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ABSTRACT

This study presents HORL 2OPT, a hybrid optimization framework developed to ad-
dress the bottled water delivery routing problem modeled as a Traveling Salesman Problem
(TSP). The framework aims to minimize travel distance, enhance computational efficiency,
and ensure consistent solutions. HORL 20PT combines three key components: Q-learning
for guided initialization, the Hippopotamus Optimization Algorithm (HOA) for global ex-
ploration, and a 2-opt heuristic for local route refinement. Tested on 15 TSPLIB benchmarks
and 26 real-world cases from a bottled water distributor in southern Thailand, HORL 20OPT
consistently produced the best or near-best results. For instance, it achieved a total distance of
8,034.2 in the berlin52 problem, outperforming HOA (12,953.2), DE (25,215.2), and PSO
(23,187.0); and in 1in318, it achieved 56,695.0 compared to HOA’s 85,286.2 and DFA’s
122,910.4. In real applications, it generated the shortest or equally optimal routes in 18 of 26
cases, occasionally surpassing LINGO, with most runs completed within 20 seconds. By in-
tegrating machine learning, metaheuristics, and local search, HORL 2OPT delivers robust,
high-quality solutions suitable for practical logistics and dynamic routing scenarios.

Keywords: Bottled water logistics; Hybrid; Metaheuristic algorithms; Reinforcement learn-
ing; Route optimization
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1. Introduction

The distribution of bottled drink-
ing water plays a crucial role in ensur-
ing accessibility while maintaining cost-
effectiveness within logistics systems. Effi-
cient logistics and routing strategies help re-
duce transportation costs and improve ser-
vice performance [1]. Traditional rout-
ing challenges such as the Traveling Sales-
man Problem (TSP) and the Vehicle Rout-
ing Problem (VRP) have been extensively
addressed using heuristic, metaheuristic,
and mathematical programming techniques
[2,3]. However, these approaches often
struggle with scalability, adaptability to dy-
namic conditions, and computational effi-
ciency, limiting their effectiveness in real-
world logistics applications [4].

Recent literature has broadened the
scope of logistics optimization. A re-
view on logistics efficiency [5] highlights
how technologies, including Artificial In-
telligence (Al), Machine Learning (ML),
and Internet of Things (IoT), can improve
performance in transportation, warehous-
ing, and inventory control. Another study
[6] focuses on streamlining land transporta-
tion and categorizes optimization models.
It highlights the use of mixed-integer lin-
ear programming and heuristic algorithms
to improve supply chain operations.

Advancements in multi-agent sys-
tems (MAS) and artificial intelligence have
introduced promising solutions for opti-
mizing logistics and delivery networks.
Multi-agent frameworks allow for decen-
tralized decision-making, enhancing oper-
ational flexibility and efficiency in real-
world applications [7].  Reinforcement
learning (RL) techniques, particularly Q-
learning, offer significant potential for
improving adaptability in routing scenar-
ios by iteratively refining decision-making
based on historical experiences [8]. How-
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ever, standalone RL solutions face limi-
tations in convergence stability and com-
putational overhead. Thus, hybrid opti-
mization frameworks combining RL with
metaheuristic techniques offer significant
promise [9].

Metaheuristic algorithms have been
widely studied in logistics optimization.
Rajwar, Deep, and Das [2] reviewed over
500 metaheuristic algorithms and described
their strengths and limitations in large-scale
optimization problems. Popular methods,
such as Genetic Algorithms (GA), Fire-
fly Algorithm (FA), Particle Swarm Opti-
mization (PSO), and Differential Evolution
(DE), show good results but often fall short
in dynamic and uncertain environments [4].
To overcome these challenges, researchers
have explored multi-agent solutions. Ham-
rouni, Alutaybi, and Ouerfelli [7] proposed
a MAS-based framework for optimizing ve-
hicle routing in electrical vehicle networks,
demonstrating improved adaptability and
efficiency. Similarly, van der Zwan [10]
investigated multi-agent task allocation and
path planning strategies for autonomous lo-
gistics systems. These works support coop-
erative frameworks in solving routing prob-
lems.

RL applications in logistics decision-
making continue to expand. Malathy et
al. [8] showed that cooperative RL sys-
tems can improve decision-making in pro-
duction control. Lin et al. [9] introduced
a graph-based multi-agent RL model for
pollution detection in underwater networks.
Their model demonstrated the effectiveness
of RL-based strategies in adaptive learn-
ing scenarios. Despite these successes, RL
alone still faces challenges in real-world
logistics. It requires better initialization
strategies and stronger convergence proper-
ties.

Together, these studies show a need
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for flexible, integrated models in logistics.
This paper addresses that need by propos-
ing HORL 2OPT. This hybrid model com-
bines Q-learning for intelligent initializa-
tion, the Hippopotamus Optimization Al-
gorithm (HOA) for search, and the 2-opt
heuristic for route refinement. The goal is
to improve adaptability and route quality in
bottled water delivery.

Although past studies have explored
RL and metaheuristics separately, few com-
bine them effectively. The novel pro-
posed model fills this research gap. It
unifies the learning ability of RL with
the search power of metaheuristics in a
single framework. While the HOA has
shown good performance in various opti-
mization domains, its application in logis-
tics, especially with enhancements for ini-
tial solution quality and local refinement,
is limited. To addresses this gap, a novel
HORL 20OPT hybrid framework is intro-
duced. It builds on HOA by integrating
Q-learning to generate high-quality initial
solutions and applying the 2-opt heuristic
further improvements. The model also in-
troduces a multi-agent component to sup-
port decentralized decision-making. Its ef-
fectiveness is tested on benchmark datasets
and real-world delivery scenarios. Results
show that HORL 2OPT consistently out-
performs existing methods. Paired t-tests
confirm significant improvements in con-
vergence speed, solution quality, and com-
putational efficiency. This validates the
proposed framework as a robust and scal-
able solution for logistics route optimiza-
tion.

2. Literature Review
2.1 Broader perspectives on logistics op-
timization

The logistics optimization domain
has witnessed extensive research span-
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ning mathematical programming, heuris-
tic strategies, and the emergence of ad-
vanced technologies. Recent literature un-
derscores a shift toward integrated and
technology-driven solutions.  Saidi and
Ayadi [5] review and examine key fac-
tors influencing logistics performance, in-
cluding transportation efficiency, inven-
tory management, warehousing, and supply
chain coordination. Similarly, another lit-
erature survey from [6] outlines techniques
for streamlining land transportation, high-
lighting the growing importance of hybrid
and heuristic-based optimization methods.

Technological disruption in logistics
has been extensively reviewed. A review
in [11] identifies and categorizes disrup-
tive and conventional technologies between
2011 and 2020, emphasizing their effect
on operational areas like distribution and
warehousing. Additionally, Feng and Ye
[12] explores the operations management
aspects of smart logistics systems supported
by ICT, Al and IoT, and proposes direc-
tions for future research on adaptive logis-
tics systems.

Service-oriented reviews have also
emerged. [13] explores the influence of lo-
gistics services on firm performance, noting
how transportation and information man-
agement contribute to competitive advan-
tage. To improve warehouse efficiency,
routing and clustering strategies [14] are
employed, specifically by developing order
picking methods that reduce travel time and
operational delays.

Innovative logistics methods are fur-
ther represented by recent studies on emerg-
ing paradigms. Xiaoshan and Weiwei [15]
addresses logistics path optimization using
deep learning and blockchain, while Toro,
Escobar, and Granada [16] offers a review
of green VRP, reflecting the sector’s align-
ment with sustainability goals. Likewise,
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Singh [17] reviews logistics route planning
in circular economy contexts, indicating a
growing emphasis on eco-efficient trans-
portation models.

Integrated models, particularly those
for location inventory routing problems
(LIRPs), were systematically reviewed in
[18] through a PRISMA-based assessment.
Another study in [19] focuses on logistics
optimization during emergencies. These
studies reinforce the trend of applying
multi-faceted models that balance multiple
objectives under complex constraints.

2.2 Metaheuristics and hybridization
trends for routing optimization

Metaheuristic  algorithms  have
gained significant attention in solving
complex routing problems, such as the
TSP and VRP. These approaches provide
near-optimal solutions with acceptable
computational efficiency, particularly in
large-scale optimization scenarios. Among
the most widely used metaheuristic meth-
ods are GA, PSO, FA, and DE. While these
techniques exhibit promising capabilities,
they also present specific limitations
that necessitate further refinements and
hybridization strategies.

GA is a robust evolutionary opti-
mization method that mimics the princi-
ples of natural selection to generate high-
quality solutions for routing problems. In-
drianti et al. [20] applied GA to solve a
green vehicle routing problem for LPG dis-
tribution, addressing complex constraints
and aiming to reduce emissions. How-
ever, a major drawback of GA is real-
world adaptability, particularly when deal-
ing with social sustainability and uncertain
environments.  Furthermore, Okulewicz
and Mandziuk [21] found that while GA
performs well in long-term optimization
strategies, it often requires extensive com-
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putational resources, making real-world im-
plementation challenging. This necessi-
tates hybrid approaches that integrate GA
with other metaheuristics to enhance con-
vergence efficiency.

PSO is a population-based optimiza-
tion algorithm inspired by the social be-
havior of birds and fish. It is particularly
effective in exploring solution spaces ef-
ficiently; however, it often converges too
quickly to suboptimal solutions and strug-
gles to adapt to the complexities of real-
world problem environments [22]. Some
technique like the update mechanism ad-
justs the velocity and location of particles
exhibiting fitness values within the inferior
half of each sub-population was presented
through an adaptive mutation multi-particle
swarm optimization (AMPSO) [23]. Ac-
cording to [24], PSO is advantageous in
transit network optimization because of its
computational efficiency and adaptability.
However, its performance is highly sensi-
tive to parameter tuning, making it difficult
to generalize across various routing scenar-
ios. To mitigate these limitations, recent
studies propose hybrid methods to balance
exploration and exploitation capabilities in
optimization tasks [25].

FA is recognized for its strong multi-
objective optimization capabilities. It re-
quires extensive fine-tuning of parameters
to avoid stagnation in local optima [25].
Given these challenges, hybrid approaches
combining FA with PSO, DE, or other meta-
heuristics have been proposed to enhance its
computational efficiency while preserving
its multi-objective optimization strengths.
DE is another prominent optimization tech-
nique well-suited for continuous optimiza-
tion problems, including real-time vehicle
routing. Okulewicz and Mandziuk [21]
found that while DE outperforms GA and
PSO in dynamic vehicle routing scenarios,
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its high processing demands restrict its ap-
plicability in large-scale logistics networks.

While metaheuristic algorithms have
significantly advanced routing optimiza-
tion, there’s still a need for hybrid ap-
proaches that combine their strengths to
tackle complex routing challenges. Our re-
search addresses this by integrating meta-
heuristics with machine learning to boost
exploration and learning efficiency in rout-
ing tasks. The HOA, a recent and promising
metaheuristic, has shown competitive per-
formance in general optimization tasks but
remains underexplored in the logistics do-
main. This study introduces HOA into a hy-
brid framework, integrating it with RL and
local search heuristics to enhance its perfor-
mance in real-world applications.

2.3 Reinforcement learning in routing
problems

Reinforcement learning (RL) has
emerged as a promising approach for solv-
ing dynamic and complex routing prob-
lems, particularly the TSP and VRP. Tra-
ditional metaheuristic methods such as GA
and PSO often struggle with adaptability in
dynamic environments, whereas RL-based
approaches continuously learn and refine
solutions based on dynamic changes. Re-
cent advancements in RL have further en-
hanced the ability to optimize routes un-
der uncertain and evolving conditions [26].
This suggests that while RL-based routing
can significantly enhance adaptability, so-
lution initialization and training efficiency
need further optimization. RL-based ap-
proaches, particularly Q-learning and its
deep learning extensions, have demon-
strated significant potential in addressing
VRP variants. A deep reinforcement learn-
ing (DRL)-based heuristic has developed
for solving the Vehicle Routing Problem
with Backhauls (VRPBs), wherein an RL
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agent sequentially constructs optimal ve-
hicle routes by learning from past routing
decisions [27]. Their findings highlight
the effectiveness of DRL in handling dy-
namic constraints and adapting to customer
demands. However, they also noted key
challenges, including high computational
costs and solution initialization difficulties,
which remain barriers to real-world imple-
mentation.

A comprehensive review by [28] an-
alyzed various RL techniques applied to
different VRP variants, including dynamic
and stochastic VRPs. The authors high-
lighted that while Q-learning and policy
gradient methods are effective for optimiz-
ing route planning, Q-learning in partic-
ular struggles with solution generalization
when applied to large-scale logistics net-
works. To address these issues, they rec-
ommend hybrid models that integrate RL
with metaheuristic algorithms to improve
performance and scalability. Chen et al.
[29] developed an RL-based routing algo-
rithm, RL-Routing, to optimize network
paths based on dynamic traffic conditions.
Their results showed that RL can effectively
manage congestion and improve network
efficiency.

Given the challenges associated with
standalone RL approaches, hybrid mod-
els with local search heuristics have been
increasingly explored to balance compu-
tational efficiency and optimization qual-
ity [30]. Such hybrid strategies suggest
a promising direction for future research,
where RL can be augmented with tradi-
tional optimization methods to overcome
its inherent limitations. This research ex-
plores hybrid HOA approach that integrate
RL as solution initialization strategies to en-
hance the capability of traditional optimiza-
tion method.
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2.4 Hippopotamus optimization algo-
rithm

The Hippopotamus Optimization Al-
gorithm (HOA) is a recently introduced bio-
inspired metaheuristic optimization tech-
nique that mimics the movement, social be-
haviors, and defensive mechanisms of hip-
popotamuses [31]. Initially designed to
tackle benchmark optimization functions,
HOA has demonstrated superior perfor-
mance compared to traditional optimization
algorithms. However, its potential applica-
tions in logistics, the TSP and VRP remain
largely unexplored [32].

Recent studies have proposed mod-
ifications to the original HOA to improve
its efficiency in various optimization sce-
narios. Han et al. [33] introduced a
Modified Hippopotamus Optimization Al-
gorithm (MHO) aimed at enhancing con-
vergence speed and solution accuracy in
global optimization tasks. Their findings
indicate that MHO outperforms standard
HOA in solving engineering design prob-
lems, yet its application in supply chain lo-
gistics and routing remains an open research
question.

Although HOA has not yet been ex-
tensively explored in logistics, recent stud-
ies have applied it to network and energy
system optimization. Maurya, Tiwari, and
Pratap [34] implemented HOA for distri-
bution network reconfiguration, optimiz-
ing power flow under different load condi-
tions. Their results highlight HOA’s strong
performance in multi-objective optimiza-
tion, indicating its potential applicability in
logistics routing problems where multiple
constraints and objectives need to be con-
sidered. Our preliminary study, Kongkaew
et al. [35], presented the HOA for drinking
water routing optimizing delivery by mim-
icking hippopotamus behaviors, improving
route efficiency and reducing costs. Despite
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its efficacy, the proposed method requires
fine-tuning of parameters, robustness, and
lacks extensive real-world testing.

The integration of HOA with ma-
chine learning and network optimization
presents another promising avenue for lo-
gistics applications. Mamatha and Sateesh
Kumar [36] incorporated HOA into deep
learning models for channel estimation in
millimeter-wave MIMO-OFDM systems,
demonstrating the algorithm’s capability
to enhance optimization in communication
networks.

Despite its promising performance in
various optimization domains, HOA has yet
to be systematically tested in logistics, TSP
applications. Key research gaps include the
need for empirical validation in logistics op-
timization, as HOA has been successful in
energy and network optimization, but its
performance in transportation logistics re-
mains limited. Additionally, hybridization
with reinforcement learning, metaheuris-
tics, and local refinement presents a signifi-
cant research opportunity to enhance adapt-
ability and performance in dynamic routing
problems.

By incorporating broader literature
insights and addressing the limitations of
isolated methods, the proposed hybrid
method aims to contribute a robust and gen-
eralizable approach to logistics optimiza-
tion.

3. Methodology
3.1 Mathematical formulation of the
bottled water delivery problem

The bottled drinking water routing
problem addressed in this study is formu-
lated based on the TSP using the Miller—
Tucker—Zemlin formulation [37]. The ob-
jective is to determine an optimal route that
minimizes the total travel distance required
to deliver bottled drinking water to a set
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of customer locations, subject to logistical
constraints. The mathematical formulation
of TSP is expressed as follows.

MinZ= > Y dix;  (3.0)
i€N jeN,j#i
Subject to:
> xij=1,VieN, (3.2)
JEN,j#i
> xj=1,VjeN, (3.3)
iEN,j#i
ui—uj+ (IN|-Dx;; <|N| -2, (3.4)
Vi e N,j € N\{1},i # J,
1<u; <|N|-1, Vie N\{1}, (3.5)
xij €{0,1}, Vi, j € N, j #1, (3.6)

where d;; represents the distance between
nodes i and j based on the geographical
coordinates, x;; is a binary decision vari-
able, where x;; = 1 if the delivery route
travels directly from node i to node j, and
x;j = 0 otherwise. The u; and u; values
are arbitrary real numbers, but they can be
converted into a ranked sequence of non-
negative integers to represent the order in
which nodes are visited. N is the set of
nodes, including the depot and all customer
locations. The {1} is the set of node 1 (rep-
resenting the depot). In the model, the ob-
jective function in Eq. (3.1) aims to mini-
mize the overall travel distance, while Egs.
(3.2)-(3.3) guarantee that each node is en-
tered and exited exactly once. Egs. (3.4)-
(3.5) serve to eliminate subtours, ensuring
a single continuous route through all nodes,
and Eq. (3.6) defines the binary nature of
the decision variable.

3.2 Proposed HORL_20PT hybrid al-
gorithm

The HOA operates through a
population-based evolutionary mechanism
that mimics the cooperative behavior of
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Fig. 1. HORL 20OPT framework for route opti-
mization in bottled water delivery.

hippopotamuses in search of food and opti-
mal living conditions [31]. It is one of the
recent powerful metaheuristics in solving
complex combinatorial problems due to
its adaptability, particularly in routing and
logistics. This work developed the hy-
bridization of the HOA with reinforcement
learning and 2-opt heuristic (HORL 20OPT)
framework to optimize the bottled drinking
water delivery problem. The proposed
method combines three components: (i)
model-free reinforcement learning via
Q-learning for guided initialization, (ii)
the Hippopotamus Optimization Algorithm
(HOA) for population-based global and
local search, and (iii) a 2-opt local search
heuristic for solution refinement. The
overall goal of the hybridization is to
enhance solution quality, improve con-
vergence speed, and increase robustness
against local optima. The framework of the
proposed HORL 2OPT is shown in Fig. 1.

3.2.1 Initialization and parameter
settings

The initial population includes one
Q-learned solution and N — 1 randomly
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Fig. 2. Reinforcement learning for bottled water delivery routing.

generated agents. Each solution undergoes
evaluation, and performance metrics such
as best distance and iteration runtime are
logged.

The initial population is constructed
using a combination of Q-learning and ran-
dom initialization. =~ Each agent is rep-
resented by a real-valued vector within
the range [-100,100] , with dimensional-
ity equal to the number of delivery nodes.
One agent is guided by Q-learning, trained
over 1,000 iterations, and the rest are gen-
erated randomly to ensure diversity. Posi-
tion vectors are converted to valid delivery
sequences using the smallest position value
(SPV) rule. Fitness is evaluated based on
the total travel distance calculated from the
distance matrix.

Key parameters include the popula-
tion size (nPop), maximum number of iter-
ations (M axGen), learning rate (agrr ), and
discount factor (ygr ). These parameters are
optimized using the Taguchi method to im-
prove performance and stability. Further
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explanation of this tuning process is pro-
vided in Section 3.4.

3.2.2 Generation of initial feasible
solutions

This step focuses on generating a
population of initial candidate solutions. To
improve early-stage convergence and so-
lution diversity, the method combines Q-
learning and random initialization.

In the Q-learning component, the de-
livery network is modeled as a Markov De-
cision Process (as in Fig. 2), where

+ States (S§) represent the set of cus-
tomer nodes.

* Actions (A) denote the possible tran-
sitions from one node to another (i.e.,
feasible delivery steps.

* Rewards (r) are assigned as the nega-
tive distance between two connected
nodes, encouraging the agent to find
shorter paths.
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* Transition s — s’ occurs upon select-
ing a delivery from one customer to
another.

* Policy is implicitly encoded in the
Q-table and updated via the Bellman
equation, given by

Q(S,Cl) — Q(S’a) + a’RL[r
+ YRL max 0(s’,a’) - Q(s,a)]
3.7)

where agy € (0,1) is the learning
rate, yry € (0, 1) is the discount fac-
tor, and max, Q(s’,a’) represents
the best future reward expected from
the next state.

The agent follows an e-greedy pol-
icy, where with probability 1 — e, it selects
the action with the highest Q-value, and
with probability €, it chooses a random ac-
tion to ensure exploration. Over iterations,
€ decays gradually to emphasize exploita-
tion. After a sufficient number of training
episodes, a near-optimal route is extracted
from the trained Q-table using a greedy roll-
out. This route is mapped into a real-valued
position vector and inserted into the HOA’s
population as an elite initial candidate.

The remaining population is gener-
ated randomly using Eq. (3.8), where each
agent’s position is represented as a real-
valued vector of size equal to the number
of customer nodes.

Xi:x;j=1b;+rand - (ub; —1bj),
(3.8)

where [b; and ub ; denote the lower and up-
per bounds of the jth decision variable in
D-dimensional space (j = 1,2,,m), and
rand is a random number between 0 and
1. These vectors are later converted into
permutation-based routes using the SPV
rule, which transforms each position vector
into a discrete sequence within the delivery.
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3.2.3 Optimization via HOA

The core iterative optimization of
HORL 20PT is governed by the HOA, a
recent metaheuristic inspired by hippopota-
mus territorial behavior. Each iteration of
HOA consists of three behavioral phases,
namely exploration, defensive movement,
and exploitation [31]. These behaviors are
mathematically translated into update rules
that govern the movement of candidate so-
lutions in the search space. Let X € RV*P
represent the population matrix of N agents
over a D-dimensional space (number of de-
livery points), F; is the fitness of agent
X;,i = 1,2,,n, evaluated as the total dis-
tance via route and a distance matrix. Each
iteration includes the following steps.
Phase 1: Exploration (river and pond
movement)

This phase encourages wide search
by half the population. Each agent X; is
influenced by the location of the dominant
hippopotamus Dy, po (i.€., the best posi-
tion corresponding to the best route) and
MG@G; refers to the mean of a randomly se-
lected hippopotamus, including the current
considered hippopotamus with equal prob-
ability. Two mathematically stochastic po-
sition updates are generated as follows:

1. The location of the herd’s male hip-
popotamus in a lake or pond:

XM hippo . XM hippo

i “Xij = Xij

+ 1 (Dhippo — 11 - xi,j), (3.9)
for i = 1,2,.,[§] and j =
1,2,...,m.

2. The position of the female or imma-
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ture hippopotamus in the herd:

Iy X 71 + (~ p1)

2% FQ -1
h=14 73 , (3.10)
Iy X 74 + (~ p2)
rs
T ( ! ) 3.11)
=exp|-—————], .
P MaxGen
FB hi FB hippo
b'e ippo x) ippo
Xi,j+ hy - (Dhippo
= -1 - MQ,-), T>06 ,
=, else
(3.12)
xij+ha- (MG,
= _Dhippo), re¢ > 0.5
= lbl +r7- (l/lbj ’
~1bj), else
for i = 1,2,..[§] and j =
1,2,...,m.

where y1, 5, rg, r7 are random numbers be-
tween 0 and 1, and, 71 4 is a random vec-
tor between 0 and 1. In Eq. (3.12), h;
and hy are numbers or vectors randomly
selected from the five scenarios in the &
equation in Eq. (3.10), where p; and ps
are integer random numbers that can be ei-
ther 0 or 1. In Egs. (3.9)-(3.10), I1,1> €
{1, 2} are influence weights. In Eq. (3.11),
M axGen denotes the maximum number of
iterations. The better of the two candidate
positions is retained if it improves fitness.
Egs. (3.13)-(3.14) describe the position up-
date of male and female or immature hip-
popotamus within the herd. F; refers to the
objective function value (total distance) cal-
culated from the route after decoding using
the SPV rule and a distance matrix.

X;

B

(3.13)

M hi M hi
_{ b'e irpo. F! irre _ p

X else
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, FFBhirro
1 13

X;
X;

X.FB hippo
else

(3.14)

Using h vectors, /; and I» scenarios en-
hance the algorithm’s global search and ex-
ploration capabilities.

Phase 2: Defensive behavior (predator
avoidance)

In this phase, the second half of the
population simulates escape behavior by re-
acting to synthetic predators (random posi-
tions):

Predatorj = 1bj + g - (ub; —1b;),

forj=1,2,...,m, (3.15)

where 7g is a random vector between
Oand 1. Let D = |Predator j—x; ;| denotes
the distance of the ith hippopotamus to the
predator, and F Predator; T€presents the fac-
tor of the hippopotamus adopting a defen-
sive behavior to protect itself against the
predator. A hippopotamus’s defensive be-
havior changes based on how close a preda-
tor is. As in Eq. (3.16), if the predator is in
very close proximity (Fpredator; < Fi), the
hippopotamus will immediately turn and
charge to force a retreat. If the predator is
at a greater distance, suggesting it’s near the
territory’s boundary, the hippopotamus will
turn towards the predator but with restricted
movement, aiming to signal its presence
within its territory.
XiHippoR . x{:l;'ppoR
(RqL ® Predator

b
+(1(c—d><cos (2ng)) )

(B), FPredatorj < Fi

RL @& Predator
b
+( (c—dxcos (2mg)) )
1 ), FPredatorj = Fi
(3.16)

2XD+rg
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for i = [%] e 1Y) 42, Nandj = 1,2, .., ffinking water routing problem.

2

where Xl.Hip poR represents the hippopota-
mus’s position while facing the predator;
Predator; is defined by Eq. (3.15); RL
is a random vector with a Lévy distribution
described in [31], the values of b,c,d, g
are constants drawn from predefined ran-
dom ranges (referred to in [31]), and 7, is a
random vector with D-dimensional space.
Equation (3.17) outlines a survival mech-
anism: if Fl.H’p PoR g greater than Fj, the
hippopotamus (representing a path in the
TSP) has been hunted and is replaced in
the herd; otherwise, the hunter flees and the
hippopotamus (representing the current of
TSP path) remains a viable part of the solu-
tion herd. Notable improvement in global
search was observed in the second phase.
The two phases work together to effectively
avoid local minima.

Hi R Hi R

v _ { x[1PpoR - priPPoR <
' X,
i

- Hi R
FlProR 5 F,

(3.17)

Phase 3: Exploitation (localized foraging)
When a hippopotamus faces multiple
predators or cannot defend itself, it flees
to the nearest lake or pond. This strat-
egy, which exploits predators’ aversion to
water, helps the hippo find safety close to
its current location. This escape behav-
ior is modeled to enhance local search ex-
ploitation within the algorithm. A random
position is generated near the hippo’s cur-
rent location using Eqs. (3.18)—(3.20). If
this new position improves the cost func-
tion, the hippo’s position updates, signify-
ing a safer discovery. This approach en-
hances the algorithm’s local search capa-
bilities, crucial for efficiently finding high-
quality solutions by enabling effective ex-
ploration of promising routes for the bottled
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ublpcal — ubj
J t ’

lblpcal — &
J ’

t
t=1,2,....MaxGen

XHipp()S : x{-lf'pp()é)
i i,j
i (lbgocul + Ac - (ubéocal _ lbgocal))

= Xi,j + 7110

fori=1,2,...,N,j=1,2,....,m. (3.18)
2)(?11 -1

A= ri12 . (319)
r13

where Xl.Hip Po8  denotes the hippopota-
mus’s position (represented the current city
in route), which was the starting point for
finding the nearest safe place or the most
optimal next city. In Eq. (3.18), A repre-
sents a random vector or number, selected
from three possible scenarios in Eq. (3.19).
r1gp and ri3 are random numbers between
0 and 1, while r;2 follows a normally dis-
tributed random number. Additionally, 711
is a random vector between 0 and 1. These
A approaches enhance local search, leading
to better delivery route exploitation. Eq.
(3.20) dictates solution updates when fit-
ness improves.

v - XiHlpporS, FinppOS <F,
i X; FiHLppOS > F,

(3.20)

3.2.4 Route refinement via 2-opt lo-
cal search

Following Phase 3, a 2-opt local opti-
mization procedure refines the best solution
obtained in each iteration. This algorithm
enhances route quality by iteratively swap-
ping two non-adjacent edges within the tour
to reduce the total travel distance. Given a
tour with edges (7, j) and (k, [), 2-opt eval-
uates the benefit of replacing these edges.
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The change in total distance is calculated by
subtracting the lengths of the old edges and
adding the lengths of the new edges. The
change in total distance (Ad) is calculated

by

Ad = (dik + djl) - (d,'j + dkl)- (3.21)

According to Eq. (3.21), if Ad < 0 (i.e.,
the new configuration results in a shorter
route), the edges are replaced. This oper-
ation is repeated until no further improving
swaps are possible. The resulting route is
locally optimal and is retained as the refined
solution for the current iteration, contribut-
ing to a more efficient and higher-quality
exploitation of potential routes.

Fig. 3 demonstrates the pseudocode
of the HORL 20PT framework, integrat-
ing three optimization layers to ensure
global exploration, adaptive learning, and
refined local solutions. The combined
approach significantly improves conver-
gence speed, route efficiency, and cost-
effectiveness for bottled drinking water dis-
tribution logistics.

3.3 Data sources and preparation

The experimental analysis was con-
ducted using both benchmark and real-
world datasets to validate the proposed
hybrid framework. The datasets were
carefully selected to ensure the robust-
ness, scalability, and applicability of the
HORL 20PT framework in solving real-
world routing and logistics problems. A to-
tal of 15 TSP instances were obtained from
the TSPLIB library, a widely used bench-
mark dataset for evaluating optimization al-
gorithms. These instances varied in size,
ranging from 16 to 783 nodes, to assess the
scalability and efficiency of the proposed
approach. The TSPLIB dataset [38] pro-
vides predefined coordinates for each node
along with an optimal or near-optimal so-
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lution for comparison. The selection of in-
stances was based on the complexity and
diversity of problem structures, ensuring
a comprehensive performance evaluation.
Moreover, a real-world dataset was col-
lected over a 10-day period (with 26 prob-
lems in total) from a bottled drinking water
distribution factory in Southern Thailand.
On a daily basis, a company representative
will assign the number of customers to be
served on each route, ensuring that the to-
tal volume of drinking water does not ex-
ceed the 100-gallon capacity of the drink-
ing water delivery pickup truck. Each prob-
lem was identified using a naming conven-
tion. For example, “D1IWI1T1” designates
the first tour for day 1 of week 1. The
dataset contained detailed records of deliv-
ery operations, distributed across urban and
rural areas.

To construct the problem instance for
optimization, the distance matrix was con-
structed using distances between delivery
points collected from Google Maps. While
acknowledging that real-time traffic con-
ditions can influence actual travel times,
these static distances provide a practical and
widely accepted basis for initial route opti-
mization studies, particularly for a bottled
water delivery service where routes might
be planned in advance or predominantly
during off-peak hours. Future research will
explore integrating dynamic traffic data for
enhanced real-world applicability. By com-
bining benchmark datasets with real-world
logistics data, the experimental setup en-
sures that the HORL 20PT framework is
rigorously evaluated, and it is described in
the next subsection.

3.4 Experimental setup

The implementation was conducted
in a controlled computing environment to
ensure reproducibility, reliability, and rig-
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Algorithm HORL 20PT

Input: distance_matrix, learning_rate (ap.), discount_coefficient (yg.), £-greedy, RL-training,
SearchAgents (nPop), Max_iterations (MaxGen)
Output: Best_route, Best_fitness

Initialize bounds, dimension, parameters
Initial _tour « randperm(dimension)
RL_tour «— Q Learning(initial_tour, distance_matrix, alpha, gamma) // Using Eq. (3.7)
X[1, :] « DiscreteToPosition(RL_tour)
X[2:SearchAgents, :] «+ Generate population X randomly within bounds using Eq. (3.8)

For each agent i

fit[i] « total distance(distance_matrix, SPV(X[i, :])) // SPV is a smallest position value rule
End For

Xbest « best of X, fbest «— best value of fit

For t =1 to Max_iterations

# Phase 1: Exploration
For i=1 to SearchAgents /2
Generate random movement coefficients
X _P1 « explore toward leader via Eq. (3.9)
X P2 « explore toward or away from random group or random reset via Eq. (3.12)

Evaluate X P1, X P2 /{ Calculate tour distance via “total_distance(-)” function
Update X[i, :] and fit[i] if improved // Using Eq. (3.13)-(3.14)
End For

# Phase 2: Defense
For i = SearchAgents/2+1 to SearchAgents
predator « random
X _P3 « move based on predator distance and Lévy step via Eq. (3.16)

Evaluate X P3 // Calculate tour distance via “total_distance(-)” function
Update X[i, :] and fit[i] if improved // Using Eq. (3.17)
End For

# Phase 3: Exploitation
For i=1 to SearchAgents
X P4 « local search within shrinking bounds via Eq. (3.18)

Evaluate X P4 // Calculate tour distance via “total_distance(-)”" function
Update X[i, :] and fit[i] if improved // Using Eq. (3.20)

End For
Update Xbest and fbest

(opt2_tour, F_2opt) « opt_2_iteration(SPV(X[best_index]), distance_matrix, fbest)
Best_route « opt2_tour
Best_fitness < F_2opt

End For

Return Best_route, Best_fitness

Fig. 3. Pseudocode of the proposed method.
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Table 1. Taguchi factor level design for algorithm parameter tuning.

Coded Factor Levell Level2 Level3 Level4 Name of Factor

A 50 100 150 200 Number of Search Agents (nPop)
B 100 200 300 500 Number of iterations (MaxGen)
C 0.1 0.3 0.6 0.9 learning rate (agrr)

D 0.1 0.45 0.75 0.9 discount factor (yrr)

Table 2. Taguchi L16 orthogonal array design matrix for parameter tuning of the proposed algorithm.

Run Number of populations Number of iterations Learning rate  Discount coefficient
1 50 100 0.1 0.1
2 50 200 0.3 0.45
3 50 300 0.6 0.75
15 200 300 0.3 0.9
16 200 500 0.1 0.75

orous performance evaluation. The compu-
tational experiments were designed to as-
sess the efficiency, robustness, and scal-
ability of the proposed HORL 20PT al-
gorithm. The proposed algorithm and the
compared methods were implemented and
tested using MATLAB, while LINGO op-
timization software (version 20) was used
to formulate and solve for optimal or best-
known solutions of the mixed-integer linear
programming (MILP) model for compara-
tive analysis. This ensured that the perfor-
mance of HORL 20PT was benchmarked
against exact optimization techniques. The
computations were carried out on a personal
computer with an Intel(R) Core(TM) i5-
12400 processor 2.5GHz and 16GB RAM.

To comprehensively evaluate the
proposed HORL 2OPT algorithm, a range
of computational parameters was consid-
ered to conduct Parameter Tuning using the
Taguchi method. The primary HOA pa-
rameters, including number of populations
(coded as Factor A) and number of itera-
tions (Factor B), and the Q-learning Hy-
perparameters: learning rate « (Factor C)
and discount factor y (Factor D) were op-
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timized. Each factor was examined. Each
factor was examined at four distinct levels,
providing a broad exploration space to cap-
ture the influence of parameter variation on
algorithm performance.

The ranges were chosen based on
preliminary testing and domain knowledge
to ensure practical relevance and perfor-
mance sensitivity. A factorial experimen-
tal design was employed to identify opti-
mal parameter settings that improve conver-
gence speed and solution accuracy. Table 1
presents the experimental factor levels used
in the Taguchi method for tuning the param-
eters of the proposed algorithm.

Table 2 details the L16 orthogonal ar-
ray used to systematically explore the pa-
rameter space with only 16 experimental
runs instead of testing all 256 possible com-
binations (4"4). This matrix efficiently bal-
ances the interactions of four factors across
four levels, significantly reducing computa-
tional effort. Each run represents a unique
combination of values for the number of
populations (search agents), the number of
iterations, the learning rate, and the dis-
count coefficient. The L16 design provides
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a robust foundation for estimating the in-
fluence of each parameter on the objective
function, such as minimizing total distance
in a routing problem.

Fig. 4 illustrates the average total
distance obtained from each factor level, of-
fering a visual interpretation of how each
parameter influences algorithmic perfor-
mance. The trend lines suggest which levels
of each parameter are associated with bet-
ter (i.e., lower) distance outcomes. For in-
stance, the optimal zone may be visually ob-
served where the mean distance reaches its
minimum, indicating more efficient routing
performance. This visual aid complements
the numerical results by highlighting sensi-
tivity and response patterns.

Table 3 presents the signal-to-noise
(S/N) ratios calculated using the “smaller-
the-better” criterion, which is suitable for
minimization problems like total distance
reduction. The S/N values across four
levels of each parameter show relatively
small variation, but subtle differences are
captured using the delta values. The dis-
count coefficient (Factor D) has the highest
delta (0.04), indicating it is the most influ-
ential parameter, followed by the number
of search agents, learning rate, and num-
ber of iterations. The ranking further sup-
ports this, placing discount coefficient as
the most critical. The prediction result, de-
rived from the optimal levels of each factor
(150 SearchAgents, 300 iterations, learn-
ing rate of 0.9, and discount coefficient of
0.45), forecasts a minimized total distance
value of 61,870 units.

Fig. 5 graphically displays the S/N
ratios across the four levels for each param-
eter. This plot helps in visually identify-
ing the most stable and robust levels that
lead to minimum variation in the perfor-
mance measure. The steepness of the slope
for each parameter line indicates its impact;
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a steeper slope implies higher sensitivity.
This figure confirms that the discount co-
efficient has the strongest effect on algo-
rithm performance, validating the ranking
observed in Table 3.

The interaction plots (Fig. 6) of-
fer critical insights into the complex re-
lationships among the optimized param-
eters: SearchAgents, number of itera-
tions, learning rate, and discount coeffi-
cient. Contrary to the Taguchi method’s as-
sumption of negligible interactions, these
plots clearly demonstrate significant and
often strong interdependencies. For in-
stance, the non-parallel and crossing lines
between SearchAgents and number of iter-
ations (Fig. 6, top-left), and number of it-
erations and learning rate (Fig. 6, middle-
left), indicate that the optimal setting for
one factor heavily depends on the level of
another. These pervasive interactions high-
light the L.16 Taguchi orthogonal array’s re-
stricted ability to fully capture complex in-
terdependencies, as its primary focus is on
main effects, not higher-order interactions.

While the Taguchi L16 design effi-
ciently narrowed down the optimal param-
eter ranges, leading to the identified combi-
nation of 150 SearchAgents, 300 iterations,
a learning rate of 0.9, and a discount co-
efficient of 0.45 for a minimized total dis-
tance, the strong interactions observed sug-
gest this might represent a good local min-
imum rather than a definitive global opti-
mum. The non-uniform performance across
different factor levels, as shown by the non-
parallel lines, highlights that the “best” set-
ting for one factor is contingent on oth-
ers. Therefore, although the L16 design
provides a robust solution within its exper-
imental constraints, a more comprehensive
optimization explicitly accounting for these
crucial interdependencies would be neces-
sary for true global optimality. This might
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Fig. 4. Plot of the mean of total distance versus considering parameters.

Table 3. Signal to noise ratios (smaller is better) and prediction result.

Level SearchAgents Number of iterations Learning rate Discount coefficient
1 -95.88 -95.89 -95.89 -95.91
2 -95.88 -95.88 -95.89 -95.86
3 -95.87 -95.88 -95.89 -95.88
4 -95.89 -95.89 -95.87 -95.88
Delta 0.03 0.01 0.02 0.04
Rank 2 4 3 1
Prediction Result

SearchAgents  Number of iterations Learning rate Discount coefficient Predicted value

150 300 0.9 0.45 61,870
Data Means
SearchAgents Number of Itertions Learning Rate Discount Coefficient

Mean of SN ratios

50

03 06 09 010 045 075 090

Fig. 5. Plot of the signal-to-noise ratios versus considering parameters.

involve future exploration with a full facto-
rial or a specifically designed fractional fac-
torial experiment.

3.5 Performance metrics and compar-
isons

To objectively assess the effective-
ness of the HORL 20PT framework, sev-
eral performance metrics were employed.
The total distance (TD) served as the
primary objective function, reflecting the
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overall efficiency of the routing solution,
where lower values denote superior perfor-
mance. Computational time was also mea-
sured to evaluate the time required to reach
a near-optimal solution, which is particu-
larly important for assessing the practical-
ity of the framework in operational settings.
Additionally, convergence speed was con-
sidered, defined as the number of iterations
needed for the algorithm to stabilize at an
optimal or near-optimal solution. To quan-
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titatively compare performance, the relative
improvement of HORL 2OPT over a base-
line algorithm A was calculated using a spe-
cific mathematical formulation, as follows:

TDa—-TDHoRL 20PT
TD4
x 100%,

Improvement =

(3.22)

where T D 4 is the total distance of the base-
line algorithm, and TDr1p,or; sopr 1S the
total distance obtained using the proposed
approach.

To ensure robustness and reliabil-
ity, the validation technique was employed
by the comparison with baseline models.
The HORL 20OPT algorithm was bench-
marked against traditional metaheuristic ap-
proaches, including DE [39, 40], discrete-
FA (DFA) [41, 42], PSO [23, 43], AMPSO
[23], grey wolf optimization (GWO) [44],
and HOA [31, 35]. The comparative anal-
ysis focused on solution quality, computa-
tional efficiency, and convergence behav-
ior. The experimental setup ensured a rig-
orous evaluation of the HORL 20PT hy-
brid framework. A structured evaluation
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process using well-defined computational
parameters, performance metrics, and val-
idation techniques confirmed the efficacy
of HORL 20PT in optimizing the bottled
drinking water distribution problem.

4. Computational Results

This section presents a com-
prehensive evaluation of the proposed
HORL 20PT framework for optimiz-
ing bottled water delivery, using both
benchmark and real-world datasets. The
performance is assessed through four key
lenses: total distance (solution quality),
convergence behavior, computational
efficiency, and statistically comparative
performance against baseline algorithms.
According to fairness in algorithm compar-
isons, especially with AMPSO, the original
AMPSO only refers to initializing positions
and velocities but does not specify whether
a heuristic or random initialization method
was used. This lack of detail introduces un-
certainty in how much initialization quality
may have influenced reported results.
Since initialization can significantly impact
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Table 4. Parameter settings for different optimization methods.

Termination criteria

Method Population size (nPo p) (MaxGen) Key parameters
Configuration Reference

DE 150 300 iterations F=15,CR=05 [39]
DFA 150 300 iterations a=02,B0=1,y=1 [41,42]
PSO, . . Winax= 0.9, Wpin=0.35,
PSO(G) 150 300 iterations C1=2.Cy=2 [43]
AMPSO, . . Wimax= 0.9, Wnin=0.35,
AMPSO(G) 150 300 iterations C1=2.Cy=2 [43]
GWO 150 300 iterations - [44]
HOA 150 300 iterations - [31, 35]

. . [07:3 0 0.9, YRL™ 0.45 .
HORL_20PT 150 300 iterations RL-training = 1,000 iterations Section 3.4
LINGO Time-bound Branch-and-bound solver

with 43,200 seconds time limit

Random feasible solutions or greedy method (G); permutation encoding of TSP; fixed

Initialization
as in Section 3.4.

seed for replicability; five independent replications; nPop and M axGen were optimized

System Configuration

Personal computer with an Intel(R) Core(TM) 15-12400 processor 2.5GHz and 16GB RAM.

optimization, especially in complex combi-
natorial problems like TSP, this ambiguity
affects reproducibility and comparabil-
ity. To ensure fairness, we implemented
two variants of AMPSO: AMPSO (with
random initialization) and AMPSO(G)
with a greedy heuristic initialization used
to test potential performance gains from
stronger starting conditions. This logic was
applied to PSO, generating two versions:
PSO based random initialization and
PSO(G) based greedy initialization. Here,
the comparative analysis includes nine
state-of-the-art algorithms: DE, DFA, PSO,
PSO(G), AMPSO, AMPSO(G), GWO,
HOA, and the proposed HORL 20PT. All
algorithms were tuned with best-practice
or literature-validated parameters (see
Table 4), ensuring a fair and reproducible
comparison. Notably, HORL 20PT
utilized parameter settings optimized
using the Taguchi L16 orthogonal design,
which effectively reduced the required
number of experimental runs. Although
interaction analysis (Fig.  6) revealed
interdependencies between factors, the
selected parameters provided robustness
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and consistent computational results.

4.1 Benchmark dataset performance
This section evaluates the perfor-
mance of the proposed HORL 20PT al-
gorithm using 15 standard TSP bench-
mark problems from the TSPLIB library.
These problems vary in size and complex-
ity, ranging from 16 to 783 cities. The
goal is to compare the solution quality
and runtime of HORL 2OPT against eight
well-known metaheuristic algorithms: DE,
DFA, PSO, PSO(G), AMPSO, AMPSO(G),
GWO, HOA, and the known best solutions.
Table 5 presents the total distances obtained
by each method. HORL 20PT provided
the best or near-best solutions in every case.
For smaller problems, such as
ulyssesl6 and eil76, HORL 20PT
achieved 6,866.6 and 571.2, which are
close to the optimal values of 6,859
and 538, respectively. In medium-
sized problems like berlin52 (52 nodes),
HORL 20PT produced a route of §,034.2.
This is much better than DE (25,215.2),
DFA (19,068.6), and HOA (12,953.2).
Only PSO(G) and AMPSO(G) came
relatively close with 8,181.0 and 8,186.0
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Table 5. The comparative performance on the solution across nine metaheuristic algorithms and the

optimal or best-known solutions.

No. Problem #Node ng‘(“;";” DE DFA PSO  PSO(G) AMPSO AMPSO(G) GWO HOA  HORL 20PT
T ulyssesl6 16 6,850 102340 73420 10001.6 70430 9,224 7.043.0 7.102.8 69746 6,866.6
2 berlins2 52 7542 252152 19,068.6 254192 81810 25,1208 81860 135154 12,9532 8,034.2
3 eil76 76 538 22320  1,7540 22130 6088 21176 608.0 1,368.0 1,119.2 571.2
4 l1inl05 105 14379 107,698.8 86,0144 1085194 169380 69,7168 169380 61,9088 657448 15,702.6
5 pri24 124 50,030 618,191.8 517,8502 625,107.2 67,055.0 431,082.6 67,0550 4265174  375163.6 62,4612
6  chls0 150 6,528 48,7684 435592  49238.6  7,122.6  46,528.0 7,113.0 40,9978 442014 21,620.8
7 sil7s 175 21407 46,0292 437934 459252 22,0224 39,0760 22,0224 13085358 1,309952.4 136,310.6
8 di198 198 15780 169,693.4 1449184 1709008 17,7350 95257.4 17,7562 27,890.6 28,4432 2,765.0
9 a280 280 2579 312610 29,1256 31,512.6 2982.6  20,835.0 29752 4999564  498,655.8 45,428.8
10 1in318 318 42,029 550,084.6 5157412 552,1394 49,5956 351,640.6 493380  690,558.0 6873814 56,695.0
11 pcbdd2 442 50,778 729,1352 697,586.8 7352562 59,183.8 585,662.0 500242 254552 40,1312 8,340.2
12 d493 493 35002 425295.6 397,830.8 425,652.8 41,099.0 236,830.2 40,8974 28,6538 43,1858 6,983.4
13 sis3s 535 48450 1533522 147.991.0 152,5842 50,082.6 138,794.2 50,0824 1423374 224726 16,466.0
14 d657 657 48912 88,6884 777,8954 819,949.2 58960.0 510,339.0 502462 3824742 112,339.4 37,534.4
15  rat783 783 8,806 172,060.0 160,853.2 172,190.8 11,102.8  83,140.0 11,0640 1465842 87,1418 49,012.6
>

Y improvement over 224 7231 -656.4 727.0 11.4 -4573 1.5 -701.2 -602.6 0.0

other method

Remark: BKFS denotes Best-Known Feasible Solution. Bold values in the “HORL_2OPT” column indicate the superior solutions among all algorithms.

Table 6. The comparative performance on runtime of nine metaheuristic algorithms.

No. Problem #Node DE DFA PSO PSO(G) AMPSO AMPSO(G) GWO HOA HORL 20PT
1 ulyssesl6 16 0.40 1097 0.12 0.12 0.14 0.14 071 0.72 4.86
2 berlin52 52047 14.02 0.17 0.16 0.18 0.18 1.98 198 37.36
3 eil76 76 052 1625 0.22 0.20 0.22 024 327 317 76.60
4 linl05 105 0.59 18.90 0.27 0.23 0.26 028 471 4.68 191.04
5 prl24 124 0.64 20.69 0.30 0.25 0.29 0.31 570  5.51 213.56
6  chl50 150 0.71 22.84 0.36 0.36 0.34 044  8.10 830 493.45
7 sil75 175 077 25.16 0.41 0.38 0.39 045 10.69 10.75 646.34
8 dl198 198 0.83 27.19 046 0.40 0.45 0.47 1396 13.90 613.49
9 a280 280 1.04 3446 0.62 0.55 0.61 0.65 1596 16.00 2,582.24
10 1in318 318 1.14 3924 0.71 0.66 0.71 0.80 2326 23.25 3,069.10
11 pcb442 442 149 5145 098 1.01 1.05 120 4.47 14.59 166.82
12 d493 493 1.62 5587 1.09 1.16 1.16 136 691 21.17 405.32
13 si535 535 1.74 61.05 1.23 1.28 1.36 1.56 949 27.12 521.26
14 d657 657 2.08 7333 1.50 1.66 1.63 191 2623 6527 5,982.44
15  rat783 783 247 89.44 1.84 2.14 1.99 245 2856 70.79 9,080.10

respectively, but HORL 20PT still per-
formed better. Larger instances, such as
lin318, d657, and rat783, further show
the advantage of the proposed method.
In 1in318 (318 nodes), HORL 20PT
recorded 56,695.0, while DE, FA, PSO
and GWO exceeded 500,000. On rat783,
HORL 20PT achieved 49,012.6, much
lower than DFA (160,853.2) and HOA
(87,141.8). While the original HOA
already demonstrates strong performance,
HORL 20PT consistently outperforms
it, as well as DE, DFA, PSO, and GWO,
across almost all benchmark instances in
terms of total distance.
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These improvements are the result
of combining three key components: Q-
learning for intelligent initialization, HOA
for exploration and exploitation, and 2-opt
for refining the best routes. The hybrid
structure allows the algorithm to avoid poor
local solutions and focus on high-quality
paths from the early stages of the search.

Table 6 shows the runtime for each
method. HORL 20PT generally requires
more time than basic algorithms such as
DE and PSO. This substantial computa-
tional overhead is an expected trade-off,
resulting from combining Q-learning pro-
cesses and the added complexity of local



W. Kongkaew et al. | Science & Technology Asia | Vol.30 No.4 October - December 2025

search techniques like 2-opt, which fur-
ther contribute to the increased computa-
tional time. For example, lin105 took
191.04 seconds, while DE, PSO, PSO(G),
AMPSO and AMPSO(G) needed less than
one second. However, the solutions from
HORL 20PT are significantly more accu-
rate.

Although HORL 20PT is slower, its
performance remains acceptable for offline
route planning. The extra time is a trade-
off for higher solution quality. In most
cases, the runtime remains under practical
limits, even for larger datasets. In sum-
mary, HORL 2OPT consistently produces
better routing results than the other meth-
ods tested. It offers a strong balance be-
tween accuracy and robustness, especially
for cases where route quality matters more
than speed.

4.2 Evaluation on real-world routing
problems

To test the proposed method in practi-
cal conditions, we used 26 routing problems
from a bottled water distributor in Southern
Thailand. These problems were collected
over 10 operational days and included vari-
ous delivery node configurations and route
complexities.

Table 7 presents the total distances
obtained by each algorithm. HORL 20PT
produced the shortest or equally opti-
mal routes in almost all 26 cases. In
18 of these, it matched or outperformed
the best-known feasible solutions pro-
vided by LINGO. For instance, in instance
D10W2T1, HORL 20PT achieved a to-
tal distance of 56.9 km, which is equal to
PSO(G) and AMPSO(G). This improved
upon LINGO’s result of 58.7 km and was
significantly better than HOA (59.1 km)
and DFA (114.2 km).

Furthermore, HORL 2OPT outper-
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formed both AMPSO and AMPSO(G)
in most cases, demonstrating that the
hybridization of reinforcement learning,
HOA, and 2-opt search effectively im-
proves route quality even when compared
to algorithms using heuristic initialization.

Runtime performance is summarized
in Table 8. While HORL 20OPT required
more computational time than DE, PSO,
AMPSO and GWO, it completed all prob-
lem instances in less than 20 seconds. In
contrast, LINGO failed to return solutions
within the allowed 12-hour time limit for
more than half of the instances. This makes
HORL 20PT a feasible option for real-
world deployment, balancing speed and so-
lution accuracy.

The  findings  confirm  that
HORL 20PT is capable of solving
practical logistics problems with high relia-
bility and competitive efficiency. Its ability
to outperform both commercial solvers
and established metaheuristics across a
diverse set of real-world cases highlights its
potential for use in delivery route planning
and related logistics applications.

4.3 Convergence analysis

The convergence behavior of
HORL 20PT was assessed using two
representative  cases: the benchmark
instance sil75 and the real-world case
DIOW2T1. Fig. 7 illustrates the con-
vergence trend of HORL 20PT on the
benchmark instance sil75. The algorithm
demonstrates rapid progress during the
early iterations and quickly reaches a stable
solution. Compared to AMPSO, PSO,
and DE, the HORL 20PT curve shows a
smoother and more direct descent toward a
lower-cost solution. This indicates that the
combination of (-learning initialization
and HOA-guided global search effectively
positions the algorithm for faster con-
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Table 7. The total distances of case studies across different methods.

LINGO

Problem  #Node Current solution type LINGO DE DFA PSO PSO(G) AMPSO AMPSO(G) GWO HOA HORL_20PT

DIWITI 19 56.86 Optimal 484 1044 658 109.9 50.0 89.3 50.0 538 559 48.4
DIWIT2 33 75.09 BKFS 525 1688 783 161.8 483 148.3 483 627 529 51.8
DIWIT3 24 5242 BKFS 50.1 95.1 637 97.0 51.5 79.1 51.5 522 509 50.1
D2WIT1 27 54.16 Optimal 419 948 569 95.3 425 82.8 425 530 471 44.5
D2WIT2 31 38.23 BKFS 332 627 470 62.4 333 51.7 333 386 328 323
D2WI1T3 32 34.00 BKFS 28.2 69.9 36.7 70.8 28.8 52.7 288 326 288 28.5
D3WIT1 25 57.80 Optimal 50.1 90.0 675 95.1 50.3 754 503 557 537 53.1
D3WIT2 20 48.72 Optimal 44.7 845 558 89.0 44.7 70.4 447 481 4438 44.7
D3WIT3 21 32.86 Optimal 324 532 360 53.1 335 459 335 328 326 324
D4WITI 22 54.36 Optimal 50.6 76.7 619 76.4 51.5 67.9 513 548 509 50.6
D4WIT2 29 56.73 BKFS 445 121.6 77.8 1319 445 83.7 445 529 450 445
D5WIT1 19 45.73 Optimal 45.1 88.6 514 90.3 45.1 79.1 451 451 451 45.1
D5WI1T2 35 36.86 BKFS 329 95.1 555 95.5 32.8 65.0 328 386 328 32.8
D6W2T1 28 61.87 BKFS 440 1333 714 1270 45.8 106.2 458 534 468 46.5
D6W2T2 33 39.63 BKFS 353 927 609 96.9 34.7 722 347 39.6 347 34.7
D6W2T3 14 29.57 Optimal 29.5 319 297 31.9 29.5 30.8 295 295 295 29.5
D7W2T1 23 64.43 Optimal 55.9 79.1 654 80.1 56.9 77.0 569 59.6 624 55.9
D7W2T2 20 59.32 Optimal 44.1 84.0 499 84.2 44.1 69.2 441 444 441 44.1

D7W2T3 16 34.06 Optimal 314 387 315 374 314 33.6 314 314 314 314
D8W2TI 20 52.75 Optimal 48.2 782 571 80.5 48.8 69.8 488 518 525 51.9

D8W2T2 39 78.15 BKFS 47.8 1657 100.8 158.0 47.8 113.0 478 773 48.0 47.8
D8W2T3 27 28.26 BKFS 233 520 326 53.2 24.8 42.0 248 27.1 234 23.5
D9W2T1 28 56.80 Optimal 48.1 853 625 84.1 48.8 71.6 488 556 529 51.7
D9W2T2 39 61.31 BKFS 36.7 913 587 86.7 39.3 79.0 393 474 451 36.9
DI0W2T1 40 101.26 BKFS 58.7 213.6 1142 2155 56.9 148.3 569 849 59.1 56.9
DI0W2T2 38 4547 BKFS 344 746  50.0 754 329 66.5 329 413 344 329
% improvement over other method 1.0 -120.0 -39.6 -121.3 0.4 -79.3 04 -147 32 -

Remark: BKFS denotes Best-known feasible solution. The bold values in the table indicate the superior or equivalent solutions across methods.

Table 8. The computational time of case studies across different methods.

Problem LINGO DE DFA PSO PSO(G) AMPSO AMPSO(G) GWO HOA HORL 20PT
DIWITI 908.40 041 11.58 0.122 0.125 0.139 0.145 0.84 3.89 5.73
DIWIT2 43,200 043 12.16 0.141 0.139 0.148 0.157 1.30  5.71 11.31
DIWIT3 43,200 0.40 11.00 0.123 0.124 0.132 0.139 096 4.56 7.37
D2WITI 7,985.81 041 11.25 0.127 0.130 0.137 0.149 1.09  4.92 10.81
D2WIT2 43,200 0.41 11.99 0.135 0.135 0.144 0.155 1.24  5.44 12.60
D2WIT3 43,200 041 11.60 0.136 0.136 0.146 0.156 134 5.58 13.07
D3WITI 22.03 040 11.30 0.126 0.127 0.133 0.145 1.05  4.66 8.05
D3WIT2 10,754.69 039 11.81 0.117 0.120 0.125 0.133 0.86 3.96 6.19
D3WIT3 33,337.49 039 1091 0.119 0.131 0.129 0.134 090 4.16 6.81
D4WIT1 11,409.62 039 11.26 0.120 0.129 0.130 0.129 094 428 6.99
DAWIT2 43,200 041 11.47 0.130 0.134 0.140 0.148 .15 5.20 11.02
D5SWIT1 1,913.27 039 11.54 0.117 0.123 0.126 0.136  0.82 3.83 5.66
D5WI1T2 43,200 042 11.97 0.142 0.139 0.149 0.156 1.29 598 12.78
D6W2T1 43,200 0.40 11.78 0.129 0.129 0.139 0.145 1.15  5.05 8.99
D6W2T2 43,200 0.42 1225 0.138 0.137 0.146 0.156 122 5.72 13.49
D6W2T3 828 037 11.84 0.112 0.117 0.120 0.126  0.63 3.20 4.09
D7W2T1 3945 039 1095 0.121 0.122 0.132 0.139 094 438 8.18
D7W2T2 10,985.68 0.39 11.11 0.117 0.121 0.126 0.135 086 3.96 5.89
D7W2T3 26.56 0.38 10.77 0.113 0.114 0.123 0.129 072 344 4.70
D8W2T]I 12.58 039 11.57 0.117 0.121 0.128 0.137 084 395 591
D8W2T2 43,200 043 13.19 0.148 0.143 0.157 0.163 1.52 648 17.76
D8W2T3 43,200 0.40 11.12 0.128 0.129 0.137 0.145 1.10  4.88 791
D9W2T]1 43,200 040 11.32 0.128 0.132 0.138 0.146 1.14  5.05 9.25
DOW2T2 43,200 0.43 1295 0.149 0.146 0.160 0.163 143 6.46 17.05
DI0W2T1 43,200 0.43 13.08 0.149 0.143 0.158 0.162 148  6.62 18.59
D10W2T2 43,200 0.43 12.15 0.145 0.142 0.151 0.163 145 6.36 15.19
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vergence. Additionally, the use of 2-opt
refinement helps reduce oscillations and
accelerates the stabilization process. The
result confirms the algorithm’s ability
to find high-quality solutions in fewer
iterations.

Fig. 8 presents the convergence be-
havior on the real-world case D1IOW2T]I.
HORL 2O0PT again shows superior perfor-
mance, reaching a stable route distance in
the early iterations. In contrast, other algo-
rithms either stagnate early or take longer
to reach suboptimal solutions. The con-
sistent performance across both benchmark
and real-world datasets highlights the ro-
bustness of the hybrid design. The con-
vergence patterns provide further evidence
that HORL 20PT can maintain strong ef-
ficiency and solution quality across varied
problem types and scales.

4.4 Statistical validation

To evaluate the significance of
the observed performance differences,
paired z-tests were conducted between
HORL 20OPT and each comparison algo-
rithm. The tests only focused on the total
distance obtained across all real-world
instances. The results of the statistical
tests are summarized in Table 8, where
each p-value indicates the probability
of observing the given difference under
the null hypothesis of no significant dif-
ference. Negative values in parentheses
denote the average difference in favor of
HORL 20PT.

Results indicated that HORL 20PT
significantly outperformed most competing
methods, with p-values less than 0.05 in
the majority of cases. The improvements
were consistent, especially when compared
to algorithms using random initialization
such as DE, PSO, and AMPSO. Although
HORL_2OPT required more time for com-
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putation, its solution quality justified the
added effort.

Table 9. Paired-t test among two considering
methods.

Methods Costs Times
HORL_20PT vs. Current 1.000 (-4.73) -
HORL _20PT vs. LINGO 0.081 (1.44) 1.000 (-6.23)
HORL 20PT vs. DE 1.000 (-7.33)  0.000 (11.53)
HORL 20PT vs. DFA 1.000 (-6.08)  0.992 (-2.59)
HORL_20PT vs. PSO 1.000 (-7.57) ~ 0.000 (11.86)
HORL_20PT vs. PSO(G) 0.293 (0.55) 0.000 (11.85)
HORL_20PT vs. AMPSO 1.000 (-7.48)  0.000 (11.84)
HORL 20PT vs. AMPSO(G) 0.714 (0.57) 0.000 (11.83)
HORL 20PT vs. GWO 1.000 (-4.29)  0.000 (11.30)
HORL 20PT vs. HOA 0.996 (-2.93) 0.000 (7.77)

In particular, HORL 20PT outper-
formed AMPSO with random initialization
(p=1.000) and showed competitive results
even against AMPSO(G), which used
heuristic-based initialization (p=0.714).
This indicates that HORL 2OPT maintains
high performance regardless of the initial
solution quality. The statistical valida-
tion confirms that the proposed hybrid
framework delivers reliable results and can
operate effectively under both standard and
challenging initialization settings. When
considering both fairness and consistency,
it provides a strong and practical solution
for real-world logistics.

5. Conclusion

This research was motivated by the
need to improve routing efficiency in real-
world logistics, particularly for bottled wa-
ter distribution systems. Traditional meta-
heuristic approaches often struggle with
premature convergence, limited diversity in
initial solutions, and insufficient local re-
finement strategies, which can reduce their
effectiveness in solving complex vehicle
routing problems. To overcome these chal-
lenges, this study introduced HORL 20OPT,
a hybrid optimization framework that in-
tegrates the Hippopotamus Optimization
Algorithm (HOA), Q-learning-based rein-
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Fig. 7. Convergence plot of HORL 2OPT against other benchmarking algorithms for the sil175.
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Fig. 8. Convergence plot of HORL 2OPT against other benchmarking algorithms for the DIOW2T1.

forcement learning, and the 2-opt local
search heuristic. The proposed model aims
to improve both global exploration and lo-
cal exploitation by combining the strengths
of these three components into a unified al-
gorithm.

The method was evaluated through
extensive experiments on both synthetic
benchmark datasets from TSPLIB and real-
world delivery data collected from a bot-
tled water company in Southern Thailand.
The algorithm’s performance was bench-
marked against well-known methods, in-
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cluding DE, PSO, GWO, and AMPSO un-
der both random and heuristic initializa-
tion scenarios. Results consistently showed
that HORL 2OPT either matched or out-
performed these methods across a variety of
problem sizes and configurations. For in-
stance, on the berlin52 problem, it achieved
a total route distance of 8,034.2 com-
pared to 8,186.0 by AMPSO and 25,215.2
by DE. Similarly, in real-world scenarios,
HORL 2OPT produced shorter routes than
both LINGO and heuristic-initialized com-
petitors. Statistical analysis confirmed the
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significance of these improvements, rein-
forcing the robustness of the proposed hy-
brid model.

The main finding confirms that inte-
grating reinforcement learning (Q-learning)
with metaheuristics, particularly HOA, and
local search (2-opt) can significantly en-
hance solution quality and convergence by
providing superior initial solutions and re-
fined local searches. This integration not
only improves the algorithm’s ability to
escape local optima but also reduces the
number of iterations needed to reach near-
optimal solutions. The method’s reliabil-
ity across both controlled and real-world
datasets demonstrates its flexibility and
scalability for a wide range of routing ap-
plications.

From a practical perspective, the
HORL 20PT framework shows promise
for deployment in other logistics systems
where rapid and high-quality routing is es-
sential. Its structure can be generalized
to support tasks such as emergency medi-
cal delivery, inventory restocking, and last-
mile distribution. Moreover, the ability to
accommodate both algorithmic efficiency
and field-based variability enhances its ap-
plicability in decision-making for industries
that demand high service levels and cost ef-
ficiency.

Future research will focus on en-
hancing the model’s responsiveness to real-
time factors. In particular, integrating dy-
namic traffic data into the optimization pro-
cess will allow the system to adapt routes
based on current road conditions, improv-
ing its real-world performance. Addition-
ally, extending the model to include en-
vironmental objectives, such as minimiz-
ing fuel usage and carbon emissions, will
support broader goals in sustainable trans-
portation and smart logistics. These direc-
tions will strengthen the practical value of
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HORL 20PT and contribute to the devel-
opment of more intelligent, eco-conscious
routing systems.
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