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ABSTRACT
In this work, we generalized to topological groupoids that we known the strong mor-

phism for groups. Also we obtained some characterizations of these homomorphisms.
Namely, when there is a homomorphism between algebraic structures, there is an important
result that arises from this homomorphism between the substructures of these algebraic struc-
tures: the correspondence theorem between substructures. From the perspective of groupoid
theory, this theorem establishes a bijective correspondence between the subgroupoids of two
related groupoids under a surjective homomorphism.
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1. Introduction
Groupoids were first defined alge-

braically by Brandt [1] in 1926, and thanks
to Ehresmann’s categorical approach in the
1950s [2], they began to be studied rapidly
in many branches of mathematics. It has
become a valuable tool in various branches
of mathematics, especially topology, al-
gebra, and geometry[2–7]. Topological
groupoids, which were introduced by incor-
porating the concept of continuity into the
structure of groupoids, have become a use-
ful tool especially in areas such as algebraic
topology, where understanding the topolog-
ical structure of spaces is of great impor-

tance [3, 4, 8–10].
Homomorphisms play a very im-

portant role in the study of mathemat-
ical structures, especially in group the-
ory. They represent special morphisms be-
tween groups, such as epimorphisms and
monomorphisms, which play an impor-
tant role in understanding the structure and
properties of groups. Groupoids, as gen-
eralizations of groups, also have their own
special morphisms. Ivan’s works on spe-
cial morphisms of groupoids in the alge-
braic sense shed light on this issue [4,
5]. Later, Gürsoy and his colleagues ex-
amined the homomorphisms of topologi-
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cal groupoids, bringing together the rich
structure of groupoids with the additional
complexity of topology [8]. Understand-
ing the relationships between these special
homomorphisms is very important in solv-
ing the complex dynamics of topological
groupoids.

Strong homomorphisms of algebraic
structures offer a more rigorous way to
study and understand mathematical struc-
tures such as groups and groupoids, with
mutual preservation of both operation and
algebraic properties.

On the other hand, when there is
a homomorphism between algebraic struc-
tures, there is an important result that arises
from this homomorphism between the sub-
structures of these algebraic structures: the
correspondence theorem between substruc-
tures. From the perspective of groupoid the-
ory, this theorem establishes a bijective cor-
respondence between the subgroupoids of
two related groupoids under a surjective ho-
momorphism. The most important result of
the correspondence theorem for topologi-
cal subgroupoids presented in the paper is
that it allows us to examine in detail the
topological subgroupoids of the topological
groupoid 𝐺′ by looking at the topological
subgroupoids of the topological groupoid𝐺
by means of a strong homomorphism 𝜇 :
𝐺 → 𝐺′.

2. Topological Groupoids andHomo-
morphisms

We here give some basic definitions
and useful properties related to the groupoid
theory.

Definition 2.1 ([11]). A groupoid con-
sists of two sets 𝐺 and 𝐺0, called respec-
tively the groupoid and the base, together
with two maps 𝛼 and 𝛽 from 𝐺 to 𝐺0,
called respectively the source and target

maps, a map 𝜖 : 𝐺0 −→ 𝐺, 𝑥 ↦−→ ∼
𝑥

called the object (inclusion) map, a map
𝑖 : 𝐺 −→ 𝐺, 𝑎 ↦−→ 𝑎−1 called the in-
vers map and a partial composition map
𝑚 defined by 𝑚(𝑎, 𝑏) = 𝑎𝑏 on the set
𝐺 ∗ 𝐺 = {(𝑎, 𝑏) ∈ 𝐺 × 𝐺 | 𝛼(𝑎) = 𝛽(𝑏)},
all subject to the following conditions:

i) 𝛼(𝑎𝑏) = 𝛼(𝑏) and 𝛽(𝑎𝑏) = 𝛽(𝑎)
for all (𝑎, 𝑏) ∈ 𝐺 ∗ 𝐺,

ii) 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐺
such that 𝛼(𝑎) = 𝛽(𝑏) and 𝛼(𝑏) = 𝛽(𝑐),

iii) 𝛼(𝑥̃) = 𝛽(𝑥̃) = 𝑥 for all 𝑥 ∈ 𝐺0,
iv) 𝑎�𝛼(𝑎) = 𝑎 and �𝛽(𝑎)𝑎 = 𝑎 for all

𝑎 ∈ 𝐺,
v) each 𝑎 ∈ 𝐺 has a (two-sided)

inverse 𝑎−1 such that 𝛼(𝑎−1) = 𝛽(𝑎) ,
𝛽(𝑎−1) = 𝛼(𝑎) and 𝑎𝑎−1 = �𝛼(𝑎) , 𝑎𝑎−1 =�𝛽(𝑎).

In this paper, we will denote a
groupoid 𝐺 over 𝐺0 by (𝐺,𝐺0). For any
objects 𝑥, 𝑦 ∈ 𝐺0 in a groupoid (𝐺,𝐺0),
the set 𝐺𝑥 = {𝑎 ∈ 𝐺 | 𝛼(𝑎) = 𝑥}
is called 𝛼−fibre of 𝐺 over 𝑥 and the set
𝐺𝑦 = {𝑎 ∈ 𝐺 | 𝛽(𝑎) = 𝑦} is called 𝛽−fibre
of 𝐺 over 𝑦. Also we have 𝐺 (𝑥, 𝑦) = 𝐺𝑦

𝑥 =
{𝑎 ∈ 𝐺 | 𝛼(𝑎) = 𝑥, 𝛽(𝑎) = 𝑦}. Clearly,
𝐺 (𝑥, 𝑥) = 𝐺𝑥

𝑥 = 𝐺 (𝑥) is a group and is
called the isotropy (or vertex) group at 𝑥.

Example 2.2 ([12]). For any non-empty set
𝑈, the product𝑈×𝑈 is a groupoid over𝑈. It
is called the banal groupoid. The source and
target maps are defined by the natural pro-
jections, the object map is defined by 𝑢 ↦→
(𝑢, 𝑢) for any element 𝑢. For any morphism
(𝑢, 𝑣), the inverse is (𝑣, 𝑢). Also, the partial
composition is defined by (𝑢, 𝑣).(𝑣, 𝑤) =
(𝑢, 𝑤) formorphisms (𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝑈×𝑈.

Definition 2.3 ([12]). Let (𝐺,𝐺0) and
(𝐻, 𝐻0) be groupoids. A pair of (𝜇, 𝜇0) :
(𝐺,𝐺0) → (𝐻, 𝐻0) is called a groupoid
homomorphism if 𝛼𝐻 ◦ 𝜇 = 𝜇0 ◦ 𝛼𝐺 ,
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𝛽𝐻 ◦ 𝜇 = 𝜇0 ◦ 𝛽𝐺 and 𝜇(𝑎𝑏) = 𝜇(𝑎)𝜇(𝑏)
for (𝑎, 𝑏) ∈ 𝐺 ∗ 𝐺.

Also, 𝜇 is a said to be homomor-
phism over 𝜇0. If 𝐺0 = 𝐻0 and 𝜇 = 𝐼𝑑,
then 𝜇 is said to be a homomorphism over
𝐺0. (𝜇, 𝜇0) is an isomorphism if both 𝜇
and 𝜇0 are bijections. A groupoid (𝐺,𝐺0)
is said to be a subgroupoid of (𝐻, 𝐻0) if the
maps 𝜇 and 𝜇0 are the inclusions. In addi-
tion, if𝐺0 = 𝐻0 then (𝐺,𝐺0) is said to be a
wide subgroupoid of (𝐻,𝐺0). Awide sub-
groupoid (𝑁,𝐺0) that satisfies 𝑎𝜆𝑎−1 ∈ 𝑁
with 𝛼(𝑎) = 𝛼(𝜆) = 𝛽(𝜆) for any 𝜆 ∈ 𝑁
and any 𝑎 ∈ 𝐺 is called a normal sub-
groupoid (𝐺,𝐺0).

Definition 2.4 ([9]). A topological
groupoid is a groupoid (𝐺,𝐺0) together
with topologies on 𝐺 and 𝐺0 such that
the five maps which define the groupoid
structure are continuous.

Example 2.5 ([12]). A topological group
can be regarded as a topological groupoid
with only one object.

Example 2.6 ([12]). Let𝐺 be a topological
group and let𝑈 be a G-space with a contin-
uous action · : 𝑈 × 𝐺 −→ 𝑈. Then 𝑈 × 𝐺
is a topological groupoid over 𝑈. Indeed,
𝑈×𝐺 has the product topology of𝑈 and𝐺.
The continuous action naturally gives rise
to a map

(𝑈 × 𝐺) × 𝐺 ★→ 𝑈 × 𝐺

((𝑢, 𝑎1), 𝑎2) ↦→ (𝑢, 𝑎1𝑎2)
and this is continuous since
𝑝𝑟1 ◦ ★((𝑢, 𝑎1), 𝑎2) = 𝑢, which is
the projection on the first factor, and
𝑝𝑟2 ◦ ★((𝑢, 𝑎1), 𝑎2) = 𝑎1𝑎2, which is the
composite

(𝑈×𝐺)×𝐺 𝑖𝑑→ 𝑈×(𝐺×𝐺) 𝑝𝑟2→ 𝐺×𝐺 𝑚𝑢𝑙𝑡𝑖 𝑝.→ 𝐺

and so 𝑝𝑟2 ◦★ is continuous, thus ★ is con-
tinuous. Now

(𝑈 × 𝐺) ∗ (𝑈 × 𝐺) =

{((𝑢2, 𝑎2), (𝑢1, 𝑎1)) | 𝑢1 · 𝑎1 = 𝑢2} ,

and 𝑚 : (𝑈 × 𝐺) ∗ (𝑈 × 𝐺) → 𝑈 × 𝐺
is defined by (𝑢2, 𝑎2) (𝑢1, 𝑎1) = (𝑢1, 𝑎1𝑎2),
which is the composite

(𝑈 × 𝐺) ∗ (𝑈 × 𝐺) → (𝑈 × 𝐺) × 𝐺 ★→ 𝑈 × 𝐺
((𝑢2, 𝑎2), (𝑢1, 𝑎1)) ↦→ ((𝑢1, 𝑎1), 𝑎2) ↦→ (𝑢1, 𝑎1𝑎2)

and so the partial multiplication is continu-
ous. The continuity of other groupoid struc-
ture maps can be shown in a similar way.
Consequently, (𝑈 × 𝐺,𝑈) is a topological
groupoid.

Definition 2.7 ([13]). Let (𝐺,𝐺0) be a
topological groupoid. A topological sub-
groupoid of (𝐺,𝐺0) is a subgroupoid
(𝐻, 𝐻0) of (𝐺,𝐺0) equipped with the sub-
space topologies inherited from (𝐺,𝐺0).

Example 2.8 ([13]). Let (𝐺,𝐺0) be a topo-
logical groupoid. Then,

i) for each 𝑥 ∈ 𝐺0, the isotropy group 𝐺 (𝑥)
is a topological group with subspace topol-
ogy under the restriction of the partial com-
position. A topological group bundle is the
union of its isotropy groups 𝐺 (𝑥), 𝑥 ∈ 𝐺0
(here two elements may be composed iff
they lie in the same fibre). We denote it by
𝐼𝑠(𝐺), which is a topological subgroupoid.
ii) the subspace 𝜖 (𝐺0) is called the unity
space of (𝐺,𝐺0), which is a topological
wide subgroupoid with the subspace topol-
ogy. Obviously, we have 𝜖 (𝐺0) ⊆ 𝐼𝑠(𝐺).

Definition 2.9 ([13]). A topologi-
cal groupoid 𝐺 over 𝐺0 is said to
be transitive if the continuous map
𝛼 × 𝛽 : 𝐺 −→ 𝐺0 × 𝐺0 given by
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(𝛼 × 𝛽)(𝑎) = (𝛼(𝑎), 𝛽(𝑎)), ∀𝑎 ∈ 𝐺, is
surjective, or equivalently if 𝐺 (𝑥, 𝑦) ≠ ∅
for each pair of 𝑥, 𝑦 ∈ 𝐺0.

Definition 2.10 ([13]). By a topologi-
cal groupoid homomorphism (𝜇, 𝜇0) :
(𝐺,𝐺0) → (𝐻, 𝐻0), we mean a homomor-
phism of groupoids which is continuous on
both objects and morphisms.

Proposition 2.11 ([13]). Let (𝜇, 𝜇0) :
(𝐺,𝐺0) −→ (𝐻, 𝐻0) be topological
groupoid homomorphism. Then we have
𝜇 ◦ 𝜖 = 𝜖 ◦ 𝜇0 and 𝜇 ◦ 𝑖 = 𝑖 ◦ 𝜇.

For a topological groupoid homo-
morphism (𝜇, 𝜇0) : (𝐺,𝐺0) −→ (𝐺′, 𝐺′

0),
a set 𝐾𝑒𝑟 𝜇 = {𝑎 ∈ 𝐺 | 𝜇(𝑎) ∈ 𝜖 (𝐺0)} en-
dowed with subspace topology is said ker-
nel of 𝜇.

Proposition 2.12 ([9]). For a topolog-
ical groupoid homomorphism (𝜇, 𝜇0) :
(𝐺,𝐺0) −→ (𝐺′, 𝐺′

0), we have:

1. If (𝐾 ′, 𝐾 ′
0) is a topological

subgroupoid of (𝐺′, 𝐺′
0), then

(𝜇−1(𝐾 ′), 𝜇−1
0 (𝐾 ′

0)) is also topolog-
ical subgroupoid of (𝐺,𝐺0).

2. If (𝐾 ′, 𝐺′
0) is a topological nor-

mal subgroupoid of (𝐺′, 𝐺′
0), then

𝜇−1(𝐾 ′) is a topological normal
subgroupoid of (𝐺,𝐺0) such that
𝐾𝑒𝑟𝜇 ⊂ 𝜇−1(𝐺′).

Proof. 1. Let (𝐾 ′, 𝐾 ′
0) be a topologi-

cal subgroupoid of (𝐺′, 𝐺′
0). Firstly,

let us show that 𝛽(𝜇−1(𝐾 ′)) ⊂
𝜇−1

0 (𝐺′
0). If 𝑦 ∈ 𝛽(𝜇−1(𝐾 ′)),

then we have 𝑦 = 𝛽(𝑎) for any
𝑎 ∈ 𝜇−1(𝐾 ′). Since 𝜇 is a
topological groupoid homomorphism
and (𝐾 ′, 𝐾 ′

0) is a topological sub-
groupoid, we have 𝜇(𝑎) ∈ 𝐾 ′ and
𝛽′(𝐾 ′) ⊂ 𝐾 ′

0. Hence, it follows

𝜇0(𝑦) = 𝜇0(𝛽(𝑎)) = 𝛽′(𝜇(𝑎)) ∈
𝐾 ′

0. Therefore, it is obtained 𝑦 ∈
𝜇−1

0 (𝐾 ′
0). Similarly, it is easily

shown that 𝛼(𝜇−1(𝐾 ′)) ⊂ 𝜇−1
0 (𝐺′

0).
Now let us take 𝑎, 𝑏 ∈ 𝜇−1(𝐾 ′)
with 𝛽(𝑎) = 𝛼(𝑏). Then, we have
𝜇(𝑎), 𝜇(𝑏) ∈ 𝐾 ′ and 𝛽′(𝜇(𝑎)) =
𝜇0(𝛽(𝑎)) = 𝜇0(𝛼(𝑏)) = 𝛼′(𝜇(𝑏)).
Hence, it follows 𝜇(𝑎).𝜇(𝑏) ∈ 𝐺′.
Even more, we have 𝜇(𝑎).𝜇(𝑏) ∈
𝐾 ′, because 𝐾 ′ is a topological sub-
groupoid. Since 𝜇 is homomorphism,
we have 𝜇(𝑎.𝑏) ∈ 𝐾 ′. So, it is
obtained 𝑎.𝑏 ∈ 𝜇−1(𝐾 ′). That is,
𝜇−1(𝐾 ′) is closed under partial com-
position.

Let us see that 𝜀(𝑥) ∈ 𝜇−1(𝐾 ′) for
all 𝑥 ∈ 𝜇−1

0 (𝐾 ′
0). Since 𝐾 ′ is a topo-

logical subgroupoid, it follows that
𝜇0(𝑥) ∈ 𝐾 ′

0 and 𝜀′(𝜇0(𝑥)) ∈ 𝐾 ′.
Since 𝜇 is homomorphism, it follows
𝜇(𝜀(𝑥)) ∈ 𝐾 ′. That is, we have
𝜀(𝑥) ∈ 𝜇−1(𝐾 ′).
Finally, we have to show that the in-
version is closed in 𝐾 ′. For it, let 𝑎 ∈
𝜇−1(𝐾 ′). Then, we have 𝜇(𝑎) ∈ 𝐾 ′.
Hence it follows (𝜇(𝑎))−1 ∈ 𝐾 ′, be-
cause 𝐾 ′ is topological subgroupoid.
Also, since 𝜇 is homomorphism, we
obtain 𝜇(𝑎−1) ∈ 𝐾 ′. That is, it is
found 𝑎−1 ∈ 𝜇−1(𝐾 ′).
It is clear that the topological struc-
ture of (𝜇−1(𝐾 ′), 𝜇−1

0 (𝐾 ′
0)) is fol-

lows from that the continuity of
(𝜇, 𝜇0) and subspace topology of
(𝐺,𝐺0).

2. From part 1, it is easily seen that
(𝜇−1(𝐾 ′), 𝐺0 is topological sub-
groupoid of (𝐺,𝐺0). For proof, it is
enough to show that normality con-
dition is hold and 𝐾𝑒𝑟𝜇 ⊂ 𝜇−1(𝐺′).
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Let 𝜆 ∈ 𝜇−1(𝐾 ′) and 𝑎 ∈ 𝐺 with
𝛽(𝑎) = 𝛼(𝜆) = 𝛽(𝜆). We want
to prove that 𝑎.𝜆.𝑎−1 ∈ 𝜇−1(𝐾 ′).
Clearly, we have 𝜇(𝜆) ∈ 𝐾 ′,
𝛽′(𝜇(𝑎)) = 𝜇0(𝛽(𝑎)) =
𝜇0(𝛼(𝜆)) = 𝛼′(𝜇(𝜆)) and
𝛽′(𝜇(𝑎)) = 𝜇0(𝛽(𝑎)) = 𝜇0(𝛽(𝜆)) =
𝛽′(𝜇(𝜆)). From these equalities
and the normality of 𝐾 ′, it fol-
lows 𝜇(𝑎).𝜇(𝜆).(𝜇(𝑎))−1 ∈ 𝐾 ′.
Since 𝜇 is homomorphism, we
have 𝜇(𝑎.𝜆.𝑎−1) ∈ 𝐾 ′. Hence
𝑎.𝜆.𝑎−1 ∈ 𝜇−1(𝐾 ′). Therefore,
𝜇−1(𝐾 ′) is normal in 𝐺.

Now let us prove that 𝐾𝑒𝑟𝜇 ⊂
𝜇−1(𝐺′). For it, let us take any 𝑎 ∈
𝐾𝑒𝑟𝜇. Then, we have 𝜇(𝑎) = 𝜀′(𝑥′)
for an object 𝑥′ ∈ 𝐺′

0. Since 𝜀
′(𝑥′) ∈

𝐾 ′, we have 𝜇(𝑎) ∈ 𝐾 ′. Hence it fol-
lows 𝑎 ∈ 𝜇−1(𝐾 ′). Therefore, we ob-
tain 𝐾𝑒𝑟𝜇 ⊂ 𝜇−1(𝐺′).

□

Proposition 2.13 ([10]). Let (𝜇, 𝜇0) :
(𝐺,𝐺0) −→ (𝐻, 𝐻0) be a homomor-
phism of groupoids of 𝐺 onto 𝐻, where
𝐻 is a topological groupoid. Then 𝜇 in-
duces a topology on 𝐺 compatible with the
groupoid structure of 𝐺 and 𝜇 is then a ho-
momorphism of topological groupoids.

Proof. Define a set 𝑈 ⊂ 𝐺 to be open if
and only if 𝑈 = 𝜇−1(𝑉) for some open set
𝑉 ⊂ 𝐻, and define 𝑈 ⊂ 𝐺0 to be open if
and only if 𝑈 = 𝜇−1

0 (𝑉) for some open set
𝑉 ⊂ 𝐻0. This defines a topology on 𝐺 and
on 𝐺0, and 𝜇 and 𝜇0 being surjective are
both continuous and open maps.

Since the diagram

𝐺 ∗ 𝐺 𝑚𝐺×𝑚𝐻 / /

𝑚𝐺

��

𝐻 ∗ 𝐻

𝑚𝐻

��
𝐺

𝜇 // 𝐻

is commutative, where 𝑚𝐺 and 𝑚𝐻 denote
the composition functions of 𝐺 and 𝐻 re-
spectively, it follows that 𝑚𝐺 is continu-
ous, for if 𝑈 ⊂ 𝐺 is open, 𝑈 = 𝜇−1(𝑉)
for some open 𝑉 ⊂ 𝐻, and then 𝑚−1

𝐺 (𝑈) =
𝑚−1

𝐺 (𝜇−1(𝑉)) = (𝜇×𝜇)−1(𝑚−1
𝐻 (𝑉)), which

is open in 𝐺 ∗ 𝐺. The continuity of the in-
vers map proved similarly. Also, since the
diagrams

𝐺
𝜇 //

𝛼𝐺

��

𝐻

𝛼𝐻

��
𝐺0 𝜇0

// 𝐻0

𝐺
𝜇 //

𝛽𝐺
��

𝐻

𝛽𝐻
��

𝐺0 𝜇0
// 𝐻0

𝐺0
𝜖𝐺 //

𝜇0
��

𝐺

𝜇

��
𝐻0 𝜖𝐻

// 𝐻

are commutative, 𝛼𝐺 , 𝛽𝐺 and 𝜖𝐺 are con-
tinuous. Therefore the proof is com-
pleted. □

Definition 2.14 ([9]). Given a topolog-
ical groupoid homomorphism (𝜇, 𝜇0) :
(𝐺,𝐺0) −→ (𝐺,𝐺′

0), if 𝜇 is a homeomor-
phism, we say it a topological groupoid iso-
morphism.

Example 2.15 ([9]). i) If (𝐺,𝐺0) is a topo-
logical groupoid, then clearly (𝐼𝑑𝐺 , 𝐼𝑑𝐺0)
is a topological groupoid isomorphism.

ii) Let (𝜇, 𝜇0) : (𝐺,𝐺0) → (𝐻, 𝐻0)
and (𝜈, 𝜈0) : (𝐻, 𝐻0) → (𝐾, 𝐾0) be
two topological groupoid homomorphisms.
Then the composition (𝜈, 𝜈0) ◦ (𝜇, 𝜇0) :
(𝐺,𝐺0) → (𝐾, 𝐾0) defined by (𝜈, 𝜈0) ◦
(𝜇, 𝜇0) = (𝜈 ◦ 𝜇, 𝜈0 ◦ 𝜇0) is a topological
groupoid homomorphism.
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If (𝜇, 𝜇0) : (𝐺,𝐺0) → (𝐻, 𝐻0) is a
topological groupoid homomorphism then
for every 𝑥, 𝑦 ∈ 𝐺0 we have

𝜇(𝐺𝑥) ⊆ 𝐻𝜇0 (𝑥 ) , 𝜇(𝐺𝑦) ⊆ (𝐻)𝜇0 (𝑦) ,

𝜇(𝐺𝑦
𝑥) ⊆ (𝐻)𝜇0 (𝑦)

𝜇0 (𝑥 ) .

Then the restrictions of 𝜇 to 𝐺𝑥 , 𝐺
𝑦 , 𝐺

𝑦
𝑥

respectively, defines the continuous maps

𝜇𝑥 : 𝐺𝑥 → 𝐻𝜇0 (𝑥 ) , 𝜇
𝑦 : 𝐺𝑦 → (𝐻)𝜇0 (𝑦) ,

𝜇
𝑦
𝑥 : 𝐺𝑦

𝑥 −→ (𝐻)𝜇0 (𝑦)
𝜇0 (𝑥 ) .

But these maps are not be topological
groupoid homomorphisms.

Now let us give an important concept
that will be the subject of future theorems.

Definition 2.16 ([9]). Let (𝐺,𝐺0) be a
topological groupoid,𝑈 a topological space
and the map 𝜋 : 𝑈 → 𝐺0 continuous. Then
a set
𝜋∗(𝐺)
= {(𝑢1, 𝑢2, 𝑎) | 𝜋(𝑢1) = 𝛼(𝑎), 𝜋(𝑢2) = 𝛽(𝑎)}
is a topological groupoid over 𝑈. The
groupoid structure of (𝜋∗(𝐺),𝑈) as fol-
lows:
the projections 𝛼∗(𝑢1, 𝑢2, 𝑎) = 𝑢1 and
𝛽∗(𝑢1, 𝑢2, 𝑎) = 𝑢2,
the object map 𝜖∗(𝑢) = (𝑢, 𝑢, 𝜖 (𝜋(𝑢))),
the partial composition
𝑚∗((𝑢1, 𝑢2, 𝑎), (𝑢2, 𝑢3, 𝑏)) = (𝑢1, 𝑢3, 𝑎𝑏),
the inversion 𝑖∗(𝑢1, 𝑢2, 𝑎) = (𝑢2, 𝑢1, 𝑖(𝑎)).
We denote it by (𝜋∗(𝐺),𝑈).

We say it ”the induced topological
groupoid of (𝐺,𝐺0) under 𝜋”.

A canonical homomorphism arises
between a topological groupoid and its in-
duced groupoid. Namely; let (𝐺,𝐺0) be
topological groupoid and 𝜋∗(𝐺) its induced
topological groupoid under 𝜋 : 𝑈 →
𝐺0. Then a topological groupoid homomor-
phism (𝜋∗𝐺 , 𝜋) : (𝜋∗(𝐺),𝑈) → (𝐺,𝐺0) is

defined by 𝜋∗(𝑢1, 𝑢2, 𝑎) = 𝑎, is said canon-
ical homomorphism of induced topological
groupoid.

𝜋∗(𝐺)
𝜋∗
𝐺 //

��

𝐺

��
𝑈 𝜋

// 𝐺0

As stated in the following theorem, a
canonical homomorphism satisfies the uni-
versality property. Let us state the theorem
without proof.

Theorem 2.17 ([13]). Let (𝐺,𝐺0) be a
topological groupoid and let (𝜋∗(𝐺),𝑈)
be its induced topological groupoid with a
continuous map 𝜋 : 𝑈 → 𝐺0. Then the
homomorphism (𝜋∗𝐺 , 𝜋) : (𝜋∗(𝐺),𝑈) →
(𝐺,𝐺0) satisfies the universality property:

for every topological groupoid homo-
morphism (𝜇, 𝜋) : (𝐺 ′

,𝑈) → (𝐺,𝐺0)

we have one and only one
𝑈 − ℎ𝑜𝑚𝑜𝑚𝑜𝑟 𝑝ℎ𝑖𝑠𝑚 𝜇

′ : 𝐺
′
→ 𝜋∗(𝐺)

of topological groupoids such that the
diagram

𝐺′

𝜇

��

𝜇′

##F
FF

FF
FF

FF

𝐺
𝜋∗
𝐺

// 𝜋∗(𝐺)

is commutative.

Proposition 2.18 ([8]). For a continuous
map 𝜋 : 𝑉 → 𝑈, there is a functor 𝜋∗
between the category G(𝑈) of topological
groupoids over𝑈 and the category G(𝑉) of
induced topological groupoids of them over
𝑉 .

Proof. For the proof, we need to show that
𝜋∗ : G(𝑈) → G(𝑉) satisfies the conditions
for being a functor.
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For any topological groupoids
(𝐺,𝑈) and (𝐺

′
,𝑈) over 𝑈, we have the

induced topological groupoids (𝜋∗(𝐺), 𝑉)
and (𝜋∗(𝐺

′
), 𝑉). Let us consider

topological groupoid homomorphism
𝜇 : (𝐺,𝑈) → (𝐺

′
,𝑈). It is easily seen that

𝜋∗(𝜇) : (𝜋∗(𝐺), 𝑉) → (𝜋∗(𝐺
′
), 𝑉) defined

by

𝜋∗(𝜇) (𝑣1, 𝑣2, 𝑎) = (𝑣1, 𝑣2, 𝜇(𝑎)) ∈ 𝜋∗(𝐺
′
)

for all (𝑣1, 𝑣2, 𝑎) ∈ 𝜋∗(𝐺), is a topological
groupoid homomorphism.

𝜋∗ defined as above is a functor. In-
deed, 𝜋∗(𝑖𝑑𝐺) = 𝑖𝑑𝜋∗ (𝐺) , and also if 𝜂 :
(𝐺

′
,𝑈) → (𝐺

′′
,𝑈) is another topologi-

cal groupoid homomorphism over 𝑈, then
𝜋∗(𝜂 ◦ 𝜇) : 𝜋∗(𝐺) → 𝜋∗(𝐺

′′
) defined by

for every (𝑣1, 𝑣2, 𝑎) ∈ 𝜋∗(𝐺)

𝜋∗(𝜂 ◦ 𝜇) (𝑣1, 𝑣2, 𝑎) = (𝑣1, 𝑣2, (𝜂 ◦ 𝜇) (𝑎))

is a topological groupoid homomorphism
over𝑉 such that 𝜋∗(𝜂 ◦ 𝜇) = 𝜋∗(𝜂) ◦ 𝜋∗(𝜇).

□

Proposition 2.19 ([8]). Let 𝜋 : 𝑊 → 𝑉
and 𝑘 : 𝑉 → 𝑈 be continuous maps and
let (𝐺,𝑈) be a topological groupoid. Then
there exists an isomorphism between the
induced topological groupoids 𝜋∗(𝜎∗(𝐺))
and (𝜎 ◦ 𝜋)∗(𝐺).

Proof. First of all, let us clearly state the
induced topological groupoids mentioned
in the proposition.
𝜎∗(𝐺)
= {(𝑣1, 𝑣2, 𝑎) : 𝜎(𝑣1) = 𝛼(𝑎), 𝜎(𝑣2) =
𝛽(𝑎)},
𝜋∗(𝜎∗(𝐺))
= {(𝑤1, 𝑤2, (𝑣1, 𝑣2, 𝑎)) : 𝜋(𝑤1) =
𝑣1, 𝜋(𝑤2) = 𝑣2},
(𝜎 ◦ 𝜋)∗(𝐺)
= {(𝑤1, 𝑤2, 𝑎) : (𝜎 ◦ 𝜋)(𝑤1) = 𝛼(𝑎)

, (𝜎 ◦ 𝜋) (𝑤2) = 𝛽(𝑎)}.

Now let us define the mappings

Φ : (𝜎 ◦ 𝜋)∗(𝐺) −→ 𝜋∗(𝜎∗(𝐺))

(𝑤1, 𝑤2, 𝑎) ↦→ (𝑤1, 𝑤2, (𝜋(𝑤1), 𝜋(𝑤2), 𝑎))

and

Ψ : 𝜋∗(𝜎∗(𝐺)) −→ (𝜎 ◦ 𝜋)∗(𝐺)

(𝑤1, 𝑤2, (𝑣1, 𝑣2, 𝑎)) ↦→ (𝑤1, 𝑤2, 𝑎).

It is clear thatΦ andΨ are continuous
functors such thatΨ◦Φ = 𝑖𝑑 (𝜎◦𝜋 )∗ (𝐺) and
Φ ◦ Ψ = 𝑖𝑑𝜋∗ (𝜎∗ (𝐺) ) . So Φ is an
isomorphism between (𝜎 ◦ 𝜋)∗(𝐺) and
𝜋∗(𝜎∗(𝐺)). □

Proposition 2.20 ([8]). A topological
groupoid (𝐺,𝑈) and its induced topologi-
cal groupoid 𝑖𝑑∗𝑈 (𝐺) are𝑈 − 𝑖𝑠𝑜𝑚𝑜𝑟 𝑝ℎ𝑖𝑐.

Proof. It is straightforward to show that
the map Φ : 𝐺 → 𝑖𝑑∗𝑈 (𝐺) de-
fined by Φ(𝑎) = (𝛼(𝑎), 𝛽(𝑎), 𝑎) be-
tween the topological groupoid 𝐺 and its
induced topological groupoid 𝑖𝑑∗𝑈 (𝐺) =
{(𝑢1, 𝑢2, 𝑎) | 𝛼(𝑎) = 𝑢1, 𝛽(𝑎) = 𝑢2} is an
isomorphism.

□

Proposition 2.21 ([8]). If a topological
groupoid (𝐺,𝑈) is a transitive, then in-
duced topological groupoid (𝜋∗(𝐺), 𝑉) of
(𝐺,𝑈) under the continuous map 𝜋 : 𝑉 →
𝑈 is also transitive.

Proof. Let (𝐺,𝑈) be transitive. Then, we
have the surjective continuous map 𝛼 × 𝛽 :
𝐺 → 𝑈 × 𝑈, (𝛼 × 𝛽) (𝑎) = (𝛼(𝑎), 𝛽(𝑎)).
Hence there is an element 𝑎 ∈ 𝐺 such that
(𝛼 × 𝛽) (𝑎) = (𝜋(𝑣1), 𝜋(𝑣2)) whenever
(𝑣1, 𝑣2) ∈ 𝑉 × 𝑉 , i.e. 𝛼(𝑎) = 𝜋(𝑣1)
and 𝛽(𝑎) = 𝜋(𝑣2). Thus (𝑣1, 𝑣2, 𝑎) ∈
𝜋∗(𝐺) and (𝛼∗ × 𝛽∗) (𝑣1, 𝑣2, 𝑎) =
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(𝛼∗(𝑣1, 𝑣2, 𝑎), 𝛽∗(𝑣1, 𝑣2, 𝑎)) = (𝑣1, 𝑣2).
That is, 𝛼∗ × 𝛽∗ : 𝜋∗(𝐺) → 𝑉 × 𝑉 is
surjective. On the other hand, since 𝛼∗
and 𝛽∗ are projections onto the first and
second factors, resp., the map 𝛼∗ × 𝛽∗

is continuous. Therefore, (𝜋∗(𝐺), 𝑉) is
transitive. □

3. Strong Homomorphisms
In this section we give the topolog-

ical version of the notion of strong ho-
momorphism of the groupoids defined by
Ivan. Also, It is well known that there
is an important result that arises from a
homomorphism between the substructures
of algebraic structures: the correspondence
theorem between substructures. From the
perspective of groupoid theory, this theo-
rem establishes a bijective correspondence
between the subgroupoids of two related
groupoids under a surjective homomor-
phism. In this section, we examine the
correspondence theorem in terms of topo-
logical groupoids, taking into account the
strong homomorphism. The most impor-
tant result of the correspondence theorem
for topological subgroupoids presented in
the paper is that it allows us to examine in
detail the topological subgroupoids of the
topological groupoid 𝐻 by looking at the
topological subgroupoids of the topological
groupoid𝐺 by means of a strong homomor-
phism 𝜇 : 𝐺 → 𝐻.

Definition 3.1. A strong homomorphism
of the topological groupoids is a (𝜇, 𝜇0) :
(𝐺,𝐺0) → (𝐺′, 𝐺′

0) topological groupoid
homomorphism that provides the following
condition:

(𝜇(𝑎), 𝜇(𝑏)) ∈ 𝐺′ ∗ 𝐺′

⇒

(𝑎, 𝑏) ∈ 𝐺 ∗ 𝐺, 𝑎, 𝑏 ∈ 𝐺.

Example 3.2. 1. Let (𝐺,𝐺0) be a topo-
logical groupoid. Then 𝜇 = 𝛼 × 𝛽 :
𝐺 −→ 𝐺0×𝐺0 is a strong homomor-
phism of the topological groupoids.
For it, we must show that (𝑎, 𝑏) ∈
𝐺 ∗ 𝐺 while (𝜇(𝑎), 𝜇(𝑏)) = ((𝛼 ×
𝛽)(𝑎), (𝛼 × 𝛽) (𝑏)) ∈ (𝐺0 × 𝐺0) ∗
(𝐺0 × 𝐺0). Since (𝜇(𝑎), 𝜇(𝑏)) ∈
(𝐺0 × 𝐺0) ∗ (𝐺0 × 𝐺0) defined, we
can write

𝛽′(𝜇(𝑎)) = 𝛼′(𝜇(𝑏)).

Hence, we have the equalities

𝛽′(𝜇(𝑎)) = 𝛽′(𝛼(𝑎), 𝛽(𝑎)) = 𝛽(𝑎),

𝛼′(𝜇(𝑏)) = 𝛼′(𝛼(𝑏), 𝛽(𝑏)) = 𝛼(𝑏).

Thus, the equality 𝛽(𝑎) = 𝛼(𝑏) is ob-
tained, which means (𝑎, 𝑏) ∈ 𝐺 ∗ 𝐺.

2. Let us consider the induced topo-
logical groupoid 𝜋∗(𝐺) of a topo-
logical groupoid (𝐺,𝐺0) under
a continuous map 𝜋 : 𝑈 → 𝐺0.
Then it is clear that we have
the canonical homomorphism
(𝜋∗𝐺 , 𝜋) : (𝜋∗(𝐺),𝑈) → (𝐺,𝐺0).
Let us take a composible pair
(𝜋∗𝐺 (𝑢, 𝑣, 𝑎), 𝜋∗𝐺 (𝑢′, 𝑣′, 𝑏)) from
𝐺 ∗ 𝐺. We want to see that
if it is ((𝑢, 𝑣, 𝑎), (𝑢′, 𝑣′, 𝑏)) ∈
𝜋∗(𝐺) ∗ 𝜋∗(𝐺) or not. If
(𝜋∗𝐺 (𝑢, 𝑣, 𝑎), 𝜋∗𝐺 (𝑢′, 𝑣′, 𝑏)) ∈ 𝐺 ∗ 𝐺,
then we have (𝑎, 𝑏) ∈ 𝐺 ∗ 𝐺 from
the definition of canonical homo-
morphism. Hence, 𝛽(𝑎) = 𝛼(𝑏). So,
the equality 𝜋(𝑦) = 𝜋(𝑥′) comes.
However, since the map 𝜋 is not
defined injectively, we cannot obtain
the equality 𝑣 = 𝑢′. Therefore, the
canonical homomorphism (𝜋∗Γ, 𝜋) is
not a strong homomorphism of the
topological groupoids.
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Theorem 3.3. 1. If (𝜇, 𝜇0) :
(𝐺,𝐺0) → (𝐺′, 𝐺′

0) is a topological
groupoid homomorphism such that
the map 𝜇0 is injective, then (𝜇, 𝜇0)
is a strong homomorphism of the
topological groupoids.

2. Every 𝐺0− homomorphism of topo-
logical groupoids 𝜇 : 𝐺 → 𝐺′ is a
strong homomorphism.

Proof. 1. We suppose that 𝑎, 𝑏 ∈ 𝐺
with (𝜇(𝑎), 𝜇(𝑏)) ∈ 𝐺′ ∗ 𝐺′. Then
𝛽′(𝜇(𝑎)) = 𝛼′(𝜇(𝑏))
⇒ (𝛽′ ◦ 𝜇)(𝑎) = (𝛼′ ◦ 𝜇) (𝑏)
⇒ (𝜇0 ◦ 𝛽)(𝑎) = (𝜇0 ◦ 𝛼)(𝑏)
⇒ 𝜇0(𝛽(𝑎)) = 𝜇0(𝛼(𝑏))
⇒ 𝛽(𝑎) = 𝛼(𝑏) (since 𝜇0 is injec-
tive)
⇒ (𝑎, 𝑏) ∈ 𝐺 ∗ 𝐺.
Hence (𝜇, 𝜇0) is a strong homomor-
phism of the topological groupoids.

2. This is a consequence of (1), since
𝜇0 = 𝐼𝑑𝐺0 .

□

Proposition 3.4. Let (𝜇, 𝜇0) : (𝐺,𝐺0) →
(𝐺′, 𝐺′

0) be a strong homomorphism of
topological groupoids. Then, we have:

1. If (𝐾, 𝐾0) is a topological
subgroupoid of (𝐺,𝐺0), then
(𝜇(𝐾), 𝜇0(𝐾0)) is also a topological
subgroupoid of (𝐺′, 𝐺′

0). Specif-
ically, the (𝐼𝑚𝜇, 𝐼𝑚𝜇0) forms a
topological subgroupoid of 𝐺′.

2. If 𝜇 is surjective and 𝐾 is a normal
topological subgroupoid of 𝐺, then
𝜇(𝐾) is also a normal topological
subgroupoid of 𝐺′.

Proof. 1. Let (𝐾, 𝐾0) be a topological
subgroupoid of (𝐺,𝐺0). For the

proof, we need to satisfy the con-
ditions for (𝜇(𝐾), 𝜇0(𝐾0)) to be a
topological subgroupoid.

• Let us show that(𝛼′(𝜇(𝐾))) ⊆
𝜇0(𝐾0). In this case, if
𝑥′ ∈ 𝛼′(𝜇(𝐾)), then there ex-
ists 𝑏′ ∈ 𝜇(𝐾) such that 𝑥′ = 𝛼′(𝑏′).
For 𝑏′ ∈ 𝜇(𝐾), there exists 𝑏 ∈ 𝐾
such that 𝜇(𝑏) = 𝑏′. Consequently,
𝑥′ = 𝛼′(𝑏′) = 𝛼′(𝜇(𝑏)) = 𝜇0(𝛼(𝑏)).
Since 𝛼(𝑏) ∈ 𝐾0, it follows that
𝑥′ ∈ 𝜇0(𝐾0). Consequently,
(𝛼′(𝜇(𝐾))) ⊆ 𝜇0(𝐾0). Similarly, it
is shown that (𝛽′(𝜇(𝐾))) ⊆ 𝜇0(𝐾0).

• Let 𝑎′.𝑏′ be defined for
𝑎′, 𝑏′ ∈ 𝜇(𝐾). Let us prove
that 𝑎′.𝑏′ ∈ 𝜇(𝐾). Indeed, for
𝑎, 𝑏 ∈ 𝐾 such that 𝑎′ = 𝜇(𝑎) and
𝑏′ = 𝜇(𝑏), the definition of 𝑎′.𝑏′ im-
plies (𝜇(𝑎), 𝜇(𝑏)) ∈ 𝐺′ ∗ 𝐺′. Since
𝜇 is a strong homomorphism of the
topological groupoids, this implies
(𝑎, 𝑏) ∈ 𝐺 ∗ 𝐺. Consequently, 𝑎.𝑏
is defined. Since 𝐾 is a topological
subgroupoid of 𝐺, we have 𝑎.𝑏 ∈ 𝐾 .
Thus, 𝑎′.𝑏′ = 𝜇(𝑎).𝜇(𝑏) = 𝜇(𝑎.𝑏) ∈
𝜇(𝐾).

• Let’s show that for every
𝑥′ ∈ 𝜇0(𝐾0), 𝜖 ′(𝑥′) ∈ 𝜇(𝐾).
In that case, for each 𝑥′ ∈ 𝜇0(𝐾0),
there exists 𝑥 ∈ 𝐾0 such that
𝑥′ = 𝜇0(𝑥). Since 𝜖 (𝑥) ∈ 𝐾 , then
𝜖 ′(𝑥′) = 𝜖 ′(𝜇0(𝑥)) = 𝜇(𝜖 (𝑥)) ∈
𝜇(𝐾).

• Let’s show that for every 𝑎′ ∈
𝜇(𝐾), (𝑎′)−1 ∈ 𝜇(𝐾). Indeed, 𝑎 ∈ 𝐾
since 𝑎′ = 𝜇(𝑎) ⇒ 𝑎−1 ∈ 𝐾 ,
then (𝑎′)−1 = (𝜇(𝑎))−1 = 𝜇(𝑎−1) ∈
𝜇(𝐾).
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Consequently, (𝜇(𝐾), 𝜇0(𝐾0)) is a
topological subgroupoid of (𝐺′, 𝐺′

0).
Thus, the proof is completed.

2. From part (1), since 𝜇0 is surjec-
tive, (𝜇(𝐾), 𝐺′

0) is a topological
subgroupoid of (𝐺′, 𝐺′

0). Let
𝜆′ ∈ 𝜇(𝐾) and 𝑎′ ∈ 𝐺′ be such that
𝛽′(𝑎′) = 𝛼′(𝜆) = 𝛽′(𝜆). We aim to
prove that 𝑎′ · 𝜆′ · (𝑎′)−1 ∈ 𝜇(𝐾).
Indeed, since 𝜇 is surjective, for
𝜆 ∈ 𝐾 , we have 𝜆′ = 𝜇(𝜆), and
for 𝑎 ∈ 𝐺, we have 𝑎′ = 𝜇(𝑎).
Since 𝜇 is a strong homomorphism
of the topological groupoids, from
(𝜇(𝑎), 𝜇(𝜆)), (𝜇(𝜆), (𝜇(𝑎))−1) ∈
𝐺′ ∗ 𝐺′, it follows that
(𝑎, 𝜆), (𝜆, 𝑎−1) ∈ 𝐺 ∗ 𝐺. As 𝐾
is normal in 𝐺, 𝑎 · 𝜆 · 𝑎−1 is de-
fined, and hence 𝑎 · 𝜆 · 𝑎−1 ∈ 𝐾 .
Thus, 𝜇(𝑎 · 𝜆 · 𝑎−1) ∈ 𝜇(𝐾),
and 𝜇(𝑎).𝜇(𝜆).𝜇(𝑎−1) =
(𝜇(𝑎))−1.𝜇(𝜆).𝜇(𝑎−1) =
(𝑎′)−1.𝜆′.𝑎′ ∈ 𝜇(𝐾). There-
fore, 𝜇(𝐾) is a topological normal
subgroupoid of 𝐺′. Hence, the proof
is completed.

□

Remark 3.5. In general, given any
topological groupoid homomorphism
(𝜇, 𝜇0) : (𝐺,𝐺0) −→ (𝐺′, 𝐺′

0), the image
(𝐼𝑚𝜇, 𝐼𝑚𝜇0) may not be a topological
groupoid. However, from Proposition
3.4 (i) it is clear that if (𝜇, 𝜇0) is strong
then the image (𝐼𝑚𝜇, 𝐼𝑚𝜇0) is also a
topological groupoid, And we have also
(𝜇, 𝜇0) : (𝐺,𝐺0) −→ (𝐼𝑚𝜇, 𝐼𝑚𝜇0) is
a strong homomorphism of topological
groupoids, where 𝜇 and 𝜇0 are defined
by 𝜇(𝑎) = 𝜇(𝑎) for each 𝑎 ∈ 𝐺 and
𝜇0(𝑥) = 𝜇0(𝑥) for each 𝑥 ∈ 𝐺0, respec-
tively.

If (𝐺,𝐺0) is a topological groupoid,

we will denote the set of its topological sub-
groupoids by 𝑆(𝐺,𝐺0), and the set of its
topological normal subgroupoids byN(𝐺).

If (𝜇, 𝜇0) : (𝐺,𝐺0) −→ (𝐺′, 𝐺′
0)

is a topological groupoid homomorphism,
we will denote the set of topological sub-
groupoids of (𝐺,𝐺0) containing the kernel
of 𝜇 by 𝑆(𝐺,𝐺0), and the set of topological
normal subgroupoids of (𝐺,𝐺0) containing
the kernel of 𝜇 by Ñ (𝐺).

Theorem 3.6. {The correspondence the-
orem for topological subgroupoids} For
any surjective strong topological groupoid
homomorphism (𝜇, 𝜇0) : (𝐺,𝐺0) −→
(𝐺′, 𝐺′

0), there exists a bijection correspon-
dence between the set 𝑆(𝐺′, 𝐺′

0) of the
topological subgroupoids of (𝐺′, 𝐺′

0) and
the set 𝑆(𝐺,𝐺0) of the topological sub-
groupoids of (𝐺,𝐺0) containing the kernel
of 𝜇.

Proof. Let us consider continuous map-
pings

𝜑 : 𝑆(𝐺,𝐺0) → 𝑆(𝐺′, 𝐺′
0)

𝐾 ↦→ 𝜑(𝐾) = 𝜇(𝐾)

and

𝜓 : 𝑆(𝐺′, 𝐺′
0) → 𝑆(𝐺,𝐺0)
𝐾 ′ ↦→ 𝜓(𝐾 ′) = 𝜇−1(𝐾 ′).

From Proposition 3.4(i), it is ob-
served that for every 𝐾 ∈ 𝑆(𝐺,𝐺0), 𝜇(𝐾)
is a topological subgroupoid of 𝐺′. Hence,
𝜑 is well-defined. Additionally, due to
Proposition 2.12 (1), for every 𝐾 ′ ∈ 𝑆(𝐺′),
𝜇−1(𝐾 ′) is a topological subgroupoid of 𝐺.
Therefore, 𝜓 is well-defined.

The continuous mappings 𝜑 and 𝜓
defined above hold the following equalities:

𝜓 ◦ 𝜑 = 𝐼𝑑𝑆 (𝐺) and 𝜑 ◦𝜓 = 𝐼𝑑𝑆 (𝐺′ ) (3.1)

108



M.H. Gürsoy | Science & Technology Asia | Vol.30 No.4 October - December 2025

The equalities are equivalent to the state-
ments:

𝜇−1(𝜇(𝐾)) = 𝐾 𝑎𝑛𝑑 𝜇(𝜇−1(𝐾 ′)) = 𝐾 ′

∀𝐾 ∈ 𝑆(𝐺),∀𝐾 ′ ∈ 𝑆(𝐺′), respectively.
Let us show that the first equality is

hold.
(i) If 𝑎 ∈ 𝐾 , then we have 𝜇(𝑎) ∈

𝜇(𝐾) and 𝑎 ∈ 𝜇−1(𝜇(𝐾)). Therefore, 𝐾 ⊆
𝜇−1(𝜇(𝐾)).

(ii) If 𝑎 ∈ 𝜇−1(𝜇(𝐾)), then we have
𝜇(𝑎) ∈ 𝜇(𝐾) and there exists at least one
𝑏 ∈ 𝐾 such that 𝜇(𝑎) = 𝜇(𝑏). Hence,
𝜇(𝑎) · (𝜇(𝑏))−1 ∈ 𝜖 ′(𝐺′

0). Since 𝜇 is a ho-
momorphism, 𝜇(𝑎 ·𝑏−1) ∈ 𝜖 ′(𝐺′

0). Then, it
follows 𝑎 ·𝑏−1 ∈ Ker 𝜇. If we denote 𝑎 ·𝑏−1

by 𝑐, then 𝑎 = 𝑐 · 𝑏. Since 𝑐 ∈ Ker 𝜇 ⊆ 𝐾
and 𝑏, 𝑐 ∈ 𝐾 , we obtain 𝑎 ∈ 𝐾 . Thus,
𝜇−1(𝜇(𝐾)) ⊆ 𝐾 .

Consequently, the first equality
comes from (i) and (ii).

(iii) Let us now prove that
𝜇(𝜇−1(𝐾 ′)) ⊆ 𝐾 ′. Let us take any
𝑎′ ∈ 𝜇(𝜇−1(𝐾 ′)). Then there exists at least
one 𝑎 ∈ 𝜇−1(𝐾 ′) such that 𝜇(𝑎) = 𝑎′.
Since 𝑎 ∈ 𝜇−1(𝐾 ′), then 𝜇(𝑎) ∈ 𝐾 ′.
Hence, it follows 𝑎′ ∈ 𝐾 ′. Therefore,
𝜇(𝜇−1(𝐾 ′)) ⊆ 𝐾 ′ is obtained.

(iv) Let 𝑎′ ∈ 𝐾 ′. Since 𝜇 is sur-
jective, there is at least one 𝑎 ∈ 𝐺 such
that 𝜇(𝑎) = 𝑎′. Here, since 𝜇(𝑎) ∈
𝐾 ′, it follows that 𝑎 ∈ 𝜇−1(𝐾 ′). Con-
sequently, 𝜇(𝑎) ∈ 𝜇(𝜇−1(𝐾 ′)) and thus
𝑎′ ∈ 𝜇(𝜇−1(𝐾 ′)) is obtained. Therefore,
𝐾 ′ ⊆ 𝜇(𝜇−1(𝐾 ′)).

From (iii) and (iv), our second equal-
ity is obtained.

From Equality 3.1 1, it can be seen
that the 𝜓 is invertible. Thus, 𝜓 is a bijec-
tion. □

Corollary 3.7. {The correspondence the-
orem for topological subgroupoids via a

𝐺0 homomorphism} For a continuous sur-
jective 𝐺0− homomorphism 𝜇 : 𝐺 −→
𝐺′, there exists a bijective correspondence
from the set 𝑆(𝐺′, 𝐺0) of topological sub-
groupoids of (𝐺′, 𝐺0) to the set 𝑆(𝐺,𝐺0)
of topological subgroupoids of (𝐺,𝐺0).

Proof. The proof is immediately from The-
orem 3.3 and Theorem 3.6. □

If we consider the Proposition 2.12
(ii) and 3.4 (ii) together, the proof of the fol-
lowing theorem will appear automatically.

Theorem 3.8. {The correspondence
theorem for topological normal sub-
groupoids} For any surjective strong
topological groupoid homomorphism
(𝜇, 𝜇0) : (𝐺,𝐺0) −→ (𝐺′, 𝐺′

0), there ex-
ists a continuous bijective correspondence
from the set of topological normal sub-
groupoids of (𝐺′, 𝐺′

0), denoted as N(𝐺′),
to the set Ñ (𝐺) of topological normal
subgroupoids of (𝐺,𝐺0) containing 𝐾𝑒𝑟𝜇.

Corollary 3.9. {The correspondence the-
orem for topological normal subgroupoids
via a 𝐺0− homomorphism} For a surjec-
tive 𝐺0− homomorphism 𝜇 : 𝐺 −→ 𝐺′,
there exists a continuous bijective corre-
spondence from the set of topological nor-
mal subgroupoids of (𝐺′, 𝐺), denoted as
N(𝐺′), to the set Ñ (𝐺) of topological nor-
mal subgroupoids of (𝐺,𝐺0) containing
Ker 𝜇.

Proof. The proof comes immediately from
Theorem 3.3 (ii) and Theorem 3.8. □

Remark 3.10.
1) Theorems 3.6 and 3.8 are generaliza-
tions of correspondence theorems for topo-
logical subgroups and topological normal
subgroups via surjective strong homomor-
phisms of topological groups.
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2) Theorems 3.6 and 3.8 are not valid
for arbitrary continuous surjective homo-
morphisms of topological groupoids. The
strongness of the topological groupoid ho-
momorphism plays a key role in the corre-
spendence.

Corollary 3.11. For any strong topo-
logical groupoid homomorphism
(𝜇, 𝜇0) : (𝐺,𝐺0) −→ (𝐺′, 𝐺′

0), there ex-
ists a continuous bijective correspondence
from the set 𝑆(𝐼𝑚𝜇, 𝐼𝑚𝜇0) of topological
subgroupoids of (𝐼𝑚𝜇, 𝐼𝑚𝜇0) to the set
𝑆(𝐺,𝐺0) of topological subgroupoids of
(𝐺,𝐺0).

Proof. From Remark 3.5, if we apply The-
orem 3.6 to the strong topological groupoid
homomorphism (𝜇, 𝜇0) : (𝐺,𝐺0) −→
(𝐼𝑚𝜇, 𝐼𝑚𝜇0) corresponding to (𝜇, 𝜇0) then
the proof is immediately follows. □

4. Conclusion
Given a homomorphism between al-

gebraic structures, we encounter some im-
portant results arising from this homomor-
phism between the substructures of these
algebraic structures: the substructure cor-
respondence theorem. In this study, the
well-known concept of strong homomor-
phism between groups is extended to topo-
logical groupoids, and the substructure cor-
respondence theorem is examined from the
perspective of groupoid theory. More pre-
cisely, we prove that there is a bijective
correspondence between the subgroupoids
(and normal subgroupoids) of two related
groupoids under a surjective homomor-
phism. It becomes clear that this correspon-
dence holds not only between topological
groupoids but also between different types
of groupoids.
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