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ABSTRACT
This study has two main objectives: to propose a mathematical model for the mixed-

model disassembly line balancing problem and to develop a customized solving technique.
The model aims to minimize the disassembly line length and the number of opened stations
while maximizing workload smoothness in a two-sided disassembly line. The solver, based
on the particle swarm optimization (PSO) algorithm, was enhanced through a new discretiza-
tion method and the survival sub-swarm PSO strategy, enabling it to handle multi-objective
optimization via Pareto optimality for constructing the elite list. To validate the approach,
experiments were conducted on a top-loaded washing machine with different takt times (71,
80, 90, and 100 seconds). Four competitive algorithms—NSGA-II, SPEA2, BARON, and
MINLP—were used for comparison. Performance was evaluated using three indicators: in-
verted generational distance (𝐼𝐺𝐷), hypervolume (𝐻𝑉), and ratio (𝑅). The results showed
that the proposed method consistently outperformed the other algorithms, achieving superior
accuracy, efficiency, and stability in delivering optimal and reliable solutions.

Keywords: Disassembly line; Mixed-model; Metaheuristics; Particle swarm optimization;
Multi objective
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1. Introduction
The primary goal of product recovery

is to minimize the amount of trash disposed
of in landfills or incinerators. The respon-
sibility to address environmental concerns
has become a requirement enforced by gov-
ernmental rules and influenced by societal
expectations [1]. Recycling and remanu-
facturing are employed to recover a prod-
uct that has become outdated or reached its
end-of-life (EOL) stage. Recycling is a pro-
cess that involves disassembling, sorting,
and applying chemical processes to end-of-
life products in order to recover their mate-
rial content. In contrast, remanufacturing is
a procedure that seeks to preserve the prod-
uct’s initial characteristics and involves dis-
assembly, categorization, restoration, and
reassembly to achieve a desired level of ex-
cellence [2]. Disassembly has proven ef-
ficient in recovering materials and prod-
ucts in various product recovery processes.
The process involves deliberately separat-
ing specific components, sub-assemblies,
and materials [3].

The disassembly procedures can also
be categorized into four sub-problems. The
process encompasses various stages: dis-
assembly planning, scheduling, sequenc-
ing, and disassembly line balancing (DLB).
DLB involves allocating disassembly jobs
to various workstations to meet all the re-
quired jobs sequences while optimizing par-
ticular criteria [4]. The DLB is frequently
linked with assembly line balancing (ALB).
However, it exhibits greater complexity in
terms of operating aspects.

Numerous research has put forth the
challenges associated with disassembly line
balancing. Reference [5] sought to decrease
the number of open workstations while con-
currently optimizing the allocated tasks and
maximizing the efficiency of the disassem-
bly line’s arrangement and material han-

dling equipment. Reference [6] sought to
optimize the revenue obtained from a dis-
assembly process. The likelihood of redis-
tributing the remaining tasks in case of a
task failure was evaluated. The reader is
directed to consult the publication authored
by [7].

Based on the author’s extensive un-
derstanding, the availability of disassembly
line balance combined with mixed-model
line design is limited. Reference [8] re-
ported that most studies on disassembly line
balancing in the literature between 1999
and 2020 focused on the single-model ap-
proach. Ninety-six percent of all published
publications in this particular field of in-
quiry are attributed to it. According to re-
ports, the design characteristics of mixed-
model disassembly lines were identified in
a few articles. Notably, the product assort-
ment within reverse logistics is not with-
out flaws. The acquisition of the obso-
lete product in its entirety is not feasible.
Typically, products arrive at the recycling
center through many means. The optimal
approach is to categorize them into differ-
ent types of soft product variety. Hence,
the rationale behind implementing a dis-
assembly line that accommodates mixed-
model goods is justifiable. Consequently,
the work addresses the knowledge gap in in-
vestigating mixed-model disassembly line
balance. It is imperative to explore this
topic from several viewpoints in order to en-
hance our understanding.

2. Mixed-Model Disassembly Line
2.1 Disassembly process

Disassembly is the methodical pro-
cess of breaking down a unit into its con-
stituent parts, components, or other groups
[9]. Selective separation is a crucial step
in the recovery of materials and products
since it enables the specific extraction of de-
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sired components and substances. The dis-
assembly line predates the assembly line by
approximately one century. One example
of a 19th-century slaughterhouse is found
in Chicago. The procedures employed in
these slaughterhouses are widely acknowl-
edged as the pioneering implementation of
production lines. The FordMotor Company
in the early 1900s is often credited with pi-
oneering the first efficient assembly lines.

The efficiency of assembly lines ex-
perienced significant advancements during
the course of the following century. In con-
trast, research on disassembly lines has only
recently commenced. The success of as-
sembly lines necessitates the disposal of a
large number of end-of-life products, which
are perceived to have a negative environ-
mental impact. The innovative concept
suggests that the most effective approach
to studying assembly problems is by treat-
ing them as reverse disassembly problems.
The subsequent surge in disassembly re-
search has consistently grown due to on-
going motivation from government regula-
tion, corporate profitability, and customer
demands. Ultimately, the disassembly line
was given its initial distinct characteriza-
tion in the 2000s. Since then, mathemat-
ical models and solution approaches have
been explored. The following sub-sections
are the disassembly line considerations.

2.1.1 Product considerations
A disassembly line has the capabil-

ity to handle a group of related products.
A product family refers to a single product
that maintains the same initial configuration
across all acquired products. For instance,
this could include just personal computers
with certain specs. Nevertheless, the dif-
ferentiated products exhibit only marginal
variations from one another. Therefore,
the disassembly line may receive multiple

partially disassembled items and subassem-
blies that have significantly or completely
different configurations, such as personal
computers, printers, digital cameras, and so
on.

2.1.2 Line considerations
Based on assembly-line layouts,

there are many configurations such as
serial, parallel, circular, U-shape, cellular,
and two-sided lines. All of them are de-
signed and applied to enable more efficient
disassembly lines. There are also paced
and unpaced lines. The paced line may
be used to control the flow of products. It
mitigates work in process, required space,
and bottleneck workstations. However,
sometimes, the task timings exhibit ex-
cessive variability. In this situation, the
unpaced line may be appropriate.

2.1.3 Part considerations
The part considerations pertain to the

quality of the components. A faulty part
refers to a component that deviates from its
original structure and/or functioning stan-
dards. There are two main categories of
faults: physical defects and functional de-
fects. The physical flaw results in a devi-
ation from the original design’s geometric
parameters. A functional fault refers to a
situation when a part does not perform its
intended function as originally planned.

2.1.4 Operational considerations
The operational concerns encompass

seven aspects: variability of disassembly
job timeframes, the early departure of work-
pieces, self-omission of workpieces, omis-
sion of workpieces, the disappearance of
workpieces, revisiting of workpieces, and
the explosion of work. One prevalent is-
sue is the unpredictability of job times dur-
ing disassembly. The variation in question
is contingent upon many aspects that are
linked to the caliber of the products and the
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condition of the disassembly workstation.
The early departure of workpieces refers to
a situation where a present workstation is
unable to complete the assigned disassem-
bly assignment due to a defect. The work-
piece has the potential to depart from the
workstation prematurely. The concept of
self-skipping workpieces refers to the situ-
ation where certain activities allocated to a
workstation are not carried out owing to de-
fects or precedence connections. The work-
piece departs from the workstation prema-
turely without undergoing any processing.

The skipping work-pieces considera-
tion means the work-piece is not designed
to be disassembled in the current worksta-
tion. Thus, it can skip the current work-
station. The disappearing work-pieces con-
sideration means a defective part may be
taken off before the assigned workstation.
Accordingly, when the part comes to the
assigned workstation, it may skip the task.
The concept of revisiting workpieces refers
to the possibility of a workpiece now lo-
cated at workstation 𝑗 returning to a previ-
ous workstation ( 𝑗 − 𝑝), where ( 𝑗 − 𝑝) is
greater than or equal to 1 and 𝑝 is a positive
integer. The concept of exploding work-
pieces refers to the phenomenon where a
single workpiece may fracture or separate
into multiple pieces while transported along
the disassembly line.

2.1.5 Demand considerations
The need for pre-owned components

is a significant subject in disassembly line
issues. While there is a definite de-
mand for addressing assembly line prob-
lems, the market for addressing disassem-
bly line problems remains uncertain. The
demand for disassembly lines can be cat-
egorized into three scenarios: demand for
a single part, demand for numerous parts,
and demand for all components. Moreover,

the necessary components are occasionally
found in several formats. Within the realm
of literature, there exist three distinct cate-
gories of demand. In the first category, the
demand source has the option to accept a
component without any modifications. For
instance, it is conceivable that a component
may require its own material composition.
In the second category, the demand source
exclusively takes parts of high quality. De-
fective parts are not accepted. The third cat-
egory of demand encompasses both the geo-
metric and functional aspects of the demand
source. This is more serious in the disas-
sembly process. The receiving parts must
pass the criteria of dimension and function
of those parts.

2.1.6 Assignment considerations
There are restrictions on unique ma-

chining and tooling either at specific work-
stations or at a limited number of worksta-
tions. Though, products have the prece-
dence relationships. Accordingly, the task
assignment on a specific workstation is in-
evitable. This factor affects repositioning
activities, revisit processes, tool changes in
the disassembly process, etc. Additional
circumstances exist that are relevant to as-
signment decisions, including the disman-
tling of dangerous components. In order
to mitigate the risk of contaminating the
remainder of the process, it is imperative
to allocate these components to specialized
workstations. For example, the disassem-
bly processes of car batteries need to sepa-
rate between normal disassembly processes
with battery containers and the processes re-
lated to electrodes inside the battery.

2.2 Mixed-model disassembly process
Due to imperfect matching between

the demand and supply of disassembly pro-
cesses, the design of the disassembly pro-
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cess encounters the issue of several product
disassembly lines. The prevalent mixed-
model disassembly lines mostly focus on
the disassembly process of consumer elec-
tronics. Reference [10] developed a disas-
sembly job shop capable of handling both
tiny consumer electronics (e.g., telephones,
computers, microwave ovens, and hair dry-
ers) and bigger consumer electronics (e.g.,
refrigerators, television sets, and computer
monitors). The suggested configuration
comprises two paced disassembly lines and
one unpaced parallel disassembly line. Ac-
cording to the diagram, both lines are posi-
tioned on opposite sides of a common out-
going conveyor belt that transports the dis-
mantled parts and components to a final
sorting area. When designing a plan, it is
crucial for the designer to consider the ar-
rangement of places that are essential for
the disassembly lines. The suggested de-
sign employed an elevated hoist and rail
system to reduce the need for manual lift-
ing of bulky technological objects. Con-
versely, the belt conveyor was employed for
the transportation of small electronic arti-
cles.

Reference [11] developed amixed in-
teger linear programming model to address
a mixed-model two-sided disassembly line
balance problem. The model is suitable for
products of medium and large sizes, such
as vehicles, refrigerators, and air condition-
ers. An AND/OR graph was employed to
illustrate the configuration of discontinued
items. The memetic algorithm was adapted
to achieve near-optimal solutions for large-
scale issues. The proposed method was
evaluated against a genetic algorithm and
the Gurobi solver. The study revealed that
the proposed model is a viable alternative
to the genetic algorithm when dealing with
medium and large-scale problems.

Reference [12] sought mixed-model

two-sided disassembly using a new evolu-
tionary approach, a genetic flatworm algo-
rithm. The problem was formulated as a
stochastic model where uncertainty disas-
sembly time was accounted for. The model
aims to minimize opened workstation cost,
weighted smoothness index, and total haz-
ard index. Two sample products with differ-
ent stochastic task times were used to test
the proposed solver compared with a con-
ventional flatworm algorithm and a modi-
fied discrete flower pollination algorithm.
The study revealed that the proposed al-
gorithm outperformed the competing algo-
rithms, resulting in superior answers. Ad-
ditionally, it produced a more outstanding
grade of Pareto optimal solutions.

Reference [13] presented an alterna-
tive perspective on the mixed-model dis-
assembly line balance problem. Sev-
eral robots were assigned to workstations.
Hence, their qualities and adaptability were
taken into account. The main contribu-
tion of this paper is not a complex solv-
ing approach but rather an effective prob-
lem modeling, which is crucial. A compar-
ative analysis was conducted between the
problem-specific bi-criterion evolutionary
algorithm (PBEA), which incorporates both
a non-Pareto criterion and a Pareto crite-
rion, and three other algorithms: NSGA-II,
IBEA, and MOEA/D. The hypervolume, a
widely used statistic in evolutionary multi-
objective optimization problems, was em-
ployed to quantify the performance of the
algorithms.

Reference [14] investigated the idea
of semi-destructive disassembly using
mixed-model disassembly lines. A dual-
sided disassembly line was specifically
engineered to cater to bulky items such as
refrigerators and autos. The uncertainty
variables in question were the end-of-life
product conditions, specifically corrosion
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and deformation. Therefore, the decision
was made to adopt the partial destructive
mode. A multi-objective mathematical
model was developed to minimize the
number of active work cells, the workload
evenness, and the cost. The researchers
enhanced the non-dominated sorting ge-
netic algorithm (NSGA-II) to tackle the
problem. In contrast to the non-destructive
method, the partial destructive method can
increase profitability while still achieving a
satisfactory smoothness index.

3. Mathematical Formulation
The mathematical model described

in this section was extended from [11].
However, the dummy nodes which repre-
sent AND/OR type relationship constraints
are not necessary since it explicitly occurs
in practical situations.

3.1 Notation
𝑛𝐷 = number of total dummy nodes, 𝑛𝐷 =

max {𝑛𝐷𝑚}.

𝑛𝑁 = total number of regular nodes (task),
𝑛𝑁 = max {𝑛𝑁𝑚}.

𝑛𝐽 = number of available paired worksta-
tions.

𝑛𝑀 = quantity of product variations.

𝑘 = indice of artificial nodes 𝑘 ∈ {1, , 𝑛𝐷}.

𝑖, ℎ = indice of regular nodes (tasks) 𝑖, ℎ ∈
{1, , 𝑛𝑁}.

𝑗 = indice of paired workstations 𝑗 ∈
{1, .., 𝑛𝐽}.

𝑠 = indice of workstation sides 𝑠 ∈ {1, 2}.

𝑚 = indice of product variations 𝑚 ∈
{1, , 𝑛𝑀}.

𝑃𝑅𝐸 [𝑠𝑒𝑡] = the immediate predecessors
of an artificial node 𝑘 for any model
𝑚 are the regular nodes 𝑖.

𝑆𝑈𝐶 [𝑠𝑒𝑡] = the immediate successors of
an artificial node 𝑘 for any model 𝑚
are the regular nodes 𝑖.

𝜃 = station-sides 𝑠 where regular nodes for
any product variations 𝑚.

𝑛𝐷𝑚 = the quantity of artificial nodes for
any product variations 𝑚.

𝑛𝑁𝑚 = the quantity of regular nodes for
any product variations 𝑚.

𝐶 = takt time.

𝑡𝑖𝑚 = disassembly time of a regular task 𝑖
for any product variations 𝑚.

𝐹𝑗 = if pairedworkstation 𝑗 is opened from
both sides, 1; otherwise, 0.

𝐺 𝑗 = if paired workstation 𝑗 is opened
from only one side, 1; otherwise, 0.

𝑈 𝑗𝑠 = if paired workstation 𝑗 is opened
from the workstation side 𝑠, 1; oth-
erwise, 0.

𝛿ℎ𝑖 = if task ℎ is completed prior to task 𝑖,
1; otherwise, 0.

𝑧𝑚𝑖 = if task 𝑖 is of product variation 𝑚 is
selected as the first rank in AND/OR
graph, 1; otherwise, 0.

𝛾𝑚𝑗𝑠 = if workstation side s of paired
workstation 𝑗 for product variation𝑚
is opened, 1; otherwise, 0.

𝑥𝑚𝑖 𝑗𝑠 = if task 𝑖 for product variation 𝑚 is
allocated to the workstation side s of
paired workstation 𝑗 , 1; otherwise, 0.
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3.2 Mathematical model
Objective function

min 𝑧1 =
𝑛𝐽∑
𝑖=1

( 𝑗 × (𝐹𝑗 + 𝐺 𝑗)), (3.1)

min 𝑧2 = 𝜖 ×
𝑛𝐽∑
𝑗=1

𝑛𝑆∑
𝑠=1

(𝑈 𝑗𝑠), (3.2)

min 𝑧3 =

√∑
𝑗∈𝐽 ∑

𝑠=1,2 (max 𝑗∈𝐽,𝑠=1,2{𝑇𝑗𝑠−𝑇𝑗𝑠 )2∑
𝑗∈𝐽

∑
𝑠=1,2 𝑈 𝑗𝑠

,

(3.3)

Subject to∑
𝑖∈𝑆𝑈𝐶 (𝑚,𝑘 )

𝑧𝑚𝑖 = 1, ∀𝑚,∀𝑘 ∈ {0}, (3.4)∑
𝑖∈𝑆𝑈𝐶 (𝑚,𝑘 )

𝑧𝑚𝑖 =
∑

𝑖∈𝑃𝑅𝐸 (𝑚,𝑘 )
,

∀𝑚,∀𝑘 ∈ {0}, (3.5)
𝑛𝐽∑
𝑗=1

∑
𝑠∈ 𝜃 (𝑖)

𝑥𝑚𝑖 𝑗𝑠 = 𝑧𝑚𝑖 ,∀𝑚,∀𝑘 ∈ {1, , 𝑛𝑁𝑚}

(3.6)∑
𝑖∈𝑃𝑅𝐸 (𝑚,𝑘 )

𝑗∑
𝑣=1

∑
(𝑠∈ 𝜃 (𝑖)

𝑥𝑚𝑖𝑣𝑠

≥
∑

𝑖∈𝑆𝑈𝐶 (𝑚,𝑘 )

∑
𝑠∈ 𝜃 (𝑖)

𝑥𝑚𝑖 𝑗𝑠,

∀𝑚,∀𝑘 ∈ {1, , 𝑛𝐷𝑚}, (3.7)
𝑡 𝑓𝑚𝑖 ≤ 𝐶 × 𝑧𝑚𝑖 ,∀𝑚,∀𝑖 ∈ {1, , 𝑛𝑁𝑚},

(3.8)
𝑡 𝑓𝑚𝑖 ≥ 𝑡𝑚𝑖 × 𝑧𝑚𝑖 ,∀𝑚,∀𝑖 ∈ {1, , 𝑛𝑁𝑚},

(3.9)

𝑓𝑚𝑖 − 𝑡 𝑓𝑚ℎ + 𝑀 × (2 −
∑

𝑠∈ 𝜃 (𝑖)
𝑥𝑚𝑖 𝑗𝑠−∑

𝑠∈ 𝜃 (ℎ)
𝑥𝑚ℎ 𝑗𝑠) ≥ 𝑡𝑚𝑖 ,∀𝑚,∀ 𝑗 ,∀𝑘 ∈ {1, , 𝑛𝐴𝑛},

∀𝑖 ∈ 𝑆𝑈𝐶 (𝑚, 𝑘),∀ℎ ∈ 𝑃𝑅𝐸 (𝑚, 𝑘),
(3.10)

𝑡 𝑓𝑚𝑖 − 𝑡 𝑓𝑚ℎ + 𝑀 × (3 − 𝑥𝑚𝑖 𝑗𝑠 − 𝑥𝑚ℎ 𝑗𝑠 − 𝛿ℎ𝑖)
≥ 𝑡𝑚𝑖 ,∀𝑚,∀ 𝑗 ,∀𝑠,∀𝑖, ℎ ∈ {𝑖 > ℎ |1, , 𝑛𝑁𝑚},

(3.11)

𝑡 𝑓𝑚ℎ − 𝑡 𝑓𝑚𝑖 + 𝑀 × (2 − 𝑥𝑚𝑖 𝑗𝑠 − 𝑥𝑚ℎ 𝑗𝑠 − 𝛿ℎ𝑖)
≥ 𝑡𝑚ℎ,∀𝑚,∀ 𝑗 ,∀𝑠,∀𝑖, ℎ ∈ {𝑖 > ℎ |1, , 𝑛𝑁𝑚},

(3.12)∑
𝑖∈ 𝜃 (𝑠)∩𝑖≤𝑛𝑁𝑚

𝑥𝑚𝑖 𝑗𝑠 − 𝑛𝑁𝑚 × 𝛾𝑚𝑗𝑠 ≤ 0,

∀𝑚,∀ 𝑗 ,∀𝑠, (3.13)
𝑛𝑀∑
𝑚=1

𝛾𝑚𝑗𝑠 − 𝑛𝑀 ×𝑈 𝑗𝑠 ≤ 0,∀ 𝑗 ,∀𝑠, (3.14)

𝑛𝑆∑
𝑚=1

𝑈 𝑗𝑠 − 2 × 𝐹𝑗 − 𝐺 𝑗 = 0,∀ 𝑗 , (3.15)

𝐹𝑗 , 𝐺 𝑗 ,𝑈 𝑗𝑠, 𝑧𝑚𝑖 , 𝑥𝑚𝑖 𝑗𝑠, 𝛿ℎ𝑖 , 𝛾𝑚𝑗𝑠 ∈ {0, 1},
∀𝑚,∀𝑖, ℎ,∀ 𝑗 ,∀𝑠, (3.16)
𝑡 𝑓𝑚𝑖 ≥ 0,∀𝑚,∀𝑖. (3.17)

The initial term of the objective Eq.
(3.1) models the configuration of a com-
pact disassembly production line. Eq. (3.2)
aims to minimize the overall number of ac-
tivated stations while prioritizing jobs with
the shortest processing time. Eq. (3.3) rep-
resents a measure of workload smoothness,
aiming to minimize the disparity in oper-
ating time across workstations. This ap-
proach promotes fairness in job distribu-
tion and effectively enhances production ef-
ficiency. Eq. (3.4) guarantees that only one
of the successors (𝑖 ∈ 𝑆𝑈𝐶 (𝑚, 0)) of the ar-
tificial node, which holds the highest rank
in the precedence graph of each 𝑚 model,
is chosen. Eq. (3.5) is selected from the
antecedents of the counterfeit node in the
precedence graph of product variation 𝑚,
where (𝑖 ∈ 𝑆𝑈𝐶 (𝑚, 𝑘)) allows for only one
choice. Eq. (3.6) guarantees that all regular
nodes selected for product variations 𝑚 are
consistently assigned to during one of the
available job assignment slots. Eq. (3.7)
represents a constraint that defines the or-
der of precedence between two elements.
Eq. (3.8) guarantees that the completion
times of all chosen regular nodes for prod-

309



A. Watanasungsuit et al. | Science & Technology Asia | Vol.30 No.4 October - December 2025

uct variations 𝑚 do not surpass the cycle
time. Eq. (3.9) guarantees that the com-
pletion time of all jobs selected for prod-
uct variations 𝑚 is more than or equal to
the job duration. Eq. (3.10) guarantees
that for product variations 𝑚, the time dif-
ference between the completion of selected
tasks given to the same station and loca-
tion and having a priority relationship is
more than the duration of the preceding job.
Eqs. (3.11)-(3.12) guarantee that, for prod-
uct variations 𝑚, the discrepancy in finish
time between the selected jobs assigned to
the same station and location is equivalent
to the processing time. The goal function in
Eqs. (3.13)-(3.15) allows choice variables
to have values. Eqs. (3.16)-(3.17) specify
the nature of the choice variables.

This mathematical model comes up
with some assumptions: 1) Task times are
deterministic and constant for all single
product variation, 2) the disassembly line
can process a soft-product variety, 3) once
the first task of a product starts, the product
must be finished to the end of the process
line, and 4) a transformed AND/OR graph
is accessible for each product variation in-
side the process.

4. Proposed Metaheuristic Method
4.1 Particle swarm optimization

Particle swarm optimization (PSO) is
a method within the topic of Swarm Intel-
ligence, specifically falling within the do-
main of Evolutionary Computation (EC). It
was initially introduced by [15], and then
expanded upon by Kennedy and Eberhart
in the same year. The Particle Swarm Op-
timization (PSO) procedure is an iterative
procedure that involves a collection of small
things, known as particles, which are it-
eratively employed to explore the search
space of certain functions. The particles
evaluate their fitness ratings based on the

search function at their current places. Fol-
lowing this, every individual particle de-
termines its trajectory within the explo-
ration area by integrating data regarding its
present level of fitness, its optimal fitness
achieved in previous positions (from an in-
dividual standpoint), and the optimal fitness
positions in relation to one or more mem-
bers of the collective (from a social stand-
point), while also incorporating certain ran-
dom disturbances. The subsequent iteration
commences subsequent to the updating of
the positions of all particles.

The core principle of the conven-
tional Particle Swarm Optimization (PSO)
algorithm is the intelligent exchange of
information regarding the best local and
global values. The process of updating ve-
locity is contingent upon the acquisition of
information from preceding stages of the
algorithm. Regarding memory, every par-
ticle has the capability to retain the opti-
mal place it has encountered throughout its
search procedure. The set 𝑃 denotes the
memory set of the swarm 𝑆, where 𝑃 =
𝑝1, 𝑝2, ..., 𝑝𝑁 , represents the collection of
the best positions of each particle (referred
to as local best). The position that is seen
as the most optimal by all particles is com-
monly referred to as the global best. Hence,
it is justifiable to store and disseminate this
vital information. The 𝑔𝑏𝑒𝑠𝑡 algorithm in-
tegrates the optimal position variable with
the optimal function value in the population
𝑃 at a specific iteration 𝑡.

𝑝𝑏𝑒𝑠𝑡𝑖 = [𝑝𝑖1, 𝑝𝑖2, , 𝑝𝑖𝐷]𝑇 ∈ 𝐴, 𝑖 = 1, 2, .., 𝑁,
(4.1)

𝑔𝑏𝑒𝑠𝑡𝑡 = 𝑎𝑟𝑔 min
𝑖

𝑓 (𝑝𝑏𝑒𝑠𝑡𝑡𝑖 ). (4.2)

The conventional PSO technique,
first developed by [15], can be mathemat-
ically represented as follows:

𝑣𝑡+1
𝑖 𝑗 = 𝑣𝑡𝑖 𝑗 + 𝜙1𝛽1(𝑝𝑏𝑒𝑠𝑡𝑡𝑖 𝑗 − 𝑥𝑡𝑖 𝑗)
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+ 𝜙2𝛽2(𝑔𝑏𝑒𝑠𝑡𝑡𝑗 − 𝑥𝑡𝑖 𝑗), (4.3)

𝑥𝑡+1
𝑖 𝑗 = 𝑥𝑡𝑖 𝑗 + 𝑣𝑡+1

𝑖 𝑗 , (4.4)

where 𝑖 = 1, 2, , 𝑁 and 𝑗 = 1, 2, , 𝐷; 𝑡
represents the iteration counter; 𝛽1 and 𝛽2
are random variables uniformly distributed
within [0,1]. 𝑥𝑡𝑖 𝑗 and 𝑣

𝑡
𝑖 𝑗 are the position and

velocity of particle 𝑖 in dimension 𝑗 at it-
eration 𝑡. An extended PSO includes 𝛿 in
the first term of (3.20) to express an inertial
force of the particles.

4.2 Modified PSO for Mixed-model
DLBP

There are two points of the tradi-
tional PSO that were modified. Firstly,
to increase the algorithm’s performance, a
discrete technique proposed by [16] is ap-
plied. This technique was proved to im-
prove search exploration and flee from lo-
cal optimal solutions. Furthermore, this dis-
cretization technique dominates other con-
ventional techniques such as Sigmoid func-
tion and Hyperbolic tangent function.

Secondly, since the combinatorial
optimization problem rarely tends to find
a globally optimal solution, we deploy
the survival sub-swarm adaptive parti-
cle swarm optimization with velocity-line
bouncing (SSS-APSO-vb) [17]. It was
proved that in high complex and numer-
ous local optimal search space, the SSS-
APSO-vb dominates other fancy search al-
gorithms. The proposed method’s proce-
dure is portrayed in Fig. 1.

Please note that the particles’ ve-
locity and position updating are based on
[16] and the mechanisms of self-adaptation,
velocity-line bouncing, and extinction and
offspring reproduction are based on [17].
The fitness function evaluation is followed
Eqs. (3.1)-(3.3).

4.3 Encoding and decoding schemes
Encoding and decoding are essen-

tial processes for employing ametaheuristic
methodology. Fig. 2 illustrates the swarm’s
string, comprising two particles; the string
𝑆1 represents a possible solution. Decoding
pertains to the formulation of the disassem-
bly process. The tasks are allocated sequen-
tially according to the string. The location,
whether left or right, is contingent upon the
facts 𝐿 and 𝑅 about the task; see Fig. 3. The
task with attribute 𝐸 is randomly designated
to either the left or right side.

This study used the penalty technique
to satisfy all constraints. In this technique
a penalty is imposed on the objective func-
tions to penalize individuals for constraint
violations. We selected a substantial num-
ber of 𝑀 for penalization.

5. Case Experiments
5.1 Top-loaded washing machine

Washing machines fall into the
medium-large equipment category and
accounted for 24% of global e-waste (53.6
million metric tons) generated in 2020
[18]. Accordingly, an effort to minimize
landfill and incinerators has a huge impact
on our society. Fig. 4 shows the portion of
e-waste generated worldwide in 2020.

Additionally, the medium-large
equipment tends to consume a huge vol-
ume of landfill and is a cause of high
reverse-logistic costs. An efficient disas-
sembly line near the source location can
reduce environmentally friendly operation
costs. Fig. 5 shows the top-loaded washing
machine in this study. Figs. 4-6 illustrate
the disassembled parts and subassemblies
which included recyclable materials and
non-recyclable materials. However, most
of them are recyclable ones.

Table 1 lists the disassembly tasks for
taking out parts and subassemblies. It also
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Fig. 1. Modified SSS-APSO-vb.

Fig. 2. Two-solution strings for DLBP.

shows the disassembly time of each product
model and precedence constraint. There are
four models in this product family. Some
of them have no some parts; accordingly,
the disassembly time is zero, while some
of them have different disassembly time in
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Fig. 3. Decoding schematic of string 𝑆1.

Fig. 4. E-waste generated worldwide in 2020.

Fig. 5. Top-loaded washing machine.

Fig. 6. Disassembly parts I.

the same task. Nevertheless, we need to
design a disassembly line that is appropri-
ate for all four models. Please note that
tasks 10, 11, and 34 are destructive disas-

Fig. 7. Disassembly parts II.

Fig. 8. Disassembly parts III.

sembly operations. The precedence re-
lationship diagram of the case experiment
given in Fig. 9 corresponds to the data
given it Table 1. Additionally, POR/SOR
relationships are also illustrated. Typically,
AND/OR relationships have been described
in literature. Nevertheless, in this study,
POR/SOR which are the sub-types of OR
type relations are deployed to reflect the in-
dustrial practice. AND type precedence re-
lations between two tasks indicates that one
task cannot start before the other finishes.
Fig. 11 illustrates the AND type precedence
relations.

Basically, OR type relations are spe-
cific to the disassembly network. POR-type
relations indicate that no less than one task
from a defined setmust be completed before
the commencement of another work. SOR
type relations express that at most one of the
tasks in a specific set can be performed after
one task completes. Figs. 10 to 12 demon-
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Table 1. Top-loadedwashingmachine.

Task Part / Direction Disassembly time by model (sec.) Precedence part
A B C D

1 Bolts (2) / L 5.72 5.72 5.72 5.72 -
2 Bolt (1) / R 6.74 6.74 6.74 6.74 -
3 Cover / E 2.75 2.75 2.75 2.75 -
4 Panel / E 3.36 3.36 3.36 3.36 1, 2
5 Wash timer wiring / L 25.22 25.22 10.52 10.52 4
6 Spin timer wiring / R 38.64 38.64 38.64 45.32 4
7 Washing timer knob / L 3.43 3.43 3.43 3.43 5
8 Spin timer knob / R 3.03 3.03 3.03 3.03 6
9 Timer switch bolts (2) / R 35.61 35.61 35.61 35.61 4
10 Bind Tapping (5) / R (destructive) 32.54 32.54 24.79 20.55 4
11 Bind Tapping (5) / L (destructive) 32.54 32.54 24.79 20.55 4
12 Washing timer switch / L 4.59 4.59 4.59 4.59 10, 11
13 Spin timer switch / R 3.19 3.19 3.19 3.19 9
14 Washing selector knob / L 4.56 4.56 4.56 4.56 13
15 Cycle selector knob / R 3.46 3.46 3.46 0 12, 14
16 Buzzer / R 4.56 4.56 4.56 4.56 10, 11
17 Pannel A / E 4.16 4.16 0 0 12, 13
18 Switch cover / L 3.73 3.73 3.73 3.73 17
19 Spinner lid / R 3.17 3.17 3.17 3.17 17
20 Body b plate bolts (2) / R 10.72 10.72 10.72 10.72 19
21 Nozzle holder bolts (2) / L 3.19 3.19 3.19 3.19 18
22 Body b (3) / L 4.90 4.90 4.90 4.90 3, 19
23 Nozzle holder / L 4.55 4.55 4.55 4.55 21
24 Body b plate / R 3.56 3.56 3.56 3.56 20
25 Body b / R 23.63 23.63 23.63 23.63 22
26 Over flow filter a / L 2.95 2.95 2.95 2.95 25
27 Special bolt / L 17.51 0 0 0 3
28 Pulsator unit / L 2.52 2.52 2.52 2.52 27
29 Back panel bolt (1) / R 2.53 2.53 2.53 2.53 -
30 Back panel / R 10.58 12.36 11.05 11.05 29
31 Back panel bolts (2) / L 9.14 9.14 9.14 9.14 -
32 Back panel / L 2.73 2.73 2.73 2.73 31
33 Base a bolts (3) / R 2.43 2.43 2.43 2.43 -
34 Bolt / R (destructive) 32.07 32.07 32.07 32.07 30
35 Tub a / E 30.77 30.77 30.77 30.77 30, 33
36 Drain tube / L 7.45 7.45 7.45 7.45 30
37 Motor bolts (3) / L 3.7 5.2 5.2 8.9 32, 35
38 Electric wire / L 62.39 70.55 70.55 60.31 30
39 Motor / L 3.69 3.69 7.22 7.22 35, 37
Remark: Parenthesis after the part name is the quantity; R, L, and E are right, left, and equivalence directions, respectively.

strate examples of three types of precedence
relations.

According to Fig, 10, tasks 𝑖, 𝑗 , and
𝑘 are predecessors of task 𝑙. These three
tasks must be completed before task 𝑙 starts.
In Fig. 11, no less than one task in set
{𝑎, 𝑏, 𝑐} must be completed before task 𝑑
begins. Nevertheless, in Fig. 12, the tasks
in set {𝑥, 𝑦, 𝑥} are OR successors of task 𝑤.
As a result, after completing task 𝑤, at most
one of the tasks in the set can be performed.

5.2 Parameter settings
A drawback of the metaheuristic ap-

proach is that there are many parameters
that need to be predetermined [19]. In this
study, we will cultivate the previous study
by using their initial parameter settings in
our numerical experiment. Table 2 shows
the details of parameter settings of the pro-
posed method. It is not guaranteed that
these settings will yield the best solution;
however, it is good enough based on the
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Fig. 9. Top-loaded washing machine disassembly precedence diagram.

Fig. 10. AND type precedence relations.

Fig. 11. POR type precedence relations.

Fig. 12. SOR type precedence relations.

previous study [16].

Table 2. Parameter settings.

Parameter Description Value
𝑤max Maximal inertia weight 0.7
𝑤min Minimal inertia weight 0.3
Δ𝑤 Inertia weight step-size 0.1
𝜙1, 𝜙2 Acceleration constant 2.0
𝑁 Population size 100
𝑝 Number of sub-swarms 4
𝛿 Bounce-factor 0.5
𝑇 Iteration number 1500

5.3 Experiment design
The proposed algorithm was imple-

mented in C++ using Microsoft Visual
Studio 2019 and executed on a laptop
equipped with an Intel Core i7-8750H CPU
@2.20GHz processor and 8 GB RAM, run-
ning the Windows 10 operating system.

To evaluate the effectiveness of the
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proposed method, we chose two well-
regarded algorithms from the existing liter-
ature: NSGA-II [20, 21] and SPEA2 [22].
Two solvers on the NEOS server (neos-
server.org), BARON and MINLP, were se-
lected to compare with the proposed al-
gorithm. The AMPL language was used
to interface with the solvers. Please note
that the competitive algorithms are for a
multi-objective optimization problem; ac-
cordingly, Pareto-optimality theory is used
to identify the superior solutions that line
the Pareto-optimal front. The algorithms
were executed 30 times to eliminate random
discrepancy.

A parameter used to test in this study
is the takt time. It is a quantitative measure
that determines the speed at which a prod-
uct needs to be finished in order to satisfy
client requirements. On the other hand, it
is the maximum disassembly time for each
workstation in the disassembly line. Since
the mathematical model attempts to mini-
mize three objectives; i.e., disassembly line
length, total number of opened stations, and
workload smoothness; the Pareto principle
was used to evaluate the algorithm’s perfor-
mance by counting non-dominated on the
Pareto-optimal front in a three-dimensional
search space.

The assessment of solution quality is
typically done using the inverted genera-
tional distance (𝐼𝐺𝐷), hypervolume (𝐻𝑉),
and the ratio (𝑅) of the non-inferior solu-
tions of the algorithm (𝐴𝑖). The 𝐼𝐺𝐷 and
𝑅 formulae are shown below.

Let 𝑆 be a solution set of an algo-
rithm on a given multi-objective optimiza-
tion problem; 𝑊 is a collection of evenly
distributed representative points to make up
the Pareto front. The IGD value of 𝑆 rela-
tive to𝑊 can be determined as,

𝐼𝐺𝐷 = (𝑆,𝑊) =
∑

∈𝐶 𝑑 (𝑤, 𝑆)
|𝑊 | , (5.1)

where 𝑑 (𝑤, 𝑆) is the shortest distance be-
tween p and the points in 𝑆, and |𝑊 | is the
cardinality of 𝑊 . The 𝐼𝐺𝐷 quantifies the
imminence and diversification exhibited by
the set of solutions. A lower 𝐼𝐺𝐷 value in-
dicates a superior approach.

𝐻𝑉 (𝑆) = 𝑣𝑜𝑙 (
∪
𝑥∈𝑆

[ 𝑓1(𝑥), 𝑧1] × · · · × [ 𝑓𝑀 (𝑥), 𝑧𝑀 ]),

(5.2)

where 𝑣𝑜𝑙 (·) is the Lebesgue measure, and
𝑧𝑝 = (𝑧1, , 𝑧𝑀 )𝑇 is a given reference point.
The hypervolume (𝐻𝑉) quantifies the ex-
tent of the objective space controlled by the
solutions in set 𝑆 and limited by 𝑧𝑝. Please
note that, in this study, all the 𝐻𝑉 are nor-
malized to [0,1] by dividing Π𝑀

𝑖=1𝑧𝑖 . The
larger 𝐻𝑉 is the better algorithm.

Let 𝑃𝑖 represent the set of Pareto non-
inferior solutions generated by algorithm 𝑖.
Therefore, 𝑃 = 𝑃1

∪
𝑃2

∪ · · ·∪ 𝑃𝐼 rep-
resents the collection of non-inferior so-
lutions generated by all competitive algo-
rithms. The ratio (𝑅) can be computed by
dividing the number of non-inferior solu-
tions of each algorithm (𝑃𝑖) by the number
of non-inferior solutions of all competitive
approaches (𝑃).

𝑅(𝑃𝑖) =
|𝑃𝑖 − {𝑋 ∈ 𝑃𝑖 |∃𝑌 ∈ 𝑃 : 𝑌 ≺ 𝑋}|

|𝑃 | .

(5.3)

Logically, a higher R-value indicates a
larger quantity of non-dominated solutions,
which in turn indicates a superior algorithm.

6. Numerical Results
Table 3 shows the Pareto front solu-

tions of the five competitive methods with
different takt times for 30 independent exe-
cutions. The predetermined takt times were
71, 80, 90, and 100 seconds, respectively.
Please note that the takt time starts at 71
seconds because themost extended task that
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Fig. 13. Coefficient of variation comparison.

cannot be divided is task number 38 ofmod-
els B and C, which has a task time of 70.55
seconds.

Table 3 shows the non-dominated so-
lutions found so far. Theoretically, many
Pareto fronts were found to be superior-
performance search approaches. The statis-
tics data comprised the highest, lowest, av-
erage, and standard deviation from thirty in-
dependent executions. The coefficient of
variation (𝐶𝑣) is a statistical measure that
standardizes the dispersion of a probability
distribution. The term refers to the divi-
sion of the standard deviation by the mean
(𝛿/𝜇). A lower coefficient of variation in-
dicates that the method is more consistent
compared to a higher coefficient of varia-
tion.

Fig. 13 is the radar chart of 𝐶𝑣 . As
mentioned, the low coefficient of variation
means a consistent search algorithm, which
is preferable. The proposed method shows
superior performance with high consistency
for cases of takt time. BARON and SPEA2
have high variation; besides, it shows they
are good at exploring. However, they have a
low𝐶𝑣 at takt times of 71 and 80 sec., while
they have a high 𝐶𝑣 at takt times of 90 and
100 sec.

NSGA-II is different. It has a high
𝐶𝑣 in all cases. This shows that the NSGA-

II is able to explore the search space con-
siderably; nevertheless, it lacks exploitation
ability. MINLP yielded no competitive re-
sults because it cannot solve non-convex
substantially.

Likewise, the proposed approach
worked well at the ratio indicator by pro-
viding the outstanding ratio in 71, 80, and
100-sec cases. Nevertheless, the NSGA-
II worked well with the 90 sec takt time
case. Since most of the algorithms in this
study are search methods, we need to con-
duct more statistical investigation.

Table 4 shows the three measure-
ments: 𝐼𝐺𝐷, 𝐻𝑉 , and 𝑅. Five competitive
algorithms solved the instance in four pre-
determined takt times; 71, 80, 90, and 100
sec, respectively. Each combination was
executed thirty times, and the three mea-
surements were determined. The bold num-
bers in the table mean the best in its combi-
nation.

From Table 4, our proposed algo-
rithm provided outstanding solutions in all
cases in the inverted generational distance
indicator. This implies that the proposed
method is powerfully effective in exploring
search space. Additionally, the proposed al-
gorithm dominated other competitive algo-
rithms at the hypervolume indicator; how-
ever, the MINLP outperformed our algo-
rithm in the case of 100 sec.

Two-way analysis of variance (Two-
way ANOVA) was used to examine some
hidden implications from the experiments.
The null and alternative hypotheses were
H0: all algorithms are not significantly dif-
ferent with the specific indicator, and H1: at
least one algorithm is significantly different
from others.

Table 5 is the ANOVA table for al-
gorithm types, with takt times as the factors
and 𝐼𝐺𝐷 as the response. The table shows
that the algorithms were not different from
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Table 3. Computational results.

Takt time
(sec.) Pareto front solutions Modified approach NSGA-II SPEA2 BARON MINLP

71 13 17 18 19 10
3 3 2 3 2

8.600 8.567 11.467 13.033 4.700
3.265 5.070 5.488 4.537 1.601
0.380 0.592 0.479 0.348 0.341

80 15 17 18 19 11
4 2 2 3 2

9.533 8.167 9.633 12.533 4.433
3.235 5.025 5.034 5.482 2.128
0.339 0.615 0.523 0.437 0.480

90 16 17 18 19 13
4 3 2 3 2

9.767 7.300 10.100 9.733 4.631
4.006 4.162 5.689 4.631 4.310
0.410 0.570 0.563 0.476 0.588

100 17 17 18 19 13
4 2 3 4 3

10.767 7.600 6.700 10.267 7.600
4.739 3.811 4.120 5.889 3.979
0.440 0.501 0.615 0.574 0.524

Table 4. Three-dimensional measurement com-
parison.
Takt time
(sec) Algorithm 𝐼𝐺𝐷 𝐻𝑉 𝑅

71 Proposed 5.33E+01 9.74E-01 3.57E-02
NSGA-II 2.13E+02 8.36E-01 2.15E-02
SPEA2 1.09E+02 7.98E-01 1.76E-02
BARON 8.39E+01 8.02E-01 6.30E-03
MINLP 1.04E+02 8.95E-01 9.10E-03

80 Proposed 6.22E+00 9.32E-01 4.23E-02
NSGA-II 7.36E+00 8.80E-01 3.32E-02
SPEA2 8.44E+00 8.90E-01 3.78E-02
BARON 7.74E+00 8.92E-01 1.75E-02
MINLP 8.05E+00 9.02E-01 9.30E-03

90 Proposed 4.39E+00 9.58E-01 1.68E-01
NSGA-II 5.32E+00 9.53E-01 1.91E-01
SPEA2 5.07E+00 9.03E-01 1.71E-01
BARON 7.03E+00 8.83E-01 1.08E-01
MINLP 8.30E+00 9.88E-01 1.00E-01

100 Proposed 4.06E+00 9.69E-01 1.83E-01
NSGA-II 5.00E+00 9.08E-01 1.28E-01
SPEA2 4.06E+00 9.03E-01 1.52E-01
BARON 6.90E+00 8.85E-01 1.18E-01
MINLP 7.05E+00 9.94E-01 1.08E-01

Remark: the bold numbers are the best result among competitive
algorithms.

the inverted generational distance indicator
(at 𝛼 = 0.05).

Tables 6-7 are the ANOVA tables on
hypervolume and ratio indicators, respec-
tively.

Table 5. Two-wayANOVAon 𝐼𝐺𝐷.
Source DF Adj SS Adj MS F-Value 𝑃-Value

Algorithm 4 3670 917.5 1.01 0.443
Takt time 3 42535 14178.2 15.53 0.000
Error 12 10955 912.9
Total 19 57159

Table 6. Two-way ANOVA on 𝐻𝑉 .
Source DF Adj SS Adj MS F-Value 𝑃-Value

Algorithm 4 0.02823 0.007057 7.38 0.003
Takt time 3 0.01842 0.006140 6.42 0.008
Error 12 0.01147 0.000956
Total 19 0.05812

Table 7. Two-way ANOVA on 𝑅.
Source DF Adj SS Adj MS F-Value 𝑃-Value

Algorithm 4 0.007748 0.001937 6.19 0.006
Takt time 3 0.072051 0.024017 76.76 0.000
Error 12 0.003754 0.000313
Total 19 0.083553

Table 6 shows the p-value = 0.003,
while the significant level, 𝛼, is 0.05. Thus,
at least one algorithm differs from others re-
garding the hypervolume indicator. More-
over, Table 7 indicates a 𝑝-value = 0.006,
while the significant level, 𝛼, is 0.05. This
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means that at least one algorithm differs
from others in terms of the ratio indicator.

Subsequently, we performed Tukey’s
test to compare the means of each treatment
with the means of all other treatments. The
comparison results for the hypervolume and
ratio indicators are shown in Tables 8-9, re-
spectively, with the confidence level set at
95%.

Table 8. Grouping on 𝐼𝐺𝐷 using Tukey test.

Algorithm N Mean Grouping
Proposed 4 0.958200 A
MINLP 4 0.944400 A
NSGA-II 4 0.894125 A B
SPEA2 4 0.873225 B
BARON 4 0.865400 B
Remark: Means that do not share a letter are signifi-
cantly different.

Table 9. Grouping on 𝐻𝑉 using Tukey test.

Algorithm N Mean Grouping
Proposed 4 0.107150 A
MINLP 4 0.094500 A B
NSGA-II 4 0.093400 A B
SPEA2 4 0.062625 B
BARON 4 0.056575 B
Remark: Means that do not share a letter are signifi-
cantly different.

Table 9 demonstrates that our pro-
posed method, SPEA2 and NSGA-II, are
in the same superior group. Nevertheless,
SPEA2 and NSGA-II are similar to the
lower group since they can fit both groups.

In conclusion, based on three indica-
tors, the proposed algorithm worked well in
all cases. It outperformed all indicators and
consistently yielded the solution. It may be
argued that the competitive algorithms also
worked well in some cases. Nonetheless,
the proposed algorithm showed robustness
by persistently yielding promised solutions.

7. Small-to-Medium Case Examples
To illustrate the proposed technique’s

performance, an electric rice cooker with

two models in the family and a microwave
oven with three models were experimented
with (see Figs. 16-17). Figs. 18 and 19
show the assembly tasks of the electric rice
cooker and the microwave oven, respec-
tively. There are twenty-six disassembly
tasks for the electric rice cooker and thirty-
six for the microwave oven. Please note
that all the direction attributes for the elec-
tric rice cooker are 𝐸 while ten tasks of mi-
crowave oven disassembly are 𝐸 .

Fig. 14. Electric rice cooker.

Fig. 15. Microwave oven.

Fig. 16. Disassembly tasks of the electric rice
cooker.
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Fig. 17. Disassembly tasks of the microwave
oven.

Tables 10-11 illustrate the three-
dimensional measurement results of the
electric rice cooker and microwave oven,
respectively.

Table 10. Three-dimensional measurement
comparison for electric rice cooker.
Takt time
(sec) Algorithm 𝐼𝐺𝐷 𝐻𝑉 𝑅

60 Proposed 3.15E+01 4.14E-01 3.21E-02
NSGA-II 7.84E+01 1.45E-01 2.70E-02
SPEA2 2.15E+02 1.33E-01 4.39E-03
BARON 1.27E+02 3.77E-01 7.02E-03
MINLP 3.39E+02 4.53E-01 3.55E-02

Remark: the bold number are the best result among competitive
algorithm.

Table 11. Three-dimensional measurement
comparison for microwave oven.
Takt time
(sec) Algorithm 𝐼𝐺𝐷 𝐻𝑉 𝑅

120 Proposed 4.17E+01 7.07E-01 4.30E-02
NSGA-II 7.32E+01 4.12E-01 3.64E-02
SPEA2 7.95E+01 5.08E-01 2.55E-02
BARON 6.33E+01 6.79E-01 9.72E-03
MINLP 1.04E+02 5.89E-01 7.81E-03

Remark: the bold number are the best result among competitive
algorithm.

Table 10 shows that the MINLP is a
highly competitive search technique. The
proposed method could not yield a signif-
icantly different result when the disassem-
bled product is small, especially if its struc-
ture is not complicated. The medium prod-
uct has some intricate patterns, as the mi-
crowave oven is highly recommended for
using our proposedmethod. Table 11 shows
the outstanding measurements.

8. Conclusion
The mathematical model was pro-

posed. The model minimizes the disassem-
bly line length, number of opened stations,
and workload smoothness. It was invented
to solve the mix-model disassembly line
balancing problem; furthermore, it could
solve two-sided disassembly line balancing.
The problem fell into a multi-objective op-
timization problem. Thus, a modified parti-
cle swam optimization solver was invented
to search the Pareto front as many times as
possible.

The top-loaded washing machines
with four models in the series were used
as the benchmark instances with four pre-
determined takt times. These were com-
pared with four competitive algorithms in
the literature, invented to solve combinato-
rial and multi-objective optimization prob-
lems. The computational results demon-
strated that the suggested method surpassed
the competitive solvers in this study by pro-
viding promising solutions in all three indi-
cators: the inverted generational distance,
hypervolume, and ratio. Furthermore, it ex-
hibited robust performance by providing a
low coefficient of variation values. Addi-
tionally, the proposed method yielded rea-
sonable solutions for medium disassembly
products while showing the acceptability
for small disassembled products.

Nevertheless, this study should have
compared other characteristics of meta-
heuristics methods, such as convergence
rate, computational time, and explicit ex-
ploration and exploitation performances.
Thus, in future research, the researcher is
interested in investigating issues by prepar-
ing more reliable computational machines.
Additionally, the researcher intends to use
the disassembly line design with hazardous
materials incorporated with partial destruc-
tive processes.
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