define self-map T on X as T(x) = 5 and
¢,¢ : (0,00) > R

W(s)=sforall s € [0, 00)

and

We claim that (¢, ) belongs to X, so we
chek

(X1) Let {r,} be a sequence of non-
negative real numbers such that
U(tes1) < (b(t[) for all £ € N. that
is, Y(t41) < 21 forall £ € N.
Therefore ¥ (t,) — o as {t,} — 0.

(¥X2) Let {te} < [0,00),{s¢} < [0,00)
are converging to the exact same limit
e > 0 with the property satisfying
te > e, y(ty) < ¢(se) forall £ €
N. Le us consider that e > 0, with
both functions ¢ and ¢ are continu-
ous, Then

0<e=y(e)=1limy(s) = lim y(s)
= lim y(1,) < lim @(s¢) = lim, ¢(s)

wie) e

= limy(s) = ge) = —— 5

which is impossible. As a consequence,
e = 0. Similarly we can check condition Xg.
Now, we can easily check the condition

d(Tv, Tw) < pd(v,w),

forall v,w e X and u € [0, 1).

Hence, by using the corollary B.7, T
admits a unique fixed-point.

4. Applications

This section focuses on the applica-
tions of our main results, which will be ap-
plicable in solving various real-world prob-
lems. It has been separated into two sub-
sections. The first section demonstrates
how to apply our main result to solve non-
homogeneous linear parabolic partial dif-
ferential equations with a supporting nu-
merical example. The last one focuses on
applying our main result to solve stochastic
integral equations.

4.1 Applications to non-homogeneous
linear parabolic partial differential
equations

Inspired by[[L1, 18, 19], this section
uses our theorems to prove the existence
and uniqueness of a solution to a non-
homogeneous linear parabolic partial dif-
ferential equation with a given initial con-
dition. We consider the following problem:

ue(x,1) = ux (X, t) + J(x, t, u(x, t), ux(x,1)),
for—oco < x <o00,0<t<L;

u(x,0) = ¢(x) >0,

for — 0o < X < o0;

“.1

Where J is continuous, ¢ is a continuously
differentiable, and ¢ and ¢~ are bounded. A
solution of problem (B.1]) is a function u =
u(x,t) defined on Rx1I, where I = [0, L] as-
sume to satisfies the following conditions:

(1) w,u, ux, Uy € C(RX D), {C(R x 1)}
is the space of all continuous real-
valued functions.

(i1) u and uy are bounded in R X I;
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(111) Ut(X, t) = uXX(X9 t) +
J(x, t,u(x, t), ux(x, t)), for all
(x,t) e Rx1I;

(iv) u(x,0) = ¢(x) forall x € R.
We observed the initial value problem (§.1])

is equivalent to the following integral equa-
tion:

u(x, t) =/mp(x—6,t)¢>(6)d6

t 00
+ /0 /_ _P(x-0t-EAdSdE (42)

forallx e Rand 0 <t < L, where

—x2
t

e 4

(x0 = —
pX, 1) =

Vant
and A = H(6, &, u(6,£),ux(d,£)). Thus the
given problem (.1)) admits a solution if and
only if the corresponding integral Eq. (4.2)
has a solution.

Consider

X ={u(x,t) : u,ux € C(R x 1), |Ju||< oo},
where

lull=" sup [u(x, 1)|? +sup [ux(x, )],
xeR,tel
Obviously, the functiond : X x X — R*
defined by

d(u,v) =[lu—-vl|

is a complete NTM on X and has property
C. But note that the above defined distance
function d is not a classical metric because
d does not hold triangle inequality.

Theorem 4.1. Let us Consider IVP #.1)
and if the following conditions:

(i) for ¢ > O with |s| < cand |p| < ¢,
the function J(x,t,s,p) is uniformly
Holder continuous in x and t for every
compact subsets of R

(ii) Jis bounded for every s and p.

(iii) There exists ug € X such that
d(ug, T(ug)) > 0 where the self map
T: X — Xis defined by

(Tu) (. ) = / " p(x = 6.19(5)do

—00

+/0t/_:p(x—5,z—§)/\d5dg,

for all (x,t) € R X [ where A =
H(6,&,u(0, ), ux(6,8)).

(iv) There exist a constant D; < (L +
(2r)7'L) < 1 such that

0 < [J(x, t, SQ,pQ) _J(x’ ZL’Slvl)]_)]
< Dy[(s2=51)%+ (po —p1)?]

for all (s1,52), (p1,p2) € R X R with
s1 < sgand py < py

holds. Then, the given IVP #.1) admit a
solution.

Proof. Consider u,v. € X such that
d(u,v) > 0. Then by the definition of T and
(if), we have

[(TV) (%, 1) = (Tu(x, 1)

< (/Ot/omp(x—(s,t—g)(adadg)Q
< (/Ot/ommx—é,t—f)m@dédf)z

< DyL%d(u,v) (4.3)

where ® = |J(6,&,v(6,8),v(6,8)) —
J(6,6,u(6,8),ux(5,6))| and @ =
|(v(8,€) —u(6,£))?+(vx(6,&) —ux (6, 6))?|

Similarly, we obtain
|(Tv:) (%, 8) = (Tu) (x, B)]?

t 00
SDJd(u,v>(/0 /0 Ip(x - 6.t — £)|dode

2
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< ((27)"'L)Dyd(u, v). (4.4)

Therefore, from Egs. (#.3)-(#.4), we have

[(TV)(x,t) = (Tu(x, )% + [(Tv) (x, t)—
(Tuy) (x,1)|? = d(Tu, Tv)
< ((L? + (27)~'L)Dy)d(u, v)

Now we define ¥ (u) = u and ¢(u) = Ku,
where K = ((L? + (27)"'L)Dj) < 1. Then
T, ¢ and ¢ follow all the conditions of theo-
rem .4 on X. Consequently, we deduce the
existence of u* € X and hence u* is a solu-
tion of problem (4.1)). O

Example 4.2.

u(x,t) = ugx (X, 1) + J(X, t, u(x, t), ux (x, t)),
for—oo <x<o00,0<t<3;
u(x,0) = ¢(x) = 0,
for — 0o < x < o0;

(4.5)
where J(x, t,u(x, t), ux(x,t)) = u(g,t) B
¢80 ig continuous,u(x,0) = ¢(x) =

sin(x) is continually differentiable and ¢ =
sin(x) and ¢’ cos(x) are bounded.
Now we verified condition(iv) of theorem
for J(x,t,s,p) 5> So we have
J(x,t,s1,p1) = . J(X.t,82,p ) = ¥ and
J(X,t,82,p9) = J(X,t,51,p ) = 2 — % <
Dy(%)(s2 —s1)?and (L? + (27)7'L) = 1 +
£ =0.339 > % = 0.167, Therefore, Eq.
(B.5) satisfies all the condition of theorem
B.1. Hence, Eq. (#.5) has a unique solution
namely u(x, t) = e"'sin(x).

4.2 Application for stochastic integral
equations

Inspired by [20, 21]], we investigate
the existence of unique solution for the
stochastic integral equation of mixed type.
More precisely, let us consider the stochas-
tic integral equation of the form:

u(t,x) = f(t,x) + ‘/Ota/(t, r, x)g(r, u(r, x))dr

10

+/Oo,8(t, r,x)h(r, u(r,x))dr,t > 0 (4.6)
0

Theorem 4.3. Considering the following:

(i) Given probability one

t
/ la(t,r,x)|dr < Ag(x) < o0
0

sup
>0
4.7
t
sup/ |B(t,r,x)|dr < Bo(x) < o0
>0 Jo
(4.8)

(ii) ¢(¢,0) =h(s,0) =0;

(iii) for every given € > 0, 3 a 61 such
that |g(t’ M) - g(ta M)I < €|M - Vl,fOl"
every lul, |v| < 61, for all t

(iv) for every given n > 0,3 a 63 such

that |b(t9 u) - b(t’ V)l < Tllu - V|9f0r
every lul, |v| < 6s, for all t.

Then, there exists a 3(variable) € Z*, with
probability such that if 0 < p(x) < 3(x),
then there exists a 6(x) > 0 such that, for
f(2,x) with ||f(z,x)|| < 6(x), 3 a unique so-
Iution u(t,x) of Eq. (H.6) on [0, c0) with
lu(z,x)|| < p(x).

Proof. In virtue of the considerations, 3 set
So with P(Sp) = 0 such that for every x €
S — Sy, expressions Eqs. (B.7)-(4.8) are sat-
isfied.

Choose and fix xg € S — Sg.

Fix > 0 such that nBy < 1. From (ii) and
(iv) we have a 62 > 0 such that |h(t,u)| <
nul, jul| < 2. Consider y = %, and
61 >0 = |g(t,u) —g(t,v)| < ylu-v],
whenever |u], |v| < 81, uniformly int > 0.
Let 3(xg) = min(d1,d2). For a given 0 <
p < 3(xo), we defined the set X, = {u €
CRxS) : |ul| < p = p(vg)}, where
lull= supsq lu(t)|%. Obviously, a function
d: X, xX, — [0,00) given by d(u,v) =
lu—v||=|u-v|?isa CNTM on X, and has
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property C. For u € X,, define an operator
T on X,,, such that:

(Tu)(t, x0) = f(t, o)

+ /Ot a(t,r,x0)g(r, u(r, xg))dr

+ [ Bra x> 0
0
for every xg € S — Sg.

For u € X,,, From the conditions (i)-(iv) of
the theorem [4.3, we get

I Tul| < 6(x0) +yAop +nBop < plul?

provided that 6 (xg) < w. Letu,v €
X,. Then we have

1-71Bg

2

Now define ¥ (u) = u, ¢(u) = Ku, where
K = @ < 1. Consequently T, ¢ and
y follow all the conditions of theorem 3.4
on X, then there exists a unique solution
u(t,xg) on [0,00) for Eq. (K.6). Addi-
tionally, this solution is continuous in t for
each xg € S — Sp, and |ju|]| < p(Xo).
Since the above argument is true for every
xg € S — Sp,P(Sp) = 0, hence there exists
a unique solution(in general) u(t, x) for Eq.

(#.9). o

5. Conclusions

Inspired by the extensive literature
on fixed-point theorems and it’s applica-
tions, in this article, we have investigated
the recently remarkable result given by
Erdal Karapinar and Juan Martinez-Moreno
et al. [[13] is known as extended Proinov
Contraction in non triangular metric struc-
ture, which is a weaker form of unified
result of many contractions is given by
Proinov [[12].

However, a comprehensive examina-
tion of the solution mechanism of operator

ITu =Tl < (yAg +7Bo)lu - v|* = -Vl

11

equation issues shows that the method of
application of fixed point theorem to oper-
ator equations consists of certain key steps:
(i) since integrals are easier to deal with than
non-homogeneous linear parabolic partial
differentials, the given operator equation is
first converted into an equivalent equation
using a theory of non-homogeneous linear
parabolic partial differential equations and
integral calculus, and then the obtained in-
tegral equation is written as a corresponding
equation in a suitable metric space.

(i) Depending on the nature of stochastic
calculus included in an operator equation, a
fixed point theorem on an appropriate met-
ric space is used to show that the resulting
equivalent operator equation has a solution,
which implies that the operator equation ex-
ists.

In this article, we proved the appli-
cability of fixed point theorems within the
context of NTMS in solving (i) A non-
homogeneous linear parabolic partial dif-
ferential equation with the given conditions
(i1) Stochastic integral equation.

The technique in theorem B.4 can be
used to prove the existence and uniqueness
of solutions to a variety of mathematical
models (differential, Integral, variational
inequalities). This can also be used in other
areas such as steady-state temperature dis-
tribution, chemical reactions, neutron trans-
port theory, economic theory, game theory,
optimal control theory, etc.
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