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ABSTRACT
An optimistic solution to an interval linear program is a real-valued solution derived

from the best-case deterministic linear program. However, relying solely on this best-case
solution can be overly simplistic, as the actual realization of parameters lies within specified
intervals. Instead, it is more appropriate to provide an interval vector solution that remains
near the optimistic solution, particularly when the decision-maker prefers proximity to the
best-case scenario. In this paper, we establish the equivalence between the weak feasible
solution set of an interval equality system and the union of basic feasible solutions across all
scenarios of an interval linear program with an interval inequality system, where the interval
inequalities require the left-hand side to be lower than the right-hand side, but not excessively
so. Furthermore, we demonstrate that, under positive variables, this set coincides with the
union of basic optimal solution sets. This result enables the use of a tolerance-based approach
to identify an interval vector solution near the optimistic solution. Specifically, we modify
the interval linear program so that the optimistic solution becomes a tolerance solution for the
adjusted problem. We then propose a method to derive the interval tolerance vector solution
for the modified problem, with the goal of maximizing the total sum of the dimensions of
the interval tolerance vector hyper-box. Our proposed method differs from most existing
methods for finding interval solutions, as those methods typically yield interval solutions
that merely include weak solutions without specifying the solution type. Even though there
are existingmethods for obtaining interval tolerance solutions, none of them consider interval
tolerance solutions that are close to the optimistic solution.

Keywords: Interval linear problem; Optimistic problem; Optimization; Tolerance solution;
Weak solution
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1. Introduction
An Interval Linear Programming

(ILP) problem: max 𝑐T𝑥 subject to
[𝐴, 𝐴]𝑥 ≤ [𝑏, 𝑏], 𝑥 ≥ ⃗0, is a type of lin-
ear optimization problemwhere uncertainty
is represented in the coefficients of the left-
hand side (constraints) and right-hand side
(resource limits). This uncertainty is ex-
pressed as intervals rather than precise val-
ues, allowing for flexible modeling of real-
world scenarios where exact data may not
be available. Given that ILP problems dif-
fer from standard linear programming due
to the presence of interval parameters, the
concepts of a feasible point and an optimal
solution are redefined to accommodate this
distinction. A point is considered feasible
for the interval linear programming model
if it belongs to the largest feasible region
of the model. It is considered optimal if it
serves as an optimal solution for the corre-
sponding deterministic model. The litera-
ture reveals that numerous researchers have
explored methods to determine interval so-
lutions for ILP problems by employing the
approach of transforming the original ILP
problem into two sub-models. Moreover,
the concepts of feasibility and optimality in
ILP problems have been extensively stud-
ied to develop more efficient methods for
identifying interval solutions.

Starting with the foundational Best
andWorst Cases (BWC)method introduced
by Tong in 1994 [1], the ILP model is re-
formulated into two sub-models: the best
sub-model, representing the largest feasi-
ble region, and the worst sub-model, rep-
resenting the smallest feasible region. The
BWCmethod is employed to derive the best
andworst objective function values, provid-
ing precise bounds for the optimal objective
values. However, a portion of the solution
space generated by the BWC method may
be infeasible. In 1995, Huang et al. [2] in-

troduced a new method called the two-step
method (TSM). They integrated the con-
cepts of grey systems and grey decision-
making into a Mixed-Integer Linear Pro-
gramming (MLP) framework, leading to a
grey integer programming (GIP) formula-
tion to generate the two sub-models. These
sub-models differ from the BWCmethod in
that the interval solution might not provide
the best and worst objective function val-
ues directly but can achieve a larger exact
optimal solution set compared to the BWC
method. However, the solution space of
the TSM may still include infeasible so-
lutions. In recent years, numerous meth-
ods have been developed building upon
the TSM approach. To address the issue
of infeasible solutions within the solution
space of the TSM, Zhou et al. (2009) [3]
introduced a modified interval linear pro-
gramming (MILP)method that incorporates
an enhanced-interval linear programming
(EILP) model and its associated solution al-
gorithm, adding an additional constraint to
the second sub-model of the TSM. The so-
lution space derived from the EILP model
is absolutely feasible compared to that of
ILP. This approach facilitates a better un-
derstanding of the expected-value-oriented
trade-off between system benefits and the
risks of constraint violations. Although the
solution space of the MILP method is ab-
solutely feasible, some of the solutions ob-
tained may be non-optimal. In addition,
Huang and Cao (2011) [4] developed a new
solution method known as the three-step
method (ThSM) for solving ILP models.
Themain advantage of ThSM is that it guar-
antees no infeasible solutions will be in-
cluded in the obtained results. To determine
whether all solutions obtained through TSM
are within the feasible decision space, they
introduced a method for feasibility test-
ing. Moreover, constricted models known

11



K. Burimas et al. | Science & Technology Asia | Vol.30 No.4 October - December 2025

as ThSMs (ThSM-I and ThSM-II) are de-
veloped to eliminate the infeasible solutions
of the TSM by narrowing the solution space
of the TSM into a center point. Further-
more, ThSM can generate interval solutions
while maintaining low computational re-
quirements.

Next, a robust two-step method
(RTSM) proposed by Fan andHuang (2012)
[5] improved upon the traditional TSM by
incorporating an optimization technique in
the second step to refine the solution, en-
suring feasibility and minimizing the im-
pact of uncertainty. This approach is par-
ticularly relevant for environmental man-
agement applications, such as resource al-
location, pollution control, and sustainabil-
ity planning, where decision-makers must
account for uncertain environmental data.
Compared to MILP and ThSM methods,
RTSM generates a relatively larger solution
space, thereby reducing the risk of signif-
icant loss of decision-related information.
Moreover, an alternative solution method
(SOM-2)was introduced by Lu et al. (2014)
[6]. This study evaluates numerical solu-
tions for ILP problems by comparing differ-
ent methods based on coverage and valid-
ity rates. The coverage rate measures how
well the obtained solution set captures the
true solution space, while the validity rate
assesses the feasibility of solutions within
the given interval constraints. By analyz-
ing various ILP solution approaches, the
study highlights their strengths and limita-
tions in handling uncertainty. The compar-
ison provides insights into which methods
offer a balance between solution robustness
and computational efficiency. However, in
some cases, the feasibility of the solution
space is not guaranteed, and the SOM-2
method does not always yield an absolutely
optimal solution. To ensure both the fea-
sibility and optimality of solution spaces,

the improved ILP (IILP) and improved
MILP (IMILP) methods are examined. In
2016, Allahdadi et al. [7] proposed two
new approaches, IILP and IMILP methods.
This study focuses on enhancing the MILP
method by incorporating new techniques to
improve solution accuracy, feasibility, and
computational efficiency. The proposed
improvements aim to address limitations
in existing MILP approaches, particularly
in handling uncertainty and maintaining a
well-balanced solution space. By introduc-
ing refined optimization strategies, the en-
hanced MILP method provides more reli-
able and interpretable results for decision-
making under uncertainty. Additionally,
Mishmast Nehi et al. [8] propose an im-
proved method called the improved SOM-
2 method (ISOM-2), designed to enhance
the performance of existing ILP solutions.
This newmethod addresses some of the lim-
itations identified in traditional approaches,
aiming to provide more accurate and re-
liable results. The solution space of the
ISOM-2 method is both absolutely feasible
and optimal.

Mishmast Nehi et.al. [8] provided
Fig. 1 which corresponding to the results
of IMLP, IILP, ISOM-2 methods of the ILP
model (1.1).

max [3, 3.5]𝑥1 − [1, 1.2]𝑥2 (1.1)
s.t. [1, 1.1]𝑥1 + [1.6, 1.8]𝑥2 ≤ [11.6, 12],

[3, 4]𝑥1 − [2, 3]𝑥2 ≤ [5, 7],
𝑥1, 𝑥2 ≥ 0.

The rectangular boxes within the yel-
low area in Fig. 1 are the interval vector
solutions representing optimal solutions to
some portion of deterministic problems of
(1.1). These rectangular boxes were com-
pared by their optimal value ranges to iden-
tify which box should be used to repre-

12



K. Burimas et al. | Science & Technology Asia | Vol.30 No.4 October - December 2025

Fig. 1. The interval solution of IMILP, IILP and
ISOM-2 methods.

sent the interval vector solution of (1.1).
We observe that the solutions obtained from
methods such as IMILP, IILP, and ISOM-
2 are represented as rectangular boxes con-
tainedwithin the yellow area, as thesemeth-
ods guarantee both optimality and feasibil-
ity. In contrast, other methods reviewed
such as BWC, TSM, MILP, ThSM, RTSM,
and SOM-2, provide solutions where some
guarantee feasibility, while others guaran-
tee neither feasibility nor optimality. Con-
sequently, the rectangular boxes represent-
ing the interval solutions obtained from
these methods may extend beyond the yel-
low area. Even thoughmethods such as IM-
ILP, IILP, and ISOM-2 can guarantee feasi-
ble and optimal solutions, they may not be
suitable for finding an interval vector solu-
tion tailored to a specific purpose. This is
because these methods are designed to rep-
resent the ILP problem as a whole, and the
resulting solution may encompass multiple
solution types (see Definition 2.5 and The-
orem 2.6 for more details).

In our case, under the special as-
sumption that the left-hand side and the
right-hand side of the inequality system
overlap, the objective is to determine an in-
terval vector solution, denoted as [𝑥, 𝑥], that
is close to an optimistic solution of the ILP
while maintaining the tolerance property.
This means that any vector 𝑥 within the in-

terval vector [𝑥, 𝑥] will ensure that the to-
tal resources used, represented as [𝐴, 𝐴]𝑥
remain within the specified resource range
[𝑏, 𝑏]. None of the reviewed methods can
provide an appropriate solution under this
objective.

To achieve this goal, we first pro-
vide foundational knowledge about the fea-
sible weak solution set of the equation sys-
tem [𝐴, 𝐴]𝑥 = [𝑏, 𝑏] and the associated se-
mantics, including tolerance, control, left-
localized and right-localized solutions, in
Section 2. Subsequently, in Section 3,
we analyze the equivalence between the
feasible weak solution set of the system
[𝐴, 𝐴]𝑥 = [𝑏, 𝑏] and the union of basic
feasible solution sets of deterministic prob-
lems of an ILP with constraints [𝐴, 𝐴]𝑥 ≤
[𝑏, 𝑏], 𝑥 ≥ ⃗0 and the extra constraint 𝐴𝑥 ≥
𝑏. This extra constraint is needed for pre-
serving the above special assumption. Fur-
thermore, the analysis provides additional
insights when considering the positivity of
both sets. Specifically, we show that the
positive weak solution set is equivalent to
the union of basic optimal solutions of de-
terministic problems for an ILP with the
constraint [𝐴, 𝐴]𝑥 ≤ [𝑏, 𝑏], 𝐴𝑥 ≥ 𝑏, 𝑥 ≥
𝑥0, for a given 𝑥0 > ⃗0. Building on this
result, in Section 4, we refine the interval
tolerance vector solution method from [9]
to achieve our objective of finding an in-
terval vector solution close to an optimistic
solution of the ILP with 𝐴𝑥 ≥ 𝑏 while pre-
serving the tolerance semantics. If the opti-
mistic solution does not satisfy the tolerance
property, adjustments to the interval [𝐴, 𝐴]
will be made to maintain this property. In
Section 5, we provide numerical examples,
including a small diet problem, to illustrate
the proposed approach. The final section is
reserved for conclusions and remarks.
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2. Preliminaries
This section focuses on the funda-

mental knowledge relevant to this article. It
provides an overview of the interval system
and presents several useful theorems.

2.1 Interval system of linear equations
Let𝑚 and𝑛 be positive integers. The

set of all 𝑚 × 𝑛 (interval) matrices over
ℝ and the set of all column (interval) vec-
tors of size 𝑛 over ℝ are denoted by ℝ𝑚×𝑛

(𝕀ℝ𝑚×𝑛) and ℝ𝑛 (𝕀ℝ𝑛), respectively. The
system with vector of variables 𝑥 ∈ ℝ𝑛 is
written as the form

A𝑥 = b,

whereA ∈ 𝕀ℝ𝑚×𝑛 and b ∈ 𝕀ℝ𝑚 are defined
by A = [𝐴, 𝐴] = {𝐴 ∈ ℝ𝑚×𝑛 ∶ 𝐴 ≤
𝐴 ≤ 𝐴} and b = [𝑏, 𝑏] = {𝑏 ∈ ℝ𝑚 ∶ 𝑏 ≤
𝑏 ≤ 𝑏}. Moreover, A and b can be written
in terms of the center matrix and the radius
matrix as A = [𝐴𝑐 − Δ, 𝐴𝑐 + Δ] and b =
[𝑏𝑐−𝛿, 𝑏𝑐+𝛿], where the center𝐴𝑐 = 1

2(𝐴+
𝐴) and 𝑏𝑐 = 1

2(𝑏 + 𝑏) and the radius Δ =
1
2(𝐴 − 𝐴) and 𝛿 = 1

2(𝑏 − 𝑏).

Definition 2.1. A vector 𝑥 ∈ ℝ𝑛 is called

(i) a weak solution of A𝑥 = b if it satis-
fies 𝐴𝑥 = 𝑏 for some 𝐴 ∈ A, 𝑏 ∈ b

(ii) a tolerance solution of A𝑥 = b if for
each 𝐴 ∈ A there exists 𝑏 ∈ b such
that 𝐴𝑥 = 𝑏

(iii) a control solution of A𝑥 = b if for
each 𝑏 ∈ b there exists 𝐴 ∈ A such
that 𝐴𝑥 = 𝑏.

Lemma 2.2. [10] The tolerance solution
set, denoted by∑∀∃(A,b), is defined as fol-
lows:

∑
∀∃

(A,b) = {𝑥 ∈ ℝ𝑛 ∶ A𝑥 ⊆ b}.

Definition 2.3. Let x = [𝑥, 𝑥] and y =
[𝑦, 𝑦] be any two interval vectors.

(i) If 𝑥 ≤ 𝑦 ≤ 𝑥 ≤ 𝑦, then x is strictly
less than or equal to y, denoted by
x ≤𝑠𝑡 y.

(ii) If 𝑥 ≤ 𝑦, then x is strongly less than
or equal to y, denoted by x ≤𝑠 y.

Definition 2.4. A vector 𝑥 ∈ ℝ𝑛 is called

(i) an left–localized solution of A𝑥 = b
if there is at least one 𝐴 ∈ A such
that 𝐴𝑥 ∈ b. For the other 𝐴 ∈ A,
𝐴𝑥 ≤𝑠 b

(ii) a right–localized solution of A𝑥 = b
if there is at least one 𝐴 ∈ A such
that 𝐴𝑥 ∈ b. For the other 𝐴 ∈ A,
−𝐴𝑥 ≤𝑠 −b.

Definition 2.5. [11] Let 𝑇 , 𝐶, 𝐿 and 𝑅 be
row index subsets of 𝑀 such that

𝑇 = {𝑖 ∈ 𝑀 ∶ (A𝑥)𝑖 ⊆ b𝑖},
𝐶 = {𝑖 ∈ 𝑀 ∶ (A𝑥)𝑖 ⊇ b𝑖},
𝐿 = {𝑖 ∈ 𝑀 ∶ (A𝑥)𝑖 ≤𝑠𝑡 b𝑖},
𝑅 = {𝑖 ∈ 𝑀 ∶ (−A𝑥)𝑖 ≤𝑠𝑡 −b𝑖}.

A vector 𝑥 ∈ ℝ𝑛 is called a tolerance-
control-localized solution (𝑇 𝐶𝐿𝑅) of
A𝑥 = b if 𝑇 ∪ 𝐶 ∪ 𝐿 ∪ 𝑅 = 𝑀 .

Theorem 2.6. [11] Given A ∈ 𝕀ℝ𝑚×𝑛 and
b ∈ 𝕀ℝ𝑚. Then

∑
∃∃

(A,b) = ∑
𝑇 𝐶𝐿𝑅

(A,b),

for which ∑
∃∃

(A,b) and ∑
𝑇 𝐶𝐿𝑅

(A,b) are

the weak solution set and the set containing
all tolerance-control-localized solutions of
A𝑥 = b, respectively.

14



K. Burimas et al. | Science & Technology Asia | Vol.30 No.4 October - December 2025

Definition 2.7. A vector 𝑥 ∈ ℝ𝑛 is called a
weak feasible solution of A𝑥 = b if it sat-
isfies 𝐴𝑥 = 𝑏 for some 𝐴 ∈ A, 𝑏 ∈ b and
𝑥 ≥ ⃗0.

Definition 2.8. A vector 𝑥 ∈ ℝ𝑛 is called a
positive weak solution of A𝑥 = b if it sat-
isfies 𝐴𝑥 = 𝑏 for some 𝐴 ∈ A, 𝑏 ∈ b and
𝑥 > ⃗0.

Theorem 2.9. [12] A vector 𝑥 ∈ ℝ𝑛 is a
weak feasible solution of A𝑥 = b if and
only if it satisfies the following system

𝐴𝑥 ≤ 𝑏,
𝐴𝑥 ≥ 𝑏,

𝑥 ≥ ⃗0.

More details on characteristics of
each solution type and its application can be
found in [10, 12–20].

2.2 Linear program and interval linear
program

A linear programming problem is
written as

min 𝑐T𝑥 s.t. 𝐴𝑥 = 𝑏, 𝑥 ≥ ⃗0,

where 𝑐 and 𝑥 are 𝑛 × 1 matrices, 𝐴 is an
𝑚 × 𝑛 matrix of rank 𝑚 and 𝑏 is an 𝑚 × 1
matrix.

Definition 2.10. For any nonsingular 𝑚 ×
𝑚 sub-matrix𝐵 of𝐴, we call 𝑥 = (𝑥𝐵 ⃗0)T

a basic solution with respect to 𝐵, where ⃗0
in 𝑥 is the zero vector of all leftover compo-
nents of 𝑥 associated with the𝑛−𝑚 leftover
columns of 𝐴, if 𝐵𝑥𝐵 = 𝑏 and 𝑥 satisfies
𝐴𝑥 = 𝑏. Moreover, 𝐵 is referred to as a
basis and the components of 𝑥 associated
with the column of 𝐵, 𝑥𝐵, are called basic
variables.

Definition 2.11. A vector 𝑥 satisfying the
system 𝐴𝑥 = 𝑏, 𝑥 ≥ ⃗0 is said to be a

feasible solution of the system. A feasible
solution that is also basic is called a basic
feasible solution, i.e., 𝑥𝐵 ≥ ⃗0. A basic fea-
sible solution 𝑥∗ is said to be optimal if it
yields the minimum objective value among
all feasible solutions, that is,

𝑐𝑇 𝑥∗ ≤ 𝑐𝑇 𝑥 for all feasible 𝑥.
In such a case, 𝑥∗ is called a basic optimal
solution.

Let A ∈ 𝕀ℝ𝑚×𝑛 and b ∈ 𝕀ℝ𝑚. An
ILP problem is defined as

min 𝑐T𝑥 (2.1)
s.t. A𝑥 ≤ b

𝑥 ≥ ⃗0.
In this paper, we do not consider in-

tervals in the objective function of an ILP,
since it can be transformed into an equiv-
alent ILP without interval coefficients in
the objective function. We further assume
that each deterministic problem of (2.1) is
bounded. For cases involving infeasible or
unbounded deterministic problems, appro-
priate adjustments are necessary; see [21,
22] for details.

By considering specific values 𝑎𝑖𝑗 ∈
[𝑎𝑖𝑗, 𝑎𝑖𝑗] and 𝑏𝑖 ∈ [𝑏𝑖, 𝑏𝑖] in the ILP problem
(2.1), a deterministic model is obtained as
follows:

min 𝑧 =
𝑛

∑
𝑗=1

𝑐𝑗𝑥𝑗 (2.2)

s.t.
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖, 𝑖 = 1, 2, ..., 𝑚,

𝑥𝑗 ≥ 0, 𝑗 = 1, 2, ..., 𝑛.
Definition 2.12. The feasible solution set 𝒮
of an ILP is defined to be the union of the
feasible solution sets of each deterministic
problem of that ILP; i.e.,

𝒮 = ⋃
𝐴∈A, 𝑏∈b

{𝑥 | 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ ⃗0}.
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The optimal solution set of an ILP
is defined as the union of the optimal so-
lutions of all corresponding deterministic
problems.

The basic feasible solution set of an
ILP is defined as the union of the basic
feasible solutions of all deterministic in-
stances.

The basic optimal solution set of an
ILP is defined as the union of the basic opti-
mal solutions obtained from each determin-
istic problem.

Additionally, the lower and upper
bounds of the optimal values are obtained
by solving the following problems, respec-
tively:

min 𝑧 =
𝑛

∑
𝑗=1

𝑐𝑗𝑥𝑗 (2.3)

s.t.
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖, 𝑖 = 1, 2, ..., 𝑚,

𝑥𝑗 ≥ 0, 𝑗 = 1, 2, ..., 𝑛,

and

min 𝑧 =
𝑛

∑
𝑗=1

𝑐𝑗𝑥𝑗 (2.4)

s.t.
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖, 𝑖 = 1, 2, ..., 𝑚,

𝑥𝑗 ≥ 0, 𝑗 = 1, 2, ..., 𝑛.

Problems (2.3) and (2.4) are described as
the optimistic (best) and the pessimistic
(worst) sub-models of the ILP problem.

Several research articles [11, 14, 23–
29] define the main constraint of an ILP as
an equality constraint, A𝑥 = b, which ex-
hibits a weak solution property. This means
that not all combinations of 𝐴 ∈ A and
𝑏 ∈ b need to be solvable. Instead, it suf-
fices for at least one pair𝐴 and 𝑏 to produce
a solvable equation A𝑥 = b. On the other

hand, in many other papers [1–8, 30–33],
the inequality constraint A𝑥 ≤ b is inter-
preted more strictly, requiring a solution for
each scenario of A𝑥 ≤ b. In the next sec-
tion, we will demonstrate that the inequality
constraint A𝑥 ≤ b can be transformed into
an equivalent weak solution set A𝑥 = b
by incorporating additional assumption that
A𝑥 should not be too much (strongly) less
than b into the ILP problem (2.1).

3. Weak solution set as union of ba-
sic feasible solutions of deterministic
problems of interval linear program

The primary objective of this paper is
to determine a tolerance interval vector so-
lution that is close to an optimistic solution
of an ILP. Notably, the tolerance behavior is
associated with an interval equality system,
whereas the constraints of an ILP are de-
fined as an interval inequality system. Con-
sequently, it is crucial to analyze the rela-
tionship between these two systems.

Allahdadi and Mishmast Nehi [33]
obtained that the optimal solution of an ILP
with constraint [𝐴, 𝐴]𝑥 ≤ [𝑏, 𝑏], 𝑥 ≥ 𝑥0,
for a given 𝑥0 > ⃗0 is equal to the posi-
tive weak solution set of [𝐴, 𝐴]𝑥 = [𝑏, 𝑏].
Building on this concept, we extend their
idea, simplify the proof, and provide a more
general statement. Specifically, we demon-
strate that the weak solution set is equiv-
alent to the basic feasible solution set of
the ILP with the extra constraint 𝐴𝑥 ≥ 𝑏.
The details are provided in Theorem 3.1 and
Corollary 3.2.

A general ILP problem in the litera-
ture is given by

Problem 𝐼𝐿𝑃 : max 𝑐T𝑥 subject to
[𝐴, 𝐴]𝑥 ≤ [𝑏, 𝑏], 𝑥 ≥ ⃗0.

In the worst deterministic problem (2.4), if
its optimal solution 𝑥∗ provides 𝐴𝑥∗ < 𝑏,
it may be more reasonable to update the
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lower bound to 𝑏new = 𝐴𝑥∗. This adjust-
ment reflects the modeling interpretation of
the lower bound as a limit on the available
resources and ensures the constraints more
accurately capture the situation. Therefore,
in this paper we assume that 𝑏 in an ILP
problem satisfies 𝐴𝑥∗ = 𝑏. Now, consider
an ILP with extra constraint 𝐴𝑥 ≥ 𝑏,

Problem 𝐼𝐿𝑃1: max 𝑐T𝑥 subject to
[𝐴, 𝐴]𝑥 ≤ [𝑏, 𝑏], 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ ⃗0.

For any𝐴 ∈ [𝐴, 𝐴] and 𝑏 ∈ [𝑏, 𝑏], the corre-
sponding deterministic problem of 𝐼𝐿𝑃 is
not equivalent to the one of 𝐼𝐿𝑃1, in gen-
eral. However, this extra constraint may be
able to capture some hidden behavior that
cannot be captured by the main inequality
constraint. For example, if the 𝑖-th worker
has to produce 𝑥𝑗 units of the 𝑗-th product
and the production time of each unit of the
𝑗-th product that this worker could manage
is in the range [𝑎𝑖𝑗, 𝑎𝑖𝑗] while the total pro-
duction time is in the range [𝑏𝑖, 𝑏𝑖]. The
worker would try to produce the goods as
fast as possible, which results in the follow-
ing constraint:

[𝑎𝑖1, 𝑎𝑖1]𝑥1 + … + [𝑎𝑖𝑛, 𝑎𝑖𝑛]𝑥𝑛 ≤ [𝑏, 𝑏].

To maintain the quality, the manager may
not want the total production time to be too
much lower than 𝑏, otherwise there is no
need to set up the range [𝑏, 𝑏] in the first
place. By adding the constraint 𝑎𝑖1𝑥1 +
𝑎𝑖2𝑥2 + … + 𝑎𝑖𝑛𝑥𝑛 ≥ 𝑏, it would guar-
antee the overlapping of the worker’s fin-
ishing time and the manager’s range of to-
tal production time, while still allowing the
worker to finish earlier. For this reason,
we state new version of an ILP problem as
Problem 𝐼𝐿𝑃1.

We prove in Theorem 3.1 that the
union of feasible sets of all deterministic
problems, 𝒯, equals the set of all feasible

weak solutions of A𝑥 = b, Ω. Moreover
𝒯 is also 𝒯1, the union of the basic feasible
solution sets for each deterministic problem
of Problem 𝐼𝐿𝑃1 and even𝒯2, the union of
the basic optimal solution sets, under some
assumptions. Note here that we avoid stat-
ing the main constraint of an ILP problem
as A𝑥 = b, when interval parameters are
involved. This is because each determinis-
tic ILP problem requires optimality, yet it is
unlikely that the system𝐴𝑥 = 𝑏will remain
feasible for all 𝐴 ∈ A and 𝑏 ∈ b.

Theorem 3.1. (Weak solution set as the set
𝒯) Let Ω denote the weak feasible solution
set of the system A𝑥 = b. Let 𝒯 repre-
sent The feasible solution set of Problem
𝐼𝐿𝑃1. Finally, let 𝒯1 be the union of all
basic feasible solution sets for each deter-
ministic problem associated with Problem
𝐼𝐿𝑃1. The following statements are true.

1. Let A ∈ 𝕀ℝ𝑚×𝑛. Then Ω = 𝒯.

2. Let A ∈ 𝕀ℝ𝑚×𝑛 where 𝑚 ≥ 𝑛. Then
Ω = 𝒯1.

Proof. Let 𝑥 ∈ 𝒯. Then, there exists 𝐴 ∈
A and 𝑏 ∈ b, such that 𝐴𝑥 ≤ 𝑏, 𝐴𝑥 ≥ 𝑏
and 𝑥 ≥ ⃗0. Thus, 𝐴𝑥 ≤ 𝐴𝑥 ≤ 𝑏 ≤ 𝑏.
Hence, 𝑥 ∈ Ω. Now let𝑥 ∈ Ω. Then,𝐴𝑥 ≤
𝑏, 𝐴𝑥 ≥ 𝑏 and 𝑥 ≥ ⃗0. Hence 𝑥 ∈ 𝒯. So
𝒯 = Ω.

Now, we will show that Ω ⊆ 𝒯1. Let
𝑥′ ∈ Ω, there exists 𝐴′ ∈ A and 𝑏′ ∈ b
such that𝐴′𝑥′ = 𝑏′ , 𝑥′ ≥ ⃗0, where𝑚 ≥ 𝑛.
This implies that 𝑥′ provides a basic feasi-
ble solution of the deterministic problem

min 𝑐⊤𝑥 subject to 𝐴′𝑥 ≤ 𝑏′ , 𝑥 ≥ ⃗0,

for any 𝑐 ∈ [𝑐, 𝑐]. The vector 𝑥′ also sat-
isfies 𝐴𝑥′ ≥ 𝑏, from the definition of Ω.
Therefore, 𝑥′ becomes a part of a basic fea-
sible solution of Problem 𝐼1:
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Problem 𝐼1 ∶ min 𝑐⊤𝑥 subject to

𝐴′𝑥 ≤ 𝑏′ , 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ ⃗0.

Hence, Ω ⊆ 𝒯1. Since Ω = 𝒯 and 𝒯1 ⊆
𝒯, we have Ω = 𝒯 = 𝒯1. □

Corollary 3.2. Let A ∈ 𝕀ℝ𝑚×𝑛 where 𝑚 ≥
𝑛. If 𝑥 > ⃗0 for all 𝑥 ∈ Ω, then Ω = 𝒯2,
where Ω denotes the weak feasible solution
set of the system A𝑥 = b, and 𝒯2 denotes
the set of basic optimal solutions to Problem
𝐼𝐿𝑃1.

Proof. It is sufficiently enough to show that
Ω ⊆ 𝒯2. Let 𝑥∗ ∈ Ω. Since Ω = 𝒯1, 𝑥∗ is
a basic feasible solution to some determin-
istic problems of 𝐼𝐿𝑃1. Let 𝑆 be the set
of all deterministic problems of 𝐼𝐿𝑃1 con-
taining 𝑥∗ as their basic feasible solution.
Since𝑥∗ > 0, all components𝑥1, 𝑥2, … , 𝑥𝑛
of 𝑥∗ are basic variables. A basis matrix
corresponding to 𝑥∗ of each deterministic
problem in 𝑆 contains coefficient columns
of basic variables 𝑥1, 𝑥2, … , 𝑥𝑛 and some
other slack variables. Since all elements in
Ω are assumed to be greater than ⃗0, all ba-
sis matrices of deterministic problems in 𝑆
must also correspond to columns of vari-
ables 𝑥1, 𝑥2, … , 𝑥𝑛 and some other slack
variables. Hence, 𝑥∗ is a basic optimal so-
lution to a problem in 𝑆. □

4. Interval solutions of interval lin-
ear program

In this section, we propose a novel
approach for determining a tolerance based
interval solution near optimistic solution of
Problem 𝐼𝐿𝑃1. We begin by discussing a
method for identifying subsets of feasible
interval vectors within the set of tolerance
solution, as introduced by Beaumont and
Philippe [9].

4.1 Interval tolerance solution
This section reviews the method pro-

posed by Beaumont and Philippe [9] for
identifying a subset of the interval tolerance
solution.

In their 2001 work, Beaumont and
Philippe introduced two polyhedrons that
characterize subsets of the interval vectors
contained within the tolerance solution set.
They also proposed a refined definition of
optimality for an interval vector within this
context. Moreover, they demonstrated how
the Simplex algorithm can be utilized to
identify an optimal interval vector belong-
ing to the tolerance solution set.

They begin by defining the set of all
possible interval vectors included in the tol-
erance solution set, denoted by𝑆. The prac-
tical characterization of the tolerance solu-
tion set is then presented in Theorem 4.1.

𝑆 =
⎧{
⎨{⎩

(𝑥1
𝑥2

) ∈ ℝ2𝑛 | 𝑥1 ≤ 𝑥2

and [𝑥1, 𝑥2] ⊆ Σ∀∃(A,b)

⎫}
⎬}⎭

.

Theorem 4.1 ([9, 34]). Let 𝐼2𝑛 denote the
2𝑛×2𝑛 identity matrix. For any vector 𝑦 ∈
ℝ𝑛, 𝑦 ∈ ∑∀∃(A,b) if and only if there exist
(𝑦1, 𝑦2) ∈ ℝ𝑛 × ℝ𝑛 such that 𝑦 = 𝑦1 − 𝑦2,
where 𝑦1 and 𝑦2 cannot simultaneously take
positive values. Then, (𝑦1, 𝑦2) satisfies the
following system of linear inequalities:

( 𝐵
−𝐼2𝑛

) (𝑦1
𝑦2

) ≤ (𝑏′

0) ,

where

𝐵 = ( 𝐴𝑐 + Δ −(𝐴𝑐 − Δ)
−(𝐴𝑐 − Δ) 𝐴𝑐 + Δ )

and
𝑏′ = ( 𝑏

−𝑏) ,

with A = [𝐴𝑐 − Δ, 𝐴𝑐 + Δ].
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However, this theorem provides a
practical description of the solution set
without involving interval sets. In Theorem
4.2, the concept of Theorem 4.1 will be used
to generate a subset of 𝑆.
Theorem 4.2 ([9]). Let 𝑥0 be prior known
element of Σ∀∃(A,b), i.e., 𝑥0 ∈ x ⊆
Σ∀∃(A,b). Let |𝐵| represent the matrix ob-
tained by taking the absolute value of each
element of 𝐵 individually. The notations in
Theorem 4.1 remain valid. Define

𝑥0 ∈ ∑
∀∃

(A,b), 𝑏″ = 𝑏′ − 𝐵 (𝑥+
0

𝑥−
0

) ,

where 𝑥+
0 = |𝑥0|+𝑥0

2 , 𝑥−
0 = |𝑥0|−𝑥0

2 , and

𝑆1 =
⎧{{
⎨{{⎩

𝑋 | 𝑋 = (𝑥0 − 2𝑦2
𝑥0 + 2𝑦1

) such that

(𝐵 + |𝐵|
−𝐼2𝑛

) (𝑦1
𝑦2

) ≤ (𝑏″

0 )

⎫}}
⎬}}⎭

.

Then, 𝑆1 ⊆ 𝑆.

The interval tolerance solution of the
system A𝑥 = b can now be obtained using
the above theorem. However, when the left-
hand side is slightly lower than the right-
hand side, we refer to the ILP problem as
Problem 𝐼𝐿𝑃1. As proven in Section 3,
the feasible weak solution set of the system
A𝑥 = b is equivalent to the union of the ba-
sic optimal solutions of deterministic prob-
lems for an 𝐼𝐿𝑃1, subject to 𝑥 ≥ 𝑥0, for
a given 𝑥0 > ⃗0. By this relationship, we
can now use the concept of a tolerance so-
lution for interval linear programming in an
inequality system.

According to the objective of this
paper, we aim to obtain an interval vec-
tor solution that exhibits tolerance behavior
closely aligned with an optimistic solution.
Initially, we must determine the optimistic
solution to the problem. Should the opti-
mistic solution fail to satisfy the tolerance

conditions, the interval [𝐴, 𝐴] will be ad-
justed accordingly. In the next subsection,
we present an approach to adjust an inter-
val problem if the obtained solution is not a
tolerance solution. We then generalize the
method proposed in [9] to find an interval
tolerance solution for the adjusted problem.

4.2 Left-hand side adjustment
Themethod for finding interval toler-

ance solutions from [9] is valid only when a
tolerance solution exists for the given prob-
lem. However, we seek an interval vector
solution that is close to the optimistic solu-
tion 𝑥∗ and also captures the semantics of
tolerance. If the optimistic solution 𝑥∗ does
not satisfy the tolerance criteria, for exam-
ple, if 𝑥∗ is a control, left-localized, or right-
localized solution, we adjust the left-hand
side of the problem to induce a tolerance be-
havior in 𝑥∗.

In this section, we introduce a new
approach for modifying the left-hand side
of the problem to ensure that optimistic so-
lution 𝑥∗ exhibits tolerance semantics with
respect to the adjusted problem. Further-
more, this approach ensures that the left-
hand side of the adjusted interval problem
remains within the original problem’s inter-
val, while minimizing the total difference
between their interval parameters A.
4.2.1 The control optimistic solution

Consider the control solution 𝑥∗ ≥ ⃗0.
It is known that if 𝑥∗ is a control solution
for an ILP problem, then b ⊆ A𝑥∗, shown
in Fig. 2. Nevertheless, if we shrink the
interval A𝑥∗ to A′𝑥∗ = [𝐴′𝑥∗, 𝐴′𝑥∗], the
system A′𝑥∗ = b will exhibit tolerance be-
havior, shown in Fig. 3.

If 𝑥∗ is a control solution ofA𝑥∗ = b,
then by solving Model (4.1), 𝑥∗ is modi-
fied into a tolerance solution of A′𝑥∗ = b,
minimizing the difference between the orig-
inal (A) and adjusted left-hand side inter-
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Fig. 2. (A𝑥∗)𝑖 ⊇ b𝑖, where 𝑥∗ ∈ ℝ𝑛.

Fig. 3. (A′𝑥∗)𝑖 ⊆ b𝑖, where 𝑥∗ ∈ ℝ𝑛.

val matrices (A′). Let 𝑎′
𝑖𝑗 and 𝑎′

𝑖𝑗 be un-
known variables, for all 𝑖 ∈ {1, 2, … , 𝑚}
and 𝑗 ∈ {1, 2, … , 𝑛}.

min
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

(𝑎′
𝑖𝑗 − 𝑎𝑖𝑗) + (𝑎𝑖𝑗 − 𝑎′

𝑖𝑗)

s.t. 𝐴′𝑥∗ = 𝑏, (4.1)

𝐴′𝑥∗ = 𝑏,
𝐴 ≤ 𝐴′,
𝐴′ ≤ 𝐴.

4.2.2 The left-localized optimistic solu-
tion

Consider the left-localized solution
𝑥∗ ≥ ⃗0. It is known that if 𝑥∗ is a left-
localized solution to an ILP problem, then
𝐴𝑥∗ ≤ 𝑏 ≤ 𝐴𝑥∗ ≤ 𝑏, as illustrated in Fig.
4. However, by shifting𝐴 to𝐴′ while keep-
ing 𝐴′

fixed as 𝐴, the system A′𝑥∗ = b ex-
hibits tolerance characteristics, with the to-
tal change from the original intervalA to the
new interval A′ minimized. Fig. 5 shows
the interval system A′𝑥∗ obtained by shift-
ing the interval A according to the method
described above.

If 𝑥∗ is a left-localized solution of
A𝑥∗ = b, then by solving Model (4.2),
𝑥∗ is transformed into a tolerance solution

Fig. 4. (A𝑥∗)𝑖 ≤𝑠𝑡 b𝑖, where 𝑥∗ ∈ ℝ𝑛.

Fig. 5. Fixing 𝐴′
as 𝐴, (A′𝑥∗)𝑖 ⊆ b𝑖, where

𝑥∗ ∈ ℝ𝑛.

of A′𝑥∗ = b, while minimizing the differ-
ence between the original (A) and adjusted
left-hand side (A′). Let 𝑎′

𝑖𝑗 and 𝑎′
𝑖𝑗 be un-

known variables, for all 𝑖 ∈ {1, 2, … , 𝑚}
and 𝑗 ∈ {1, 2, … , 𝑛}.

min
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎′
𝑖𝑗 − 𝑎𝑖𝑗 (4.2)

s.t. 𝐴′𝑥∗ = 𝑏,
𝐴′ = 𝐴,
𝐴 ≤ 𝐴′.

4.2.3 The right-localized optimistic solu-
tion

Consider the right-localized solution
𝑥∗ ≥ ⃗0. It is known that if 𝑥∗ is a right-
localized solution for an ILP problem, then
𝑏 ≤ 𝐴𝑥∗ ≤ 𝑏 ≤ 𝐴𝑥∗, as illustrated in Fig.
6. Nevertheless, if we shift 𝐴 to 𝐴′

and fix
𝐴′ as 𝐴, the system A′𝑥∗ = b will pos-
sess tolerance properties, while minimizing
the total interval change from A to A′. The
interval system A′𝑥∗, shown in Fig. 7, is
obtained by shifting the interval A in accor-
dance with the method described above.

If 𝑥∗ is a right-localized solution of
A𝑥∗ = b, then by solving Model (4.3),
𝑥∗ is modified into a tolerance solution of
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Fig. 6. (−A𝑥∗)𝑖 ≤𝑠𝑡 (−b)𝑖, where 𝑥∗ ∈ ℝ𝑛.

Fig. 7. Fixing 𝐴′ as 𝐴, (A′𝑥∗)𝑖 ⊆ b𝑖, where
𝑥∗ ∈ ℝ𝑛.

A′𝑥∗ = b, minimizing the difference be-
tween the original (A) and adjusted left-
hand side (A′). Let 𝑎′

𝑖𝑗 and 𝑎′
𝑖𝑗 be unknown

variables, for all 𝑖 ∈ {1, 2, … , 𝑚} and 𝑗 ∈
{1, 2, … , 𝑛}.

min
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑗 − 𝑎′
𝑖𝑗 (4.3)

s.t. 𝐴′𝑥∗ = 𝑏,
𝐴′ = 𝐴,
𝐴′ ≤ 𝐴.

4.3 Interval tolerance solution near op-
timistic solution
Steps of the approach: Find interval toler-
ance solution for an adjusted problem, re-
lated to the optimistic solution of the origi-
nal problem. If 𝑥 > ⃗0 for all 𝑥 ∈ Ω, then

1. Find an optimistic solution of the
original problem: in this step, we
have to solve the best deterministic
problem, min{𝑐T𝑥| 𝐴𝑥 ≤ 𝑏}. The
solution 𝑥∗, obtained from this prob-
lem is an optimistic solution of the
problem.

2. Adjusting process: if 𝑥∗ is a toler-
ance solution of A𝑥∗ = b, proceed to

Step 3. Else 𝑥∗ is not a tolerance so-
lution, it must be adjusted to become
the tolerance solution of a new sys-
tem A′𝑥∗ = b. This new problem
is obtained by adjusting the left-hand
side of the original problem, follow-
ing Subsection 4.2. Once 𝑥∗ becomes
a tolerance solution for the adjusted
problem A′𝑥∗ = b, proceed to Step
3.

3. To obtain the interval tolerance solu-
tion that maximizes the total width
of the interval, let 𝑀 be a suffi-
ciently large constant and 𝑤 denote
the width of the interval solution. We
solve Model (4.4) to determine the
unknown variables 𝑥0, 𝑦1, and 𝑦2,
which are then used to construct the
interval tolerance solution. Let 𝐽 =
{1, 2, … , 𝑛}.

max
𝑛

∑
𝑗=1

𝑤𝑗 (4.4)

s.t. (𝐵 + |𝐵|)𝑦 ≤ ( 𝑏
−𝑏) − 𝐵 (𝑥+

0
𝑥−

0
)

2(𝑦𝑗
1 + 𝑦𝑗

2) ≥ 𝑤𝑗, 𝑗 ∈ 𝐽,
𝑀𝑧𝑗 ≥ 𝑦𝑗

1, 𝑗 ∈ 𝐽,
𝑀(1 − 𝑧𝑗) ≥ 𝑦𝑗

2, 𝑗 ∈ 𝐽,
𝑦𝑗

𝑝 ≥ 0, 𝑝 = 1, 2, 𝑗 ∈ 𝐽,
𝑥+

0 , 𝑥−
0 ≥ ⃗0,

𝑧𝑗 ∈ {1, 2}, 𝑗 ∈ 𝐽,
𝑤𝑗 ≥ 0, 𝑗 ∈ 𝐽,

where

𝑦 = (𝑦1
𝑦2

) ∈ ℝ2𝑛, 𝑦𝑝 =
⎛⎜⎜⎜⎜
⎝

𝑦1
𝑝

𝑦2
𝑝
⋮

𝑦𝑛
𝑝

⎞⎟⎟⎟⎟
⎠

,

for all 𝑝 = 1, 2, and

𝐵 = ( 𝐴𝑐 + Δ −(𝐴𝑐 − Δ)
−(𝐴𝑐 − Δ) 𝐴𝑐 + Δ ) .
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By Theorem 4.2, an interval toler-
ance solution can be expressed as

x = (𝑥0 − 2𝑦2

𝑥0 + 2𝑦1) .

Unlike the approach in [9], the vari-
able 𝑥0 inModel (4.4) does not require prior
specification. Instead, an optimal 𝑥0 that
maximizes the total distance of 𝑥𝑖 for all
𝑖 = 1, … , 𝑛 can be determined by solving
this model. Thus, after this step, we obtain
an interval tolerance solution for A′𝑥 = b,
corresponding to the optimistic solution of
the original problem.

Furthermore, a sensitivity analysis
approach can be applied to directly exam-
ine how much the input intervals, repre-
sented as deterministic values in 𝐵, 𝑏 and
𝑏 in Model 4.4, may vary without altering
the interval tolerance solution.

5. Numerical examples
In this section, two numerical exam-

ples will be presented to illustrate the usage
of the proposed approach.

Example 5.1. Based on Problem (1.1)
shown in Section 1, determine an interval
tolerance solution that approximates the op-
timistic solution of the problem.

Since 𝑥 > ⃗0 for all 𝑥 ∈ Ω, our pro-
posed approach can be applied to the ILP
problem. Consider the best sub-model:

max 3.5 𝑥1 − 1 𝑥2
s.t. 𝑥1 + 1.6 𝑥2 ≤ 12,

3𝑥1 − 3 𝑥2 ≤ 7,
𝑥1, 𝑥2 ≥ 0.

The optimal solution is 𝑥∗ = (𝑥∗
1, 𝑥∗

2) =
(236

39 , 145
39 ). Then A𝑖𝑥∗ for each 𝑖 = 1, 2

can be expressed as the following:
A1𝑥∗ = [12.000, 13.348], then 𝑥∗ is a right-
localized solution to the first constraint of

(1.1),
A2𝑥∗ = [7.000, 16.769], then 𝑥∗ is also a
right-localized solution to the second con-
straint.
Since 𝑥∗ is a right-localized solution, we
need to adjust A to A′. Thus, 𝑥∗ becomes a
tolerance solution to the system A′𝑥∗ = b.
Therefore, the adjusted problem (5.1) can
be rewritten as follows, ensuring that 𝑥∗ is
a tolerance solution to problem.

max 3.5 𝑥1 − 𝑥2 (5.1)
s.t. 𝑥1 + 1.6 𝑥2 = [11.6, 12],

3 𝑥1 − 3 𝑥2 = [5, 7],
𝑥1, 𝑥2 ≥ 0.

Some deterministic coefficients in the prob-
lem can be considered as degenerate inter-
val values. That is, a deterministic value
(e.g., 5) can be represented as an interval
with zero width, such as [5, 5]. Therefore,
it is not necessary for all input data to be
expressed as intervals.

Next, we determine an interval toler-
ance solution for Problem (5.1) using the
idea in Step 3. By solving Model (4.4)
with 𝑀 = 100, the unknown variables
𝑥0 = (𝑥01

, 𝑥02
) = (5.4872, 3.8205),

𝑤 = (0.4, 0), 𝑦1 = (0.2, 0) and 𝑦2 =
(0, 0). By Theorem 4.2, the interval toler-
ance solution to Problem (5.1) is given by
x1 = [5.4872, 5.8872] and 𝑥2 = 3.8205.
As shown in Fig. 8, the obtained solution is
represented by a blue line within the green
area, where the green area corresponds to
the weak and tolerance solution set of the
adjusted problem (5.1). By adding a con-
straint that the width of x1 is twice the width
of x2, we obtained an interval solution given
by x1 = [5.56, 5.78] and x2 = [3.78, 3.89],
as shown by the red box in Fig. 8.

In addition, Fig. 8 shows that the
weak solution set of the adjusted problem
(5.1) is smaller compared to the weak solu-
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Fig. 8. The interval tolerance solution of an ad-
justed Problem (5.1)

tion or optimal solution set of the original
problem (1.1). Narrowing the set of weak
solutions can help eliminate solutions that
are only feasible under very specific or un-
realistic parameter realizations, potentially
leading to reduced complexity and faster
convergence in certain algorithms.

Example 5.2. Diet problem.
A farmer formulates two different chicken
feed blends, Formula I and Formula II, each
with distinct nutrient compositions. The nu-
trient content (measured in kilograms per
100 kilograms of chicken feed) required for
laying hens is outlined in Table 1, as refer-
enced in [14,35]. Given that the production
cost per unit of Formula I is approximately
5 to 6 times higher than that of Formula II,
the farmer aims to mix these formulas while
ensuring that the quantity of Formula II is
at least 5 times that of Formula I, resulting
in a total of 100 kg of feed. This scenario
leads to the formulation of an interval linear
programming problem with the objective of
cost minimization, as follows.

min [5, 6] 𝑥1 + 𝑥2 (5.2)
s.t. [0.4921, 0.50] 𝑥1 + [0.1072, 0.11] 𝑥2

≥ [16, 16.227],
[0.007, 0.007] 𝑥1 + [0.004, 0.004] 𝑥2
≥ [0.35, 0.442924],
[0.0098, 0.0105] 𝑥1 + [0.0074, 0.008] 𝑥2
≥ [0.75, 0.7743392],

[0.0577, 0.058] 𝑥1 + [0.0316, 0.032] 𝑥2
≥ [3.5, 3.5334388],
[0.008, 0.008] 𝑥1 + [0.0033, 0.0033] 𝑥2
≥ [0.35, 0.3972476],
0.04 𝑥1 + 0.04 𝑥2 ≥ 4,
𝑥1 + 𝑥2 = 100,
𝑥2 ≥ 5 𝑥1,
𝑥1, 𝑥2 ≥ 1.

Since 𝑥1, 𝑥2 ≥ 1, then 𝑥 > ⃗0 for all
𝑥 ∈ Ω, whichmeans our proposed approach
is applicable to the ILP problem. Consider
the best sub-model:

min 5 𝑥1 + 𝑥2
s.t. 0.5𝑥1 + 0.11𝑥2 ≥ 16,

0.007 𝑥1 + 0.004 𝑥2 ≥ 0.35,
0.0105 𝑥1 + 0.008 𝑥2 ≥ 0.75,
0.058 𝑥1 + 0.032 𝑥2 ≥ 3.5,
0.008 𝑥1 + 0.0033 𝑥2 ≥ 0.35,
0.04 𝑥1 + 0.04 𝑥2 ≥ 4,
𝑥1 + 𝑥2 = 100,
𝑥2 ≥ 5 𝑥1,
𝑥1, 𝑥2 ≥ 1.

The optimal solution is 𝑥∗ = (𝑥∗
1, 𝑥∗

2) =
(12.821, 87.179). Accordingly, for each
𝑖 = 1, … , 6, A𝑖𝑥∗ is given by:

A1𝑥∗ = [15.6548, 16.0002],
A2𝑥∗ = [0.4385, 0.4385],
A3𝑥∗ = [0.7707, 0.8321],
A4𝑥∗ = [3.4946, 3.5333],
A5𝑥∗ = [0.3962, 0.3902],
A6𝑥∗ = 4.

Thus, 𝑥∗ satisfies the first to sixth con-
straints of Problem (5.2) as a left-localized,
tolerance, right-localized, left-localized,
tolerance, and tolerance solution, respec-
tively.
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By applying the approach from Sub-
section 4.2, we can adjust A to A′ such that
𝑥∗ becomes a tolerance solution for the sys-
tem A′𝑥∗ = b. Therefore, the adjusted
problem (5.3) can be rewritten as follows,
ensuring that 𝑥∗ is a tolerance solution to
the problem.

min [5, 6] 𝑥1 + 𝑥2 (5.3)
s.t. 0.50 𝑥1 + 0.11 𝑥2 = [16, 16.227],

0.007 𝑥1 + 0.004 𝑥2 = [0.35, 0.443],
[0.0098, 0.010052] 𝑥1 + 0.0074 𝑥2
= [0.75, 0.774],
[0.0577, 0.058] 𝑥1 + [0.03167, 0.032] 𝑥2
= [3.5, 3.534],
0.008 𝑥1 + 0.0033 𝑥2
= [0.35, 0.397],
0.04 𝑥1 + 0.04 𝑥2 = 4,
𝑥1 + 𝑥2 = 100,
𝑥2 ≥ 5 𝑥1,
𝑥1, 𝑥2 ≥ 1.

In Problem (5.3), the nutrient con-
tents, protein, methionine, lysine, calcium,
phosphorus, and fat of Formula I and II
are adjusted to determine the optimal mix
of chicken feed that minimizes cost as
shown in Table 1, while also ensuring that
the chickens receive all required nutrients
within the specified intervals. After apply-
ing Model (4.4) with 𝑀 = 100, to solve
Problem (5.3), the decision variables 𝑥0 =
(12.821, 87.179),𝑤 = (0, 0), 𝑦1 = (0, 0)
and 𝑦2 = (0, 0). By Theorem 4.2, we ob-
tain an interval tolerance solution with zero
width (𝑥1, 𝑥2) = (12.821, 87.179).

However, we found that adjusting the
nutritional concentrations in the formulas
may reduce the flexibility of the data. Nev-
ertheless, this adjustment allows us to ob-
tain a tolerance solution that is close to the
optimistic solution, meaning that the result-
ing feed mix ensures an appropriate cost
that is near the minimum cost of the original

problem, while still satisfying the required
nutrient levels as discussed in [35].

6. Conclusions
Under the assumption that the ILP

problem is considered as Problem 𝐼𝐿𝑃1, we
initially analyzed the equivalence between
the feasible weak solution set of the interval
linear equation system and the union of ba-
sic feasible solutions obtained from corre-
sponding deterministic problems of 𝐼𝐿𝑃1.
This analysis further establishes that the
feasible weak solution set is equivalent to
the union of basic optimal solutions for an
𝐼𝐿𝑃1 with 𝑥 ≥ 𝑥0, where 𝑥0 > ⃗0. Build-
ing on these findings, we determined an in-
terval tolerance vector solution by adapting
the method from [9] to obtain a solution that
remains close to an optimistic ILP solution
while maintaining the tolerance property. If
the optimistic solution is not a tolerance so-
lution of the ILP problem, an adjustment to
the left-hand side matrix A is implemented.
However, unlike the method from [9], our
proposed approach does not require speci-
fying 𝑥0 in advance. Instead, an optimal 𝑥0
that maximizes the total width of 𝑥𝑖 for all
𝑖 = 1, … , 𝑛 can be determined by solving
Model (4.4). Although adjusting the left-
hand side of the problem may reduce data
flexibility, it enables us to obtain an inter-
val vector solution that is close to the op-
timistic solution while still preserving tol-
erance behavior. Apart from the diet prob-
lem, the proposed technique can be applied
to various areas, such as supply chain man-
agement, energy planning, and healthcare,
where solution strategies often involve op-
timistic or pessimistic viewpoints, and con-
straints naturally align with tolerance se-
mantics.

However, tolerance semantics alone
may be insufficient to fully characterize so-
lutions in real-world applications. For ex-
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Table 1. Typical nutrition concentrations for in-production laying hens (kilograms per 100 kilograms
of chicken food) and available nutrients in chicken formulas I and II (kilograms per 100 kilograms of
chicken food).

Protein Methionine Lysine Calcium Phosphorous Fat

Formula I [49.21, 50.00] [0.70, 0.70] [0.98, 1.05] [5.77, 5.80] [0.80, 0.80] 4

Formula II [10.72, 11.00] [0.40, 0.40] [0.74, 0.80] [3.16, 3.20] [0.33, 0.33] 4

Adjusted formula I [50, 50] [0.70, 0.70] [0.9800, 1.0052] [5.77, 5.80] [0.80, 0.80] 4

Adjusted formula II [11, 11] [0.40, 0.40] [0.74, 0.74] [3.167, 3.200] [0.33, 0.33] 4

Typical Nutrition

Concentrations for [1600.0, 1622.7] [35.0, 44.3] [75.0, 77.4] [350, 354] [35.0, 39.7] 400

production-laying hen

ample, in the course assignment problem,
the number of assigned courses can exceed
the requirement but must not fall below it.
In such cases, a right-localized solutionmay
be more appropriate. Therefore, future re-
search will focus on developing approaches
for obtaining interval vectors that capture
specific semantic interpretations, such as
control, left-localized, and right-localized
solutions.
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