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ABSTRACT 
 This study presents a comprehensive approach to evaluating herbicide synergism through 
in silico molecular docking analysis combined with physical observations of herbicide mixtures. 
The research investigated nine commonly used herbicides in Indonesia, examining their potential 
synergistic and antagonistic interactions when mixed. Molecular docking analysis was performed 
using PyRx software to evaluate the interactions between herbicide active compounds and their 
target proteins. The analysis revealed twelve potentially synergistic combinations, with the 
clomazone-paraquat mixture emerging as the most promising based on both molecular docking 
results and compliance with Lipinski's rule of five. Physical observations in simulated tank mix 
conditions validated the computational predictions, showing consistent results with the in silico 
analysis. The study demonstrated that synergistic combinations maintained ligand interactions with 
their respective target proteins while showing favorable physicochemical properties for cellular 
penetration. The integration of computational methods with experimental validation provided 
valuable insights into the complex interactions between herbicide active compounds and their 
target proteins. This research establishes a robust framework for evaluating herbicide 
combinations, potentially leading to more effective and sustainable weed management strategies 
in agricultural practices. 
 

Keywords: Herbicide synergism; In silico analysis; Ligand interactions; Molecular docking; Weed 
management 
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1. Introduction 
The currently proven effective and 

efficient weed control technique is the 
application of active chemical compounds in 
the form of herbicides [1]. However, the 
continuous use of herbicides leads to herbicide 
resistance in weed populations [2]. Therefore, 
farmers mix various types of herbicides in the 
hope of achieving more effective results [3]. 
Herbicide mixtures are commonly used in 
agricultural weed management to broaden the 
spectrum of weed control, reduce application 
costs, and delay the evolution of herbicide 
resistance in weed populations [4]. What is not 
well understood by farmers is that when two or 
more herbicides are combined, their 
interactions can result in additive, synergistic, 
or antagonistic effects on the efficacy of weed 
control [5]. Synergism occurs when the 
combined effect of two herbicides is greater 
than the sum of their individual effects, while 
antagonism refers to a reduced effect compared 
to what would be expected based on the 
herbicides' individual activities [6]. 
Understanding and identifying these 
interactions is crucial for optimizing herbicide 
use and developing effective weed 
management strategies [7]. 

The concept of herbicide synergism has 
intrigued weed scientists for decades, leading 
to numerous studies aimed at testing and 
evaluating the interactions within herbicide 
mixtures [8]. Despite these efforts, conclusive 
data on true synergism remain elusive due to 
the varying responses of different plant species 
and the occasional development of resistance 
when herbicide mixing is not done properly 
[9]. Several methods have been proposed to 
assess and characterize the synergistic, 
antagonistic, and additive effects of herbicide 
combinations, including direct plotting of 
dose-response curves, isobole analysis, and 
statistical modeling approaches [5]. In recent 
years, there has been growing interest in 
systematically screening herbicide 
combinations to identify novel synergistic 
pairs [10]. This strategy offers the potential to 
discover previously unknown interactions that 

could enhance weed control. For instance, a 
comprehensive study evaluated 276 pairwise 
combinations of 24 herbicides with different 
modes of action against the model plant 
Arabidopsis thaliana  [5]. Their research 
uncovered several new synergistic herbicide 
pairs, highlighting the effectiveness of 
systematic screening approaches. 

However, accurately detecting and 
quantifying herbicide synergism presents 
several challenges [2]. These include selecting 
appropriate experimental designs and dose 
levels for testing herbicide combinations, 
choosing suitable methods for data analysis 
and interpretation of results, accounting for 
variability in plant responses and potential 
confounding factors, and distinguishing true 
synergism from other forms of interaction or 
statistical artifacts [5]. To address these 
challenges, researchers have developed various 
statistical approaches for analyzing herbicide 
interaction data. These range from simple 
multiplicative models [1] to more complex 
nonlinear regression [2] and mixed-model 
techniques [3]. Each approach has its strengths 
and limitations, and the choice of method can 
significantly impact the conclusions drawn 
from experimental data [11]. 

This study aims to contribute to ongoing 
efforts in herbicide discovery and development 
by leveraging advancements in bioinformatics 
and reducing reliance on traditional wet lab 
methods. Our approach utilized an in silico 
approach through molecular docking 
evaluation to predict the synergistic and 
antagonistic properties of herbicide mixtures 
commonly used by farmers in Indonesia. By 
performing computational studies on the 
interactions between herbicide active 
compounds and their target proteins, we seek 
to provide a robust framework for evaluating 
possible herbicide combinations that can be 
used by the farmers.  

The approaches employed here draw 
inspiration from multi-combination compound 
therapy for humans that have shown promising 
results related to synergistic effects [6, 12-14], 
such as a study on multi-combination 
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compounds of phytonutrients for treating joint 
pain [6]. By adapting these methodologies to 
herbicide studies, we introduce a novel in silico 
approach that addresses key challenges in 
herbicide interaction analysis. This method 
significantly reduces the time and costs 
associated with conventional synergism and 
antagonism research [4], making it particularly 
valuable in the context of Indonesia's 
agricultural landscape. Our work bridges the 
gap between laboratory conditions and real-
world applications by moving beyond the 
limitations of traditional synergism tests, 
which often rely on analytical grade chemicals 
[5] that may not accurately represent field 
conditions. Furthermore, we examine physical 
changes in mixtures that mimic farmers' tank 
mixtures, providing crucial insights into 
potential chemical interactions between 
different herbicides. This comprehensive 
approach not only advances the field of 
herbicide research but also offers practical 
implications for agricultural practices in 
Indonesia, where such studies have been 
limited. By combining computational methods 
with practical considerations, our study paves 
the way for more efficient and effective 
herbicide use, potentially revolutionizing weed 
management strategies in the region. 

 
2. Materials and Methods 
 This study provides a comprehensive 
approach to evaluating herbicide synergism, 
combining computational methods with 
physical observations on a mixture that only 
contains two herbicides diluted in distilled 
water at their recommended working dosage. 
The observation on the mixture was also used 
to validate the computational analysis results, 
identifying promising combinations for further 
study or practical application. A multi-faceted 
approach was employed for the investigation 
that can significantly help farmers in Indonesia 
and other developing nations in choosing 
herbicides that can be mixed for optimum weed 
control in their field. Indonesian farmers 
predominantly rely on nine brands accessible 
in the national market: Starlon, Ronstar, 

Sidaxone, Callisto, Scepter, Command, 
Sidaron, Roundup, and Ignite. For each 
herbicide, the active compounds and their 
target proteins were identified from the 
Herbicide Resistance Action Committee 
(HRAC) Global database 
(https://hracglobal.com/). Three-dimensional 
chemical structures of active compounds were 
obtained from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/). The 
structures of the target proteins were sourced 
from the Protein Data Bank Japan 
(https://pdbj.org/), focusing on proteins from 
the model plant Arabidopsis thaliana (except 
for glutamine synthetase’s structure that 
originates from Zea mays). When the target 
protein is a highly complex protein, such as 
photosystem II, and the structural data file was 
too large for autodocking processes, the 
alternative protein structure was obtained from 
the AlphaFold database [15] based on the 
amino acid sequence of the subunit targeted by 
the herbicide active compound. This 
AlphaFold-derived structure was processed 
and aligned with the large and complex 
structure of the target protein from the PDBj 
using PyMOL Molecular Graphics System for 
Windows, Version 3.0 (Schrödinger, LLC). 
Truncating the target proteins into smaller 
specific segments can ensure efficient 
computational processing [16]. 

The in silico analysis began with the 
preparation of molecular structures where the 
herbicides active compound structures were 
converted to PDB format using PyMOL and 
processed to minimize kinetic energy using 
PyRx [17]. The protein structures were cleaned 
by removing water molecules and other bound 
compounds using Discovery Studio 2024 
(BIOVIA, Dassault Systèmes). Initial 
validation was performed through re-docking 
of native ligands with target proteins using 
PyRx software, with grid box sizes determined 
for each protein [7, 18]. 

Molecular docking was then performed 
using the prepared individual active compound 
structures and their respective validated target 
proteins. Docking results were analyzed using 
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ProteinsPlus server (https://proteins.plus/) 
[19], considering parameters such as Root 
Mean Square Deviation (RMSD) values, 
binding energy, inhibition constant (Ki), and 
chemical bonds that included hydrogen bonds 
and van der Waals bonds [8]. Synergism and 
antagonism were analyzed by docking 
combinations of two active herbicide 
compounds with their respective target 
proteins. Synergism was indicated by ligand 
interactions occurring on both target proteins,  
whereas antagonism was when the ligand 
interactions did not occur or occurred only with 
one of the target proteins [9]. 

To further validate potential synergistic 
combinations, an ADME (Absorption, 
Distribution, Metabolism, and Excretion) 
analysis was conducted using Lipinski's Rule 
of Five. This analysis was performed using an 
online tool (http://www.scfbio-
iitd.res.in/software/drug-design/lipinski.jsp) 
[20, 21], assessing parameters such as H-donor 
and H-acceptor counts, molar mass, molar 
refractivity, and log-P values [10]. Other than 
that, the synergistic herbicide mixtures forming 
ligand interactions and hydrogen bonds on 
target proteins were visualized using 
Discovery Studio 2024. 

To complement the computational 
analysis, physical observations were conducted 
to simulate the tank mixing processes 
commonly performed by farmers. These 
simulations were carried out on a small scale 
using 96-well plates. To do this, the 
recommended dosage for each of the nine 
tested herbicides was prepared per the 
manufacturer’s instructions by mixing the 

herbicidal liquid/powder with distilled water. 
From this prepared dosage, 50 μL of Roundup 
(Glyphosate) was mixed directly with 50 μL of 
Scepter (Imazaquin) in one well, simulating 
what farmers often do in the field. In total, there 
were 36 herbicide pairs. Observations were 
made in the first 5 minutes and 24 hours after 
mixing for any signs of precipitation, changes 
in solubility, color, and odor, along with foam 
formation. These physical changes were 
interpreted as indicators of chemical reactions 
between active compounds and compared with 
the in silico prediction results to validate the 
computational approach [22-24]. 

Finally, the results from the in silico 
analysis, ADME testing, and physical 
observations were compiled and compared. 
Synergistic and antagonistic combinations 
were identified based on the combined results 
of all analyses, and findings were interpreted in 
the context of existing literature on herbicide 
interactions and weed management practices 
[11]. 
 
3. Results and Discussion  
 The screening to identify synergistic and 
antagonistic properties of herbicide mixtures 
was conducted using in silico approaches [25]. 
The screening data were then supported by 
observational data on physical changes in 
herbicide mixtures that mimics the tank mixing 
often performed by farmers. Nine herbicides 
accessible in the Indonesian agrochemical 
market, representing different modes of action, 
were employed in this study (Table 1) [26, 27].

 
Table 1. Target Protein Data with Herbicide Active Compounds. 

Herbicide Active Compound Target Protein  PDB Code 
Command Clomazone 1-deoxy-D-xylulose-5-phosphate synthase 7BZX 
Ronstar Diuron Photosystem II (specifically D1 subunit)  5MDX 
Ignite Glufosinate-am Glutamine synthetase 2D3A 
Roundup Glyphosate Enolpyruvyl shikimate phosphate synthase  7PXY 
Scepter Imazaquin Acetolactate synthase 1Z8N 
Callisto Mesotrione 4-hydroxyphenylpyruvate dioxygenase 1SP9 
Ronstar Oxadiazon Protoporphyrinogen oxidase, mitochondrial 1SEZ 
Sidaxone Paraquat PS I Electron diversion (specifically ferredoxin) 3VO1 
Starlon Triclopyr Auxin-responsive protein (specifically TIR1) 2P1O 

 

https://pdbj.org/mine/summary/7bzx
https://pdbj.org/mine/summary/5mdx
https://pdbj.org/mine/summary/2d3a
https://pdbj.org/mine/summary/7pxy
https://pdbj.org/mine/summary/1z8n
https://pdbj.org/mine/summary/1sp9
https://pdbj.org/mine/summary/1sez
https://pdbj.org/mine/summary/3vo1
https://pdbj.org/mine/summary/2p1o
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The downloaded structures of the active 
herbicidal compounds were converted to .pdb 
format in PyMOL and processed to minimize 
its kinetic energy in PyRx [28], [29]. This step 
is important to obtain the compatibility of the 
ligand (active herbicidal compound) with its 
target protein when docked in molecular 
docking simulations [30]. The energy 
minimization process optimizes the ligand 
structure to achieve its most stable 
conformation, as demonstrated by Fu et al. [31] 
in their study of 4-Hydroxyphenylpyruvate 
Dioxygenase (HPPD) inhibitors using the 
Merck molecular force field (MMFF94) with 
conjugate gradient algorithm. This 
optimization evaluates various atomic 
interactions, including van der Waals forces, 
electrostatic interactions, and bond-stretching 
parameters, which Fu et al. [32] and 
Ndikuryayo et al. [33] have shown 
significantly improves docking results and 
binding affinity predictions in herbicide-target 
interaction studies.  

Many of the acquired target protein 
structures from the database already have 
bound ligands (often referred to as native 
ligands). The bound compounds from this 
structure had to be cleaned in Discovery Studio 
2024. Redundant water molecules and co-
crystallized ligands can lead to incorrect 
binding poses and interfere with proper ligand 
placement [31, 34-36]. While some studies 
retain specific water molecules that play 
important roles in protein-ligand interactions, 
most traditional molecular docking methods 
often ignore water impacts to simplify the 
calculations [36]. However, recent research has 
shown that water molecules can significantly 
influence binding modes, particularly in cases 
where they mediate the binding of ligands with 
target proteins through hydrogen bond 
networks [32]. 

After cleaning, the protein structure 
requires additional preparation steps, including 
hydrogen addition and correction of 
incomplete residues, followed by assigning 
appropriate force field potentials for accurate 
molecular docking simulations. Protein 

conformation changes during preparation can 
potentially alter the initial structure and affect 
binding site geometry [36-38]. Therefore, 
initial validation of proper protein 
conformation was performed by re-docking the 
native ligand with the cleaned target protein 
using PyRx to determine the optimal grid box 
parameters [34, 39]. For instance, in the case of 
ferredoxin of the PS I Electron diversion 
targeted by paraquat, the optimal grid box 
parameters were established at x: 5.5299, y: -
0.0171, and z: 58.6430 with dimensions of 25 
Å. Significant deviations from these initial grid 
box coordinates would indicate inappropriate 
protein conformational changes, rendering the 
structure unsuitable for docking studies. The 
grid box size is crucial, as oversized boxes 
increase computational costs and may result in 
non-specific binding predictions, while 
undersized boxes may exclude portions of the 
binding site or restrict proper ligand 
positioning [8, 40]. This validation protocol 
was systematically applied to all herbicide 
target proteins in this study. 

The cleaned target protein structure 
acquired from the previous re-docking step was 
subsequently docked again with the prepared 
active compound’s structure. This was 
performed for each active herbicidal 
compound with its respective target protein. 
The docking results were then analyzed in 
ProteinsPlus to evaluate potential protein-
ligand interactions [40].  The server's 
prediction accuracy improves when 
comprehensive information about both ligands 
and their protein targets is provided to the 
system [34, 41]. However, for reliable 
computational prediction of binding affinity, 
both binding affinity and specificity must be 
considered, and these predictions should 
ultimately be validated through experiments to 
confirm physiological effects [42-45]. The 
ProteinsPlus analysis serves as a valuable 
initial assessment of interaction quality, 
revealing the nature and number of interactions 
between herbicide active compounds and their 
respective target proteins [46]. 
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Other than the possible ligand 
interactions formed, other parameters chosen 
were RMSD values, binding energy, Ki values, 
hydrogen bonds, van der Waals interactions, 
and other types of chemical bonds. In this 
initial test, the chosen RMSD value was the 
lowest, and it had to be below 2 Å (RMSD ≤ 2 
Å), as this threshold is widely accepted as a 
validation criterion for docking success [36]. 
This value indicates that the herbicide active 
compound has compatibility with its target 
protein structure, forming a good ligand 
interaction with minimal structural deviations  
[47]. The binding energy value chosen was the 
most negative value, indicating that the bond 
between the active herbicidal compound and its 
target protein can occur spontaneously, with 
lower values suggesting stronger binding 
affinity and better complex stability [48]. The 
inhibition constant (Ki) value chosen must also 
be as small as possible because a smaller Ki 
value indicates stronger bonds between the 

herbicide active compound and its target 
protein, reflecting the energy required for 
ligand-receptor interaction at the binding site 
[49, 50].   

Among all chemical interactions, 
hydrogen bonds are particularly crucial as they 
play a dominant role in determining the 
specificity and strength of ligand-protein 
interactions. These hydrogen bonds, along with 
water-mediated interactions, significantly 
influence the binding mode and stability of the 
protein-ligand complex [51, 52].  The presence 
of specific water molecules can enhance these 
interactions by mediating hydrogen bonds 
between the protein and ligand through their 
dual ability to act as both donor and acceptor. 
The results of this comprehensive in silico 
analysis, including all evaluated parameters 
and possible ligand interactions generated by 
ProteinPlus, are summarized in Table 2 for 
each herbicide active compound with its 
respective target protein.  

 
Table 2. Results of Docking Herbicide Active Compounds with Target Proteins. 
Active Compound Structure Target Protein Ligand Interaction(s) 
 

 
Clomazone 

 
7BZX 

 
1 possible ligand interaction 

 

 
Diuron 

 
5MDX 

 
1 possible ligand interaction 

 

 
Glufosinate-ammonium 

 
2D3A 

 
1 possible ligand interaction 

https://pdbj.org/mine/summary/7bzx
https://pdbj.org/mine/summary/5mdx
https://pdbj.org/mine/summary/2d3a
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Glyphosate 

 
7PXY 

 

 
2 possible ligand interactions 

 

 
Imazaquin 

 
1Z8N 

 

 

 

 
4 possible ligand interactions 

 

 
Mesotrione  

1SP9 
 

1 possible ligand interaction 
 

 
Oxadiazon  

1SEZ  

https://pdbj.org/mine/summary/7pxy
https://pdbj.org/mine/summary/1z8n
https://pdbj.org/mine/summary/1sp9
https://pdbj.org/mine/summary/1sez
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4 possible ligand interactions 

 

 
Paraquat 

 
3VO1 

 

 
2 possible ligand interactions 

 

 
Triclopyr 

 
2P1O 

 

 

https://pdbj.org/mine/summary/3vo1
https://pdbj.org/mine/summary/2p1o
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Drastic changes in RMSD values, binding 
energy, and Ki most likely indicate that mixing 
two herbicide active compounds is antagonistic 
[53]. However, false positives may be acquired 
from early assumptions based on the changes 
in parameter values alone, especially if the 
changes are still within the range of minimum 
values for each parameter [54]. Therefore, in 
this study, the number and the forms of the 
possible ligand interactions resulting from 
docking between mixtures of two different 
active compounds with their respective target 
proteins were used as additional validation 
criteria.  

Research has consistently shown that 
antagonistic interactions occur more frequently 
than synergistic ones, with approximately 67% 
of herbicide combinations showing 
antagonism and only 33% showing synergism 
[1]. These interactions can occur at various 
stages: within the spray tank, on the leaf 
surface, and/or inside the plant, resulting in 
both physicochemical and physiological 
interactions that affect herbicide efficacy [55]. 
When chemical interactions occur between 
mixed herbicides, the combined effect often 
results in reduced compatibility with their 
respective target proteins, particularly when 
the herbicides share the same mode of action. 
The antagonistic effects can manifest through 
decreased uptake/translocation or 
physiological changes in the plant, while 
physicochemical incompatibility in the spray 
tank usually leads to visible physical changes 

in the mixture, such as precipitation, foam 
formation, or color changes [56, 57].  

To validate this in silico methodology's 
ability to predict herbicide mixture’s 
interaction, testing was carried out using 
known synergistic combinations as positive 
controls. Literature studies have demonstrated 
synergism between clomazone-atrazine and 
paraquat-atrazine combinations (see Table 3) 
[5]. The clomazone-atrazine combination 
showed moderate synergism with enhanced 
effects of 5.9% to 19.3% depending on 
application timing, while the clomazone-
paraquat mixture exhibited synergistic effects 
ranging from 14% to 21.8% under specific 
conditions [5]. Our in silico trials on these 
known synergistic mixtures demonstrated that 
both compounds in each mixture maintained 
their original ligand interactions with their 
respective target proteins, as shown in Table 3. 
Specifically, for the clomazone-atrazine 
combination, the computational analysis 
revealed two possible ligand interactions 
between clomazone and its target protein 
(7BZX), and one possible ligand interaction 
between atrazine and its target protein (5X56) 
(Table 3, column 4). The preservation of these 
ligand interactions in silico aligns with 
experimental findings, suggesting that when 
chemical properties remain unchanged in 
mixture, each compound can still effectively 
bind to its target protein, potentially leading to 
synergistic effects. This validation using 
known synergistic combinations provides 
confidence in the methodology's ability to 

 
3 possible ligand interactions 

Legends: 

 
Note: Column 4 (Ligand Interaction(s)) in Table 2 shows how many possible ligand interactions occur between the active herbicide compound and its target 
protein. 
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predict potential interactions between 
herbicide mixtures. The ability to predict these 
interactions computationally before 

experimental testing could significantly 
streamline the process of identifying effective 
herbicide combinations. 

 
Table 3. Results of Clomazone-Atrazine and Paraquat-Atrazine Docking. 
No. Molecule Target Protein Ligand Interaction(s) 

1. Clomazone-atrazine 

 
7BZX  

(target protein of Clomazone) 

 

 
2 possible ligand interactions 

 
5X56 (target protein of Atrazine) 

 
1 possible ligand interaction 

2. Paraquat-atrazine 

 
3VO1 (target protein of Paraquat) 

 

 
2 possible ligand interactions 

  

 
5X56 (target protein of Atrazine) 

 
1 possible ligand interaction 

Legends: 

 

https://pdbj.org/mine/summary/7bzx
https://pdbj.org/mine/summary/5x56
https://pdbj.org/mine/summary/3vo1
https://pdbj.org/mine/summary/5x56
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Building upon the validated 
methodology using known synergistic 
combinations, we extended our in silico 
screening to evaluate novel herbicide 
mixtures. Mixing herbicides with different 
modes of action is a crucial strategy, not only 
to broaden the spectrum of weed control but 
also to decrease the development of herbicide 
resistance [1, 5]. Recent research has 
emphasized that mixing herbicides is more 
effective than rotating between them for 
resistance management [1, 5], as weeds find 
it more difficult to evolve resistance to 
complex, unpredictable control methods. In 
our initial in silico screening, we observed 
the formation of ligand interactions when 
two active compounds were docked on their 
respective target proteins. The absence of 
initial ligand interaction or changes in the 
ligand interaction mechanism was 
interpreted as an indicator of potential 
antagonistic reactions between the mixed 
active compounds.  

The docking analysis results of 
herbicide active compound mixtures on each 
target protein are shown in Figure 1. Our 
analysis defined synergism as the occurrence 
of ligand interactions on each target protein, 
while the presence of interaction with only 
one target protein or complete absence of 
ligand interactions was classified as 
antagonism. This approach aligns with 
previous research showing that herbicide 
mixtures are rarely synergistic, with most 
combinations being either antagonistic or 
additive [1, 5]. Among the tested 
combinations, synergistic interactions were 
observed in twelve pairs: clomazone-
imazaquin, clomazone-oxadiazon, 
clomazone-paraquat, diuron-glyphosate, 
glufosinate-imazaquin, glufosinate-paraquat, 
glyphosate-imazaquin, imazaquin-
oxadiazon, imazaquin-paraquat, mesotrione-
oxadiazon, oxadiazon-paraquat, and 
paraquat-triclopyr. 
 

 
Fig. 1. Results Analysis of Active Herbicidal 
Compound Mixture Interactions on Each Target 
Protein. 
 

Analysis of herbicide synergism and 
antagonism was then continued with the 
simulation of tank mixture tests commonly 
practiced by farmers in the field. This 
practical validation complements the in silico 
docking method by providing physical 
evidence of compatibility. The analysis 
evaluated multiple parameters including 
precipitation, solubility changes (sediment 
formation), color changes, pH alterations, 
odor changes, foam formation, and other 
changes in the physical appearance of the 
mixtures. According to Bianchi et al. [58], 
physicochemical incompatibility in the spray 
tank usually leads to herbicide antagonism, 
as interactions between herbicides can occur 
at various stages: within the spray tank, on 
the leaf surface, and/or inside the plant. 
When physical changes occur in the mixture, 
it indicates that the herbicide active 
compounds have undergone chemical 
reactions forming new compounds, thereby 
altering their original chemical and physical 
properties. These alterations typically result 
in the loss or decrease of ligand interactions 
with the target proteins, as the active 
compounds no longer maintain their original 
molecular structure and binding capabilities. 
Research has shown that such 
physicochemical interactions in tank 
mixtures can significantly impact herbicide 
efficacy, potentially leading to reduced 
uptake/translocation and physiological 
changes in the plant [1, 55]. The results of our 
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tank mixture analysis, presented in Fig. 2, 
provide crucial information about the 
physical compatibility of different herbicide 

combinations, which serve as an important 
predictor of their potential field performance. 

 

 
Fig. 2. Observation Data of Physical Changes in Herbicide Mixtures. 

 
The results of in vitro validation testing 

using mixing in a 96-well plate demonstrated 
synergism in twelve herbicide combinations: 
clomazone-imazaquin (26), (46), clomazone-
paraquat (68), diuron-glyphosate (19), 
glufosinate-imazaquin (27), glufosinate-
paraquat (78), glyphosate-imazaquin (12), 
imazaquin-oxadiazon, imazaquin-paraquat 
(28), mesotrione-oxadiazon (45), oxadiazon-
paraquat (48), and paraquat-triclopyr (38); 
each number in the bracket represents one 
active herbicidal compound. These results 
strongly correlate with our in silico 
predictions, validating the computational 
approach for assessing herbicide mixture 
interactions. This alignment between in silico 
and in vitro results is particularly significant 
as it demonstrates the reliability of 
computational methods in predicting 
herbicide interactions. 

The penetration pattern of herbicide 
active compounds into plant cells shares 
similarities with drug compounds reaching 
their target proteins, making ADME 
considerations important [5, 23]. Traditional 
Lipinski's five rules specify that compounds 
should have: H-donor value ≤ 5, H-acceptor 
≤ 10, molar mass ≤ 500, molar refractivity 
40-130, and log-P ≤ 5. However, recent 
research has shown that herbicides often 

deviate from these parameters. Herbicide 
molecules typically have higher molecular 
weights and more hydrogen bond acceptor 
atoms, while also having a lower range of 
hydrogen bond donor atoms compared to the 
parameters for human oral drugs [5, 59]. 

For our analysis, the structures of two 
different active compounds were combined 
using PyMOL while maintaining their 
chemical independence. When evaluated 
against Lipinski's five rules, only the 
clomazone-paraquat mixture met all the 
criteria for optimal cellular penetration and 
functionality. This finding aligns with 
previous studies that have demonstrated the 
effectiveness of this combination using 
different methodological approaches [5, 60]. 
The unique compatibility of the clomazone-
paraquat mixture suggests that while 
Lipinski's rules may not be universally 
applicable to herbicides [23, 60], they can 
still provide valuable insights for specific 
combinations. 
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Table 4. Results of Lipinski's Five Rules Validation on Synergistic Herbicide Mixtures. 
No. Herbicide Mixtures H-Donor H-Acceptor Molar Mass  Molar Refractivity Log-P Results 
1 Clomazone-imazaquin 4 9 523.5 121.745872 -0.188080 No 
2 Clomazone-oxadiazon 1 7 553.5 120.048660 0.968580 No 
3 Clomazone-paraquat 0 3 397.5 99.122002 0.524680 Yes 
4 Diuron-glyphosate 1 6 402.0 0.000000 0.764560 No 
5 Glufosinate-imazaquin 3 7 492.0 0.000000 0.746320 No 
6 Glufosinate-paraquat 2 4 367.0 0.000000 0.76640 No 
7 Glyphosate-imazaquin 4 9 463.0 30.980600 -0.649900 No 
8 Imazaquin-oxadiazon 3 6 626.0 0.000000 0.000000 No 
9 Imazaquin-paraquat 3 3 470.0 0.000000 0.000000 No 
10 Mesotrione-oxadiazon 1 11 654.0 0.000000 0.000000 No 
11 Oxadiazon-paraquat 0 3 531.0 131.259491 2.081620 No 
12 Paraquat-triclopyr 0 3 442.5 91.436874 0.865170 No 

 
The synergistic interactions were 

visualized using Discovery Studio 2024, 
revealing the formation of hydrogen bonds 
between the active compounds and their target 
proteins. The visualization results, presented in 
Table 5, show distinctive surface layers 
wrapping the ligands within their target 
proteins, indicating maintained chemical 
activity. Recent research has emphasized that 

the preservation of hydrogen bond donation 
capability in herbicide mixtures is crucial for 
maintaining their individual efficacy [45].  
This independent reactivity of each active 
compound, evidenced by the maintained 
hydrogen bonding patterns, supports their 
ability to form specific ligand interactions with 
their respective target proteins. 
 

 
Table 5. Synergistic Interactions of Active Compounds and Target Proteins. 

No. Protein Target Interaksi 

1. 

 
7BZX 

(target protein of Clomazone) 
 

2. 

 
3VO1 (protein target Paraquat) 

 

 

https://pdbj.org/mine/summary/7bzx
https://pdbj.org/mine/summary/3vo1
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4. Conclusion 
This study presents a comprehensive 

approach to evaluating herbicide synergism, 
combining in silico molecular docking 
analysis with physical observations of 
herbicide mixtures. Our findings demonstrate 
that the integration of computational methods 
and experimental validation can provide 
valuable insights into the complex interactions 
between herbicide active compounds and their 
target proteins. The in silico screening 
successfully identified several potentially 
synergistic herbicide combinations, with the 
clomazone-paraquat mixture emerging as the 
most promising candidate based on both 
molecular docking results and compliance 
with Lipinski's rule of five. This combination 
showed consistent ligand interactions with 
target proteins and favorable physicochemical 
properties for cellular penetration and efficacy. 

However, it is important to note that 
while computational methods offer a powerful 
tool for initial screening, they must be 
complemented by experimental validation and 
field trials. The physical observations of 
herbicide mixtures in simulated tank mix 
conditions provided crucial information on 
potential chemical interactions and physical 
changes that could affect herbicide efficacy. 
This study underscores the importance of a 
multi-faceted approach in herbicide research, 
combining advanced computational 
techniques with traditional experimental 
methods. Future work should focus on 
validating these findings through greenhouse 
and field trials, as well as investigating the 
underlying mechanisms of synergism in the 
identified herbicide combinations. This 
research contributes to the ongoing efforts to 
optimize herbicide use in agriculture, 
potentially leading to more effective and 
sustainable weed management strategies. 
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