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ABSTRACT
In this article, we introduce a four point analogue of the Banach contraction principle

and establish sufficient conditions for such mappings to possess fixed point(s) in complete
metric spaces. Notably, the classical Banach contraction principle emerges as a special case
of our results. We present several non-trivial examples that not only validate our theorems
but also reveal that quadrilateral perimetric contractions need not imply other well-known
contraction types. Furthermore, we extend our analysis to obtain fixed point theorems in
non-complete metric spaces. Lastly, we address a recent result linking mappings contracting
the perimeters of triangles in metric spaces to Banach-type contractions in 𝐺-metric spaces.

Keywords: Fixed point theorems; Mapping contracting perimeter of triangles; Perimetric
contraction on quadrilaterals

1. Introduction and Preliminaries
Fixed point theory plays a crucial

role in mathematics, where many problems
can be framed as fixed point problems.
These problems involve investigating the
existence and uniqueness of solutions. Ap-
plications of fixed point theory span diverse
areas, including matrix equations, differen-
tial equations, integral equations, optimiza-
tion, and machine learning.

The foundational work in this field
dates back to Stefan Banach’s introduction
of the Banach contraction principle [1] in

1922. This principle guarantees the ex-
istence and uniqueness of fixed points of
contraction mappings in a complete met-
ric space. Subsequently, other prominent
researchers contributed significantly to the
evolution of fixed point theory. As a result,
the concept of Banach contraction has been
extended in various ways by relaxing the
contraction condition and considering dif-
ferent topologies.

There are various classical results in
the literature of fixed point theory. These
results generalize Banach’s theorem in var-
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ious ways. Nadler [2] extended Banach’s
theorem from single-valued mappings to
multi-valued mappings. Kirk [3] has pro-
posed the nonexpansive mapping type ex-
tension of the Banach contraction princi-
ple. Berinde [4] has introduced the en-
riched contractions generalizing the con-
traction mappings in normed linear spaces.
Generalizing the underlying space, Brow-
der [5] has initiated the fixed point result in
topological vector spaces. Wardowski [6]
has disclosed 𝐹-contractions using implicit
functions extending the contraction map-
pings. Khojasteh et al. induced the idea of
𝑍-contraction mappings by utilizing simu-
lation functions, see [7, 8]. Kannan [9] ob-
tained a fixed point result for a class of map-
pings which characterizes the completeness
of the metric space. Chatterjea [10] pro-
posed a class of mappings independent of
Banach’s class and identified the prerequi-
sites for reaching fixed point. There are
certain fixed point outcomes in generalized
metric spaces (See [11–13]).

Recently in 2023, Petrov [14] intro-
duced the notion of a class of mappings
that can be distinguished as the mapping
that contracts the perimeters of triangles and
proved a fixed point result. Let us recall
that.

Definition 1.1 ([14]). Let (𝑌, 𝜌) be a met-
ric space with at least three points. Then
the mapping 𝑇 : 𝑌 → 𝑌 is defined as con-
tracting perimeters of triangles if there is an
𝛼 ∈ [0, 1) such that

𝜌(𝑇 𝑝, 𝑇𝑞) + 𝜌(𝑇𝑞, 𝑇𝑟) + 𝜌(𝑇𝑟, 𝑇 𝑝) ≤
𝛼(𝜌(𝑝, 𝑞) + 𝜌(𝑞, 𝑟) + 𝜌(𝑟, 𝑝)), (1.1)

for three pairwise distinct points 𝑝, 𝑞, 𝑟 ∈ 𝑌 .

These mappings attain fixed points in
a complete metric space if and only if it has

no periodic points of order 2. There are at
most two fixed points.

In 2024, Petrov along with Bisht in-
troduced the three-point analogue of Kan-
nan type mappings utilizing the notion of
mapping contracting perimeters of triangles
and developed fixed point results.

Definition 1.2 ([15]). “Let (𝑌, 𝜌) be a met-
ric space with at least three points. Then
𝑇 : 𝑌 → 𝑌 is said to be a generalized Kan-
nan type mapping if there is a 0 ≤ 𝛿 < 2

3
such that

𝜌(𝑇 𝑝, 𝑇𝑞) + 𝜌(𝑇𝑞, 𝑇𝑟) + 𝜌(𝑇𝑟, 𝑇 𝑝) ≤
𝛿(𝜌(𝑝, 𝑇 𝑝) + 𝜌(𝑞, 𝑇𝑞) + 𝜌(𝑟, 𝑇𝑟)), (1.2)

for any three pairwise distinct points
𝑝, 𝑞, 𝑟 ∈ 𝑌”.

Thereafter, C.M. Păcurar and O.
Popescu introduced the three point ana-
logue of the Chatterjea type mappings and
proved a fixed point result.

Definition 1.3 ([16]). “Let (𝑌, 𝜌) be a met-
ric space with at least three points. Then
𝑇 : 𝑌 → 𝑌 is a generalized Chatterjea type
mapping if there is 𝜆 ∈ [0, 1

2 ) such that

𝜌(𝑇 𝑝, 𝑇𝑞) + 𝜌(𝑇𝑞, 𝑇𝑟) + 𝜌(𝑇𝑟, 𝑇 𝑝) ≤
𝜆(𝜌(𝑝, 𝑇𝑞) + 𝜌(𝑝, 𝑇𝑟) + 𝜌(𝑞, 𝑇 𝑝)
+ 𝜌(𝑞, 𝑇𝑟) + 𝜌(𝑟, 𝑇 𝑝) + 𝜌(𝑟, 𝑇𝑞)), (1.3)

for any three pairwise distinct points
𝑝, 𝑞, 𝑟 ∈ 𝑌”.

In a complete metric space, both a
generalized Kannan type mapping and a
generalized Chatterjea type mapping attain
fixed points if they do not achieve periodic
points of order 2. There are at most two
fixed points in both the cases.

E. Karapınar [17] recently showed
that the concept ofmappings contracting the
perimeters of triangles in metric spaces is
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equivalent to a variant of the Banach con-
traction in the context of 𝐺-metric spaces.
The author also raised concerns about the
novelty of fixed-point results derived from
such contractions. However, this result
contains a gap, as illustrated in the follow-
ing remark:

Remark 1.4. It has been concluded in ([17,
p. 5, Theorem 3.1]) that the mapping 𝑇 ad-
mits a unique fixed point. However, since
𝑇 satisfies 𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝑘𝐺 (𝑥, 𝑦, 𝑧),
𝑘 ∈ [0, 1) for all pairwise distinct points of
𝑋 , this does not imply the uniqueness of the
fixed point of 𝑇 . In addition, the absence of
periodic points of order 2 is not considered
here, which is necessary. For reference, see
the following examples:

Example 1.5. Let 𝑋 = {𝑝, 𝑞, 𝑟} be a met-
ric space endowed with the discrete metric
𝑑. Now, we define 𝐺 : 𝑋 × 𝑋 × 𝑋 → R by
𝐺 (𝑥, 𝑦, 𝑧) = 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑧, 𝑥) for
all 𝑥, 𝑦, 𝑧 ∈ 𝑋 . Define 𝑇 : 𝑋 → 𝑋 be such
that 𝑇 𝑝 = 𝑝, 𝑇𝑞 = 𝑞, and 𝑇𝑟 = 𝑝. Then
𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝑘 𝐺 (𝑥, 𝑦, 𝑧), for all pair-
wise distinct points of 𝑋 , where 𝑘 ∈ [0, 1).
In this case, 𝑇 consists of two fixed points,
namely, 𝑝 and 𝑞.

Example 1.6. Let 𝑋 = {𝑎, 𝑏, 𝑐} be a met-
ric space endowed with the discrete metric
𝑑. Now, we define 𝐺 : 𝑋 × 𝑋 × 𝑋 → R by
𝐺 (𝑥, 𝑦, 𝑧) = 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑧, 𝑥) for
all 𝑥, 𝑦, 𝑧 ∈ 𝑋 . Define 𝑇 : 𝑋 → 𝑋 be such
that 𝑇𝑎 = 𝑏, 𝑇𝑏 = 𝑎 and 𝑇𝑐 = 𝑎. Then
𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝑘𝐺 (𝑥, 𝑦, 𝑧), for all pair-
wise distinct points of 𝑋 , where 𝑘 ∈ [0, 1).
Here, the points 𝑎 and 𝑏 are periodic points
of order 2. However,𝑇 does not contain any
fixed point.

In a 𝐺-metric space, where the do-
main of 𝐺 is defined by triplets, it be-
comes possible to derive a modified form

of the three-point extension of Banach’s re-
sult. However, it is not feasible to construct
a four-point extension of any result within
the same framework of 𝐺-metric spaces.

In this article, we would like to study
the four-point analogue of Banach’s result.
Our goal is to establish adequate conditions
ensuring the existence and uniqueness of
fixed points. Additionally, we aim to com-
pare this class of mappings with the previ-
ous classes in the literature and uncover any
relationship between them.

We explore a new kind of mapping
in the following section, which is defined
as mapping that reduces the perimeter of
quadrilaterals. We establish a fixed point
result for this type of mapping in a complete
metric space. Remarkably, contraction
mappings are a subset of these perimeter-
based mappings. We obtain Banach’s fixed
point theorem as a simple consequence. To
validate our results, we provide a few illus-
trative examples.

Throughout the paper, we denote by
(𝑀, 𝑑) a metric space, |𝑀 | the cardinality
of the set𝑀 and 𝐹𝑖𝑥(𝑇) the collection of all
fixed points of the mapping 𝑇 : 𝑀 → 𝑀 .

Let 𝑇 be a mapping on the metric
space 𝑀 . A point 𝑚 ∈ 𝑀 is said to be a
periodic point of order 𝑝 (or prime period
𝑝) if 𝑝 is the least positive integer for which
𝑇 𝑝𝑚 = 𝑚.

2. Perimetric contraction on quadri-
laterals

We begin the section with the follow-
ing definition:

Definition 2.1. Let (𝑀, 𝑑) be a metric
space with at least four points. Then the
mapping 𝑇 : 𝑀 → 𝑀 is said to be a peri-
metric contraction on quadrilaterals on 𝑀 if
there is an 𝛼 ∈ [0, 1) such that

𝑑 (𝑇 𝑝, 𝑇𝑞) + 𝑑 (𝑇𝑞, 𝑇𝑟) + 𝑑 (𝑇𝑟, 𝑇𝑠) + 𝑑 (𝑇𝑠, 𝑇 𝑝)
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≤ 𝛼(𝑑 (𝑝, 𝑞) + 𝑑 (𝑞, 𝑟) + 𝑑 (𝑟, 𝑠) + 𝑑 (𝑠, 𝑝)),
(2.1)

for all distinct points 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑀 .

Remark 2.2. Perimetric contraction on
quadrilaterals does not attain periodic
points of order 4. Otherwise, if 𝑝 is a pe-
riodic point of order 4, then 𝑇 𝑝 = 𝑞, 𝑇𝑞 =
𝑟, 𝑇𝑟 = 𝑠, 𝑇𝑠 = 𝑝, where 𝑝, 𝑞, 𝑟, 𝑠 are all
distinct. Then we have,

𝑑 (𝑇 𝑝, 𝑇𝑞) + 𝑑 (𝑇𝑞, 𝑇𝑟) + 𝑑 (𝑇𝑟, 𝑇𝑠)+
𝑑 (𝑇𝑠, 𝑇 𝑝) = 𝑑 (𝑝, 𝑞) + 𝑑 (𝑞, 𝑟) + 𝑑 (𝑟, 𝑠)+
𝑑 (𝑠, 𝑝),

which contradicts Eq. (2.1).

Now, we investigate the continuity of
these mappings.

Theorem 2.3. A perimetric contraction on
quadrilaterals is continuous.

Proof. Let (𝑀, 𝑑) be a metric space with at
least four points, and let 𝑇 : 𝑀 → 𝑀 be a
perimetric contraction on quadrilaterals on
𝑀 . Let 𝑚′ ∈ 𝑀 be arbitrary. If 𝑚′ is an
isolated point of 𝑀 , then there is nothing to
prove. Now, suppose that𝑚′ is a limit point
of 𝑀 . Let 𝜀 > 0 be arbitrary. Choose 𝛿 > 0
be such that 0 < 𝛿 < 𝜀

6𝛼 .
Since 𝑚′ is a limit point of 𝑀 , there

exist 𝑎, 𝑏 ∈ 𝑀 with 𝑎 ≠ 𝑏 ≠ 𝑚′ such that
𝑑 (𝑚′, 𝑎) < 𝛿 and 𝑑 (𝑚′, 𝑏) < 𝛿. Now, for all
𝑚 ∈ 𝑀 with 𝑚 ≠ 𝑚′ satisfying 𝑑 (𝑚, 𝑚′) <
𝛿, we have

𝑑 (𝑇𝑚,𝑇𝑚′) ≤ 𝑑 (𝑇𝑚,𝑇𝑚′) + 𝑑 (𝑇𝑚′, 𝑇𝑎)+
𝑑 (𝑇𝑎, 𝑇𝑏) + 𝑑 (𝑇𝑏, 𝑇𝑚)

≤ 𝛼(𝑑 (𝑚, 𝑚′) + 𝑑 (𝑚′, 𝑎)+
𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑚))

≤ 2𝛼(𝑑 (𝑚, 𝑚′) + 𝑑 (𝑚′, 𝑎)+
𝑑 (𝑚′, 𝑏))

< 6𝛼𝛿

< 𝜀,

and hence the result follows. □

Now, we are ready to establish a con-
dition that is sufficient for the existence of
fixed point(s) for perimetric contraction on
quadrilaterals.

Theorem 2.4. Let us suppose a complete
metric space (𝑀, 𝑑) with at least four
points. Consider a mapping 𝑇 : 𝑀 → 𝑀 to
be a perimetric contraction on quadrilater-
als on𝑀 . Then, 𝑇 attains a fixed point in𝑀
if it does not attain periodic points of order
2 and 3. Furthermore, 𝑇 can attain at most
three fixed points.

Proof. Let 𝑇 : 𝑀 → 𝑀 be a perimetric
contraction on quadrilaterals on 𝑀 and let
𝑇 does not attain periodic points of order 2
and 3.

Let 𝑎0 ∈ 𝑀 be chosen arbitrarily.
Define 𝑇𝑎0 = 𝑎1, 𝑇𝑎1 = 𝑎2, · · · , 𝑇𝑎𝑛 =
𝑎𝑛+1, · · · . If 𝑎𝑛 is a fixed point of 𝑇 for any
𝑛, then we are done.

Now, assume that 𝑎𝑛 is not a fixed
point of 𝑇 for all 𝑛. Since 𝑎𝑛 is not a fixed
point of 𝑇 , it follows that 𝑎0 ≠ 𝑎1, 𝑎1 ≠ 𝑎2
and so on. Since 𝑇 does not attain periodic
points of order 2, then 𝑎0 ≠ 𝑎2, 𝑎1 ≠ 𝑎3
and so on. Again, since 𝑇 does not attain
periodic points of order 3, we have 𝑎0 ≠ 𝑎3
and so on. Therefore, any four consecutive
elements of {𝑎𝑛} are distinct.

Let 𝜆𝑛 = 𝑑 (𝑎𝑛, 𝑎𝑛+1) +
𝑑 (𝑎𝑛+1, 𝑎𝑛+2)+𝑑 (𝑎𝑛+2, 𝑎𝑛+3)+𝑑 (𝑎𝑛+3, 𝑎𝑛)
for all 𝑛 ∈ N ∪ {0} so that 𝜆𝑛 > 0 for all
𝑛 ∈ N ∪ {0}.

Now, for any N ∪ {0} by N, we have
𝜆𝑛 ≤ 𝛼𝜆𝑛−1. Then, it is clear that

𝑑 (𝑎0, 𝑎1) ≤ 𝜆0,

𝑑 (𝑎1, 𝑎2) ≤ 𝜆1 ≤ 𝛼𝜆0,

...
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𝑑 (𝑎𝑛, 𝑎𝑛+1) ≤ 𝜆𝑛 ≤ 𝛼𝑛𝜆0. (2.2)

Now, for all 𝑛 ∈ N ∪ {0} and for any
𝑝 = 1, 2, 3, · · · , we have

𝑑 (𝑎𝑛, 𝑎𝑛+𝑝) ≤ 𝑑 (𝑎𝑛, 𝑎𝑛+1) + 𝑑 (𝑎𝑛+1, 𝑎𝑛+2)+
· · · + 𝑑 (𝑎𝑛+𝑝−1, 𝑎𝑛+𝑝)

≤ 𝛼𝑛𝜆0 + 𝛼𝑛+1𝜆0 + · · · +
𝛼𝑛+𝑝−1𝜆0

≤ 𝛼𝑛 (1 + 𝛼 + · · · + 𝛼𝑝−1)𝜆0

≤ 𝛼𝑛 1 − 𝛼𝑝
1 − 𝛼 𝜆0.

This implies that 𝑑 (𝑎𝑛, 𝑎𝑛+𝑝) → 0
as 𝑛 → ∞ and for any 𝑝 = 1, 2, 3, · · · .
Hence, {𝑎𝑛} is a Cauchy sequence in𝑀 and
therefore convergent, as𝑀 is complete. Let
𝑎𝑛 → 𝑎∗ ∈ 𝑀 . Then, by the continuity of
𝑇 , 𝑎∗ ∈ 𝐹𝑖𝑥(𝑇).

Let us suppose that𝑇 has four distinct
fixed points, say, 𝑝, 𝑞, 𝑟, 𝑠. Then

𝑑 (𝑇 𝑝, 𝑇𝑞) + 𝑑 (𝑇𝑞, 𝑇𝑟) + 𝑑 (𝑇𝑟, 𝑇𝑠) + 𝑑 (𝑇𝑠, 𝑇 𝑝)
≤ 𝛼(𝑑 (𝑝, 𝑞) + 𝑑 (𝑞, 𝑟) + 𝑑 (𝑟, 𝑠) + 𝑑 (𝑠, 𝑝)),

which again implies that 𝛼 ≥ 1 - a con-
tradiction to Eq. (2.1). Hence, the result
follows. □

In relation to the converse of the pre-
ceding theorem, we derive the following re-
mark.

Remark 2.5. A perimetric contraction on
quadrilaterals cannot simultaneously admit
periodic points of prime periods 2 and 3, ir-
respective of the existence of fixed points.

Below, we present the following ex-
amples in support of Theorem 2.4. The
first is an example of a mapping contract-
ing perimeter of quadrilaterals with exactly
three fixed points.

Example 2.6. Let (𝑀, 𝑑) be a metric space
where 𝑀 = {𝑤, 𝑥, 𝑦, 𝑧} and let the metric

𝑑 be defined on 𝑀 as 𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑧) =
𝑑 (𝑦, 𝑧) = 1 and 𝑑 (𝑤, 𝑥) = 𝑑 (𝑤, 𝑦) =
𝑑 (𝑤, 𝑧) = 2. Let 𝑇 : 𝑀 → 𝑀 be defined as
𝑇𝑤 = 𝑥, 𝑇𝑥 = 𝑥, 𝑇 𝑦 = 𝑦, 𝑇𝑧 = 𝑧. Then, 𝑇
is a perimetric contraction on quadrilaterals
on𝑀 . Note that𝑇 does not contain periodic
points of order 2 and 3. Thus, Theorem 2.4
guarantees that 𝑇 has a fixed point. Clearly
𝐹𝑖𝑥(𝑇) = {𝑥, 𝑦, 𝑧}.

Next, we provide examples to show
that neither of the conditions 𝑇 has periodic
points of order 2 nor periodic points of order
3 can be dropped for the existence of fixed
points.

Example 2.7. Let 𝑀 = {𝑎, 𝑏, 𝑐, 𝑑} be
a metric space endowed with the discrete
metric 𝑑. Let 𝑇 : 𝑀 → 𝑀 be defined by
𝑇𝑎 = 𝑐, 𝑇𝑏 = 𝑐, 𝑇𝑐 = 𝑏, 𝑇𝑑 = 𝑏. Then
𝑇 is a perimetric contraction on quadrilat-
erals on 𝑀 . But, since 𝑏 and 𝑐 are periodic
points of order 2, therefore by Theorem 2.4,
𝐹𝑖𝑥(𝑇) = 𝜙.

Example 2.8. Let (𝑀, 𝑑) be a metric space
with 𝑀 = {𝑝, 𝑞, 𝑟, 𝑠} and the metric 𝛿 is
defined by 𝛿(𝑞, 𝑟) = 𝛿(𝑞, 𝑠) = 𝛿(𝑟, 𝑠) = 1
and 𝛿(𝑝, 𝑞) = 𝛿(𝑝, 𝑟) = 𝛿(𝑝, 𝑠) = 2. Let
𝑇 : 𝑀 → 𝑀 be defined by 𝑇 𝑝 = 𝑟, 𝑇𝑞 =
𝑟, 𝑇𝑟 = 𝑠, 𝑇𝑠 = 𝑞. Then 𝑇 is a perimet-
ric contraction on quadrilaterals on 𝑀 . But,
since 𝑞, 𝑟, 𝑠 are periodic points of order 3, it
follows from Theorem 2.4, 𝐹𝑖𝑥(𝑇) = 𝜙.

From Example 2.6, we observe that
a mapping contracting the perimeter of
quadrilaterals may have multiple fixed
points. On the other hand, we can create
a situation where it is guaranteed that there
will be a unique fixed point for this kind of
mappings.

Proposition 2.9. Let (𝑀, 𝑑) be a complete
metric space and let 𝑇 : 𝑀 → 𝑀 be a peri-
metric contraction on quadrilaterals on 𝑀
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and let 𝑇 have no periodic points of order 2
and 3. If 𝑀 contains infinitely many points
such that the iterative sequence 𝑚0, 𝑚1 =
𝑇𝑚0, 𝑚2 = 𝑇𝑚1, . . . , converges to a point
𝜉 ∈ 𝑀 with 𝜉 ≠ 𝑚𝑖; for all 𝑖 ∈ N ∪ {0},
then 𝐹𝑖𝑥(𝑇) = {𝜉}.
Proof. That 𝜉 is a fixed point of 𝑇 follows
from Theorem 2.4. Let 𝜂 be another fixed
point of 𝑇 . Then 𝜂 ≠ 𝑚𝑖 , for all 𝑖 ∈ N∪{0},
otherwise we have 𝜉 = 𝜂. Therefore 𝜉, 𝜂,
and 𝑚𝑖 are all distinct, for all 𝑖 ∈ N ∪ {0}.
Now, for all 𝑖 ∈ N ∪ {0} by N

𝐾𝑖

=
𝑑 (𝑇 𝜉 , 𝑇𝜂) + 𝑑 (𝑇𝜂, 𝑇𝑚𝑖−1 ) + 𝑑 (𝑇𝑚𝑖−1 , 𝑇𝑚𝑖 ) + 𝑑 (𝑇𝑚𝑖 , 𝑇 𝜉 )

𝑑 ( 𝜉 , 𝜂) + 𝑑 (𝜂, 𝑚𝑖−1 ) + 𝑑 (𝑚𝑖−1 , 𝑚𝑖 ) + 𝑑 (𝑚𝑖 , 𝜉 )

=
𝑑 ( 𝜉 , 𝜂) + 𝑑 (𝜂, 𝑚𝑖 ) + 𝑑 (𝑚𝑖 , 𝑚𝑖+1 ) + 𝑑 (𝑚𝑖+1 , 𝜉 )
𝑑 ( 𝜉 , 𝜂) + 𝑑 (𝜂, 𝑚𝑖−1 ) + 𝑑 (𝑚𝑖−1 , 𝑚𝑖 ) + 𝑑 (𝑚𝑖 , 𝜉 )

.

Then 𝐾𝑖 ≤ 𝛼 for all 𝑖 ∈ N∪{0} byN.
Now, letting 𝑖 → ∞, we get 𝐾𝑖 → 1 - which
is a contradiction to Eq. (2.1). Hence,
𝐹𝑖𝑥(𝑇) = {𝜉}. □

Now, we provide an alternative proof
of the Banach Contraction Principle using
Theorem 2.4.

Corollary 2.10. Let (𝑀, 𝑑) be a complete
metric space and let 𝑇 : 𝑀 → 𝑀 be a con-
traction mapping with contraction constant
𝛼 ∈ [0, 1). Then 𝑇 has a unique fixed point
in 𝑀 .

Proof. If |𝑀 | = 1 or |𝑀 | = 2, then there is
nothing to prove.

Now, let |𝑀 | = 3. If 𝐹𝑖𝑥(𝑇) = 𝜙,
then it is easy to verify that there exists 𝑚 ∈
𝑀 such that 𝑇2𝑚 = 𝑚 or 𝑇3𝑚 = 𝑚.

If there exists 𝑚 ∈ 𝑀 such that
𝑇2𝑚 = 𝑚, then

𝑑 (𝑇𝑚,𝑇2𝑚) = 𝑑 (𝑇𝑚, 𝑚) = 𝑑 (𝑚,𝑇𝑚),

which contradicts the fact that 𝛼 ∈ [0, 1).
Now, if there exists 𝑚 ∈ 𝑀 such that

𝑇3𝑚 = 𝑚, then

𝑑 (𝑚,𝑇𝑚) = 𝑑 (𝑇3𝑚,𝑇4𝑚) ≤ 𝛼3𝑑 (𝑚,𝑇𝑚),

again a contradiction to the fact that 𝛼 ∈
[0, 1). Thus, 𝐹𝑖𝑥(𝑇) ≠ 𝜙.

Furthermore, it is evident that, in
general, there is no element 𝑚 ∈ 𝑀 such
that 𝑇2𝑚 = 𝑚 and 𝑇3𝑚 = 𝑚.

Now, let |𝑀 | ≥ 4. Since, there exists
no𝑚 ∈ 𝑀 such that𝑇2𝑚 = 𝑚 and𝑇3𝑚 = 𝑚
then, 𝑇 has no periodic points of order 2 and
3.

Now, for all distinct points
𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑀 , we have

𝑑 (𝑇 𝑝, 𝑇𝑞) + 𝑑 (𝑇𝑞, 𝑇𝑟) + 𝑑 (𝑇𝑟, 𝑇𝑠) + 𝑑 (𝑇𝑠, 𝑇 𝑝)
≤ 𝛼(𝑑 (𝑝, 𝑞) + 𝑑 (𝑞, 𝑟) + 𝑑 (𝑟, 𝑠) + 𝑑 (𝑠, 𝑝)).

Thus, 𝑇 is a perimetric contraction on
quadrilaterals on 𝑀 . Hence, by Theo-
rem 2.4, it follows that 𝑇 admits at most
three fixed points in 𝑀 . The contraction
condition confirms the uniqueness of the
fixed point. □

We present the following examples
demonstrating the existence of perimetric
contractions on quadrilaterals. These exam-
ples do not fall undermappings that contract
the perimeter of triangles, nor do they align
with Kannan type, Chatterjea type, general-
ized Kannan type, or generalized Chatterjea
type mappings.

Example 2.11. Let (𝑀, 𝑑) be a metric
space with 𝑀 =

{
0, 1

3 ,
2
3 , 1

}
where 𝑑 is the

Euclidean metric.
Now, define the mapping 𝑇 as fol-

lows:

𝑇 (𝑚) =


0, if 𝑚 = {0, 1
3 },

1
3 , if 𝑚 = 2

3 ,
2
3 , if 𝑚 = 1.

For, 𝑎 = 2
3 , 𝑏 = 1, we have,

𝑑 (𝑇𝑎, 𝑇𝑏) = 1
2
(𝑑 (𝑎, 𝑇𝑎) + 𝑑 (𝑏, 𝑇𝑏)),

and hence 𝑇 is not a Kannan type mapping.
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For, 𝑎 = 2
3 , 𝑏 = 1, we have,

𝑑 (𝑇𝑎, 𝑇𝑏) = 1
2
(𝑑 (𝑎, 𝑇𝑏) + 𝑑 (𝑏, 𝑇𝑎)),

and hence 𝑇 is not a Chatterjea type map-
ping.

Again, for 𝑎 = 1
3 , 𝑏 = 2

3 , 𝑐 = 1, we
have

𝑑 (𝑇𝑎, 𝑇𝑏) + 𝑑 (𝑇𝑏, 𝑇𝑐) + 𝑑 (𝑇𝑐, 𝑇𝑎)

=
4
3
= 𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) + 𝑑 (𝑐, 𝑎),

and therefore, 𝑇 is not a mapping contract-
ing perimeters of triangles.

Again, for 𝑎 = 0, 𝑏 = 2
3 , 𝑐 = 1, we

have

𝑑 (𝑇𝑎, 𝑇𝑏) + 𝑑 (𝑇𝑏, 𝑇𝑐) + 𝑑 (𝑇𝑐, 𝑇𝑎)

=
4
3
= 𝑑 (𝑎, 𝑇𝑎) + 𝑑 (𝑏, 𝑇𝑏) + 𝑑 (𝑐, 𝑇𝑐),

and therefore,𝑇 is not a generalized Kannan
type mapping.

Again, for 𝑎 = 1
3 , 𝑏 = 2

3 , 𝑐 = 1, we
have

𝑑 (𝑇𝑎, 𝑇𝑏) + 𝑑 (𝑇𝑏, 𝑇𝑐) + 𝑑 (𝑇𝑐, 𝑇𝑎)

=
4
3
= 𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) + 𝑑 (𝑐, 𝑎)

and therefore, 𝑇 is not a generalized Chat-
terjea type mapping.

Now, for any four distinct points of
𝑀 , the condition (2.1) holds with 𝛼 ∈[ 2

3 , 1
)
. As a result,𝑇 is a perimetric contrac-

tion on quadrilaterals on𝑀 . Note that𝑇 has
no periodic points of order 2 and 3. Thus,
Theorem 2.4 implies that 𝐹𝑖𝑥(𝑇) ≠ 𝜙. Note
that 𝐹𝑖𝑥(𝑇) = {0}.

In the next example, we consider a
countably infinite metric space.

s s s s s s s s s s s
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥

∗

𝑐 𝑐 𝑐 𝑐
2

𝑐
2

𝑐
2

𝑐
4

𝑐
4

𝑐
4

Fig. 1. The points in the space (𝑀, 𝑑) that are
separated by the consecutive lengths.

Example 2.12. Let 𝑀 = {𝑥∗, 𝑥0, 𝑥1, . . . }
with cardinality ℵ0 and let 𝑐 ∈ R+. The
metric 𝑑 is defined on 𝑀 as follows:

𝑑 (𝑥, 𝑦) =



𝑐

2[ 𝑛3 ] , if 𝑥 = 𝑥𝑛 , 𝑦 = 𝑥𝑛+1 ,

𝑛 = 0, 1, . . . ,∑𝑚−1
𝑎=𝑛

𝑐

2[ 𝑎3 ] , if 𝑥 = 𝑥𝑛 , 𝑦 = 𝑥𝑚 , 𝑛 + 1
< 𝑚, 𝑚, 𝑛 = 0, 1, . . . ,

6𝑐 − ∑𝑛−1
𝑎=0

𝑐

2[ 𝑎3 ] , if 𝑥 = 𝑥𝑛 , 𝑦 = 𝑥∗ ,

𝑛 = 0, 1, . . . ,
0, if 𝑑 (𝑦, 𝑥 ) , ∀𝑥, 𝑦.

where [·] is the box function. Then, (𝑀, 𝑑)
is a complete metric space.

Define a mapping 𝑇 : 𝑀 → 𝑀 as
𝑇𝑥𝑛 = 𝑥𝑛+1 for all 𝑛 ∈ N ∪ {0} and 𝑇𝑥∗ =
𝑥∗.

Since 𝑑 (𝑇𝑥3𝑛, 𝑇𝑥3𝑛+1) =
𝑑 (𝑥3𝑛, 𝑥3𝑛+1) for all 𝑛 ∈ N ∪ {0},
then 𝑇 is not a contraction.

Again, 𝑑 (𝑇𝑥0, 𝑇𝑥1) =
1
2 (𝑑 (𝑥0, 𝑇𝑥0) + 𝑑 (𝑥1, 𝑇𝑥1)) and hence
𝑇 is not a Kannan type mapping.

Again, 𝑑 (𝑇𝑥0, 𝑇𝑥1) =
1
2 (𝑑 (𝑥0, 𝑇𝑥1) + 𝑑 (𝑥1, 𝑇𝑥0)) and hence
𝑇 is not a Chatterjea type mapping.

Also, for all 𝑛 ∈ N ∪ {0},

𝑑 (𝑇𝑥3𝑛, 𝑇𝑥3𝑛+1) + 𝑑 (𝑇𝑥3𝑛+1, 𝑇𝑥3𝑛+2)
+ 𝑑 (𝑇𝑥3𝑛+2, 𝑇𝑥3𝑛) = 𝑑 (𝑥3𝑛, 𝑥3𝑛+1)
+ 𝑑 (𝑥3𝑛+1, 𝑥3𝑛+2) + 𝑑 (𝑥3𝑛+2, 𝑥3𝑛).

Therefore, 𝑇 fails to be a mapping contract-
ing perimeters of triangles.

Also,

𝑑 (𝑇𝑥0, 𝑇𝑥1) + 𝑑 (𝑇𝑥1, 𝑇𝑥2) + 𝑑 (𝑇𝑥2, 𝑇𝑥0)

=
4
3
(𝑑 (𝑥0, 𝑇𝑥0) + 𝑑 (𝑥1, 𝑇𝑥1) + 𝑑 (𝑥2, 𝑇𝑥2)).

Thus, 𝑇 is not a generalized Kannan type
mapping.
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Again,

𝑑 (𝑇𝑥0, 𝑇𝑥1) + 𝑑 (𝑇𝑥1, 𝑇𝑥2) + 𝑑 (𝑇𝑥2, 𝑇𝑥0)

=
1
2
(𝑑 (𝑥0, 𝑇𝑥1) + 𝑑 (𝑥0, 𝑇𝑥2) + 𝑑 (𝑥1, 𝑇𝑥0)

+ 𝑑 (𝑥1, 𝑇𝑥2) + 𝑑 (𝑥2, 𝑇𝑥0) + 𝑑 (𝑥2, 𝑇𝑥1)).

Thus, 𝑇 is not a generalized Chatterjea type
mapping.

We now show that 𝑇 is a perimetric
contraction on quadrilaterals on 𝑀 .

Consider the points 𝑥𝑘 , 𝑥𝑙, 𝑥𝑚, 𝑥∗ ∈
𝑀 with 0 ≤ 𝑘 < 𝑙 < 𝑚. Then, we have

𝑑 (𝑥𝑘 , 𝑥𝑙) + 𝑑 (𝑥𝑙, 𝑥𝑚) + 𝑑 (𝑥𝑚, 𝑥∗) + 𝑑 (𝑥∗, 𝑥𝑘)

= 2𝑑 (𝑥𝑘 , 𝑥∗) = 12𝑐 − 2
𝑘−1∑
𝑎=0

𝑐

2[ 𝑎3 ] ,

and

𝑑 (𝑇𝑥𝑘 , 𝑇𝑥𝑙) + 𝑑 (𝑇𝑥𝑙, 𝑇𝑥𝑚) + 𝑑 (𝑇𝑥𝑚, 𝑇𝑥∗)
+ 𝑑 (𝑇𝑥∗, 𝑇𝑥𝑘) = 2𝑑 (𝑇𝑥𝑘 , 𝑇𝑥∗)

= 2𝑑 (𝑥𝑘+1, 𝑥
∗) = 12𝑐 − 2

𝑘∑
𝑎=0

𝑐

2[ 𝑎3 ] .

Now, we have

𝑑 (𝑥0, 𝑥𝑛) =
{

6𝑐 (1 − ( 1
2 ) 𝑝 ) , if 𝑛 = 3𝑝,

6𝑐 (1 − ( 1
2 ) 𝑝 ) −

𝑐
2𝑝−1 , if 𝑛 = 3𝑝 − 1,

6𝑐 (1 − ( 1
2 ) 𝑝 ) −

𝑐
2𝑝−2 , if 𝑛 = 3𝑝 − 2.

(2.3)

Consider the ratio,

𝑅𝑘 =
𝑑 (𝑇𝑥𝑘 , 𝑇𝑥𝑙 ) + 𝑑 (𝑇𝑥𝑙 , 𝑇𝑥𝑚 ) + 𝑑 (𝑇𝑥𝑚 , 𝑇𝑥∗ ) + 𝑑 (𝑇𝑥∗ , 𝑇𝑥𝑘 )

𝑑 (𝑥𝑘 , 𝑥𝑙 ) + 𝑑 (𝑥𝑙 , 𝑥𝑚 ) + 𝑑 (𝑥𝑚 , 𝑥∗ ) + 𝑑 (𝑥∗ , 𝑥𝑘 )

=
12𝑐 − 2

∑𝑘
𝑎=0

𝑐

2[ 𝑎3 ]

12𝑐 − 2
∑𝑘−1

𝑎=0
𝑐

2[ 𝑎3 ]

=1 −

𝑐

2

[
𝑘
3
]

6𝑐 − ∑𝑘−1
𝑎=0

𝑐

2[ 𝑎3 ]

=



1 −
𝑐

2𝑝

6𝑐−6𝑐 (1−( 1
2 ) 𝑝 )

, if 𝑘 = 3𝑝,

1 −
𝑐

2𝑝−1
6𝑐−6𝑐 (1−( 1

2 ) 𝑝 )+ 𝑐
2𝑝−1

, if 𝑘 = 3𝑝 − 1,

1 −
𝑐

2𝑝−1
6𝑐−6𝑐 (1−( 1

2 ) 𝑝 )+ 𝑐
2𝑝−2

, if 𝑘 = 3𝑝 − 2,

=


5
6 , if 𝑘 = 3𝑝,
3
4 , if 𝑘 = 3𝑝 − 1,
4
5 , if 𝑘 = 3𝑝 − 2.

Now, consider the points
𝑥𝑘 , 𝑥𝑙, 𝑥𝑚, 𝑥𝑛 ∈ 𝑀 with 0 ≤ 𝑘 < 𝑙 < 𝑚 < 𝑛.
Then, we have,

𝑑 (𝑥𝑘 , 𝑥𝑙) + 𝑑 (𝑥𝑙, 𝑥𝑚) + 𝑑 (𝑥𝑚, 𝑥𝑛) + 𝑑 (𝑥𝑛, 𝑥𝑘)

= 2𝑑 (𝑥𝑘 , 𝑥𝑛) = 2
𝑛−1∑
𝑎=𝑘

𝑐

2[ 𝑎3 ] ,

and
𝑑 (𝑇𝑥𝑘 , 𝑇𝑥𝑙) + 𝑑 (𝑇𝑥𝑙, 𝑇𝑥𝑚) + 𝑑 (𝑇𝑥𝑚, 𝑇𝑥𝑛)
+ 𝑑 (𝑇𝑥𝑛, 𝑇𝑥𝑘)
= 2𝑑 (𝑇𝑥𝑘 , 𝑇𝑥𝑛)
= 2𝑑 (𝑥𝑘+1, 𝑥𝑛+1)
= 2𝑑 (𝑥𝑘 , 𝑥𝑛) − 2[𝑑 (𝑥𝑘 , 𝑥𝑘+1) − 𝑑 (𝑥𝑛, 𝑥𝑛+1)]

= 2
𝑛−1∑
𝑎=𝑘

𝑐

2[ 𝑎3 ] − 2
(
𝑐

2[ 𝑘3 ]
− 𝑐

2[ 𝑛3 ]

)
.

Consider the ratio,

𝑅𝑘,𝑛 =
𝑑 (𝑇𝑥𝑘 , 𝑇𝑥𝑙 ) + 𝑑 (𝑇𝑥𝑙 , 𝑇𝑥𝑚 ) + 𝑑 (𝑇𝑥𝑚 , 𝑇𝑥𝑛 ) + 𝑑 (𝑇𝑥𝑛 , 𝑇𝑥𝑘 )

𝑑 (𝑥𝑘 , 𝑥𝑙 ) + 𝑑 (𝑥𝑙 , 𝑥𝑚 ) + 𝑑 (𝑥𝑚 , 𝑥𝑛 ) + 𝑑 (𝑥𝑛 , 𝑥𝑘 )

=

2
∑𝑛−1

𝑎=𝑘
𝑐

2[ 𝑎3 ] − 2
(

𝑐

2[ 𝑘3 ]
− 𝑐

2[ 𝑛3 ]

)
2
∑𝑛−1

𝑎=𝑘
𝑐

2[ 𝑎3 ]

= 1 −

𝑐

2[ 𝑘3 ]
− 𝑐

2[ 𝑛3 ]∑𝑛−1
𝑎=𝑘

𝑐

2[ 𝑎3 ]
.

It is to be noted that 𝑛 ≥ 𝑘 + 3. Therefore[𝑛
3

]
≥

[
𝑘

3

]
+ 1 =⇒ 2[ 𝑛

3 ] ≥ 2.2[ 𝑘
3 ]

=⇒ 1
2[ 𝑛

3 ]
≤ 1

2.2[ 𝑘
3 ]

=⇒ 𝑐

2[ 𝑛
3 ]

≤ 𝑐

2.2[ 𝑘
3 ]
.

(2.4)

Now, from (2.3), we can write,

𝑑 (𝑥𝑛, 𝑥∗) =


6𝑐
2𝑝 , if 𝑛 = 3𝑝,
6𝑐
2𝑝 + 𝑐

2𝑝−1 , if 𝑛 = 3𝑝 − 1,
6𝑐
2𝑝 + 𝑐

2𝑝−2 , if 𝑛 = 3𝑝 − 2.
(2.5)
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Therefore, from (2.5), we get,

𝑑 (𝑥𝑛, 𝑥∗) ≤ 6𝑑 (𝑥𝑛, 𝑥𝑛+1)
=⇒ 𝑑 (𝑥𝑘 , 𝑥∗) ≤ 6𝑑 (𝑥𝑘 , 𝑥𝑘+1)
=⇒ 𝑑 (𝑥𝑘 , 𝑥𝑛) ≤ 𝑑 (𝑥𝑘 , 𝑥∗) ≤ 6𝑑 (𝑥𝑘 , 𝑥𝑘+1)

=⇒
𝑛−1∑
𝑎=𝑘

𝑐

2[ 𝑎3 ] ≤ 6 𝑐

2[ 𝑘3 ]
. (2.6)

Consequently, fromEq. (2.4) and Eq.
(2.6) we have

𝑅𝑘,𝑛 ≤ 1 −
𝑐

2[ 𝑘3 ]
− 1

2
𝑐

2[ 𝑘3 ]

6 𝑐

2[ 𝑘3 ]

=
11
12
.

Thus, the inequality (2.1) holds for any four
distinct points from 𝑀 with 𝛼 = 11

12 =
max{ 5

6 ,
3
4 ,

4
5 ,

11
12 }.

Therefore, 𝑇 is a perimetric contrac-
tion on quadrilaterals on 𝑀 . Also, 𝑇 does
not contain any periodic points of order 2
and 3. Hence, by Theorem 2.4,𝑇 has a fixed
point in 𝑀 . Note that 𝑥∗ ∈ 𝐹𝑖𝑥(𝑇).

In the next example, we consider an
uncountably infinite metric space.

Example 2.13. Let 𝑀 = {−1,−2
3 ,−

1
3 } ∪

[0, 1] ⊂ R be a metric space equipped with
the Euclidean metric 𝑑 and let 𝑇 : 𝑀 → 𝑀
be a mapping defined as follows:

𝑇𝑚 =


𝑚
2 , if 𝑚 ∈ [0, 1],
0, if 𝑚 = −1

3 ,

−1
3 , if 𝑚 = −2

3 ,

−2
3 , if 𝑚 = −1.

Now, for 𝑎 = 2
3 , 𝑏 = −2

3 , we get,
𝑑 (𝑇𝑎, 𝑇𝑏) = 2

3 = 𝑑 (𝑎, 𝑇𝑎) + 𝑑 (𝑏, 𝑇𝑏), and
hence 𝑇 is not a Kannan type mapping.

Again, for 𝑎 = −1
3 , 𝑏 = −2

3 , we get,
𝑑 (𝑇𝑎, 𝑇𝑏) = 1

3 = 1
2 (𝑑 (𝑎, 𝑇𝑏) + 𝑑 (𝑏, 𝑇𝑎)),

and so 𝑇 is not a Chatterjea type mapping.
Now, for 𝑎 = −1

3 , 𝑏 = −2
3 , 𝑐 = −1,

we have

𝑑 (𝑇𝑎, 𝑇𝑏)+𝑑 (𝑇𝑏, 𝑇𝑐)+𝑑 (𝑇𝑐, 𝑇𝑎) =
4
3 = 𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) + 𝑑 (𝑐, 𝑎).
Thus, 𝑇 is not a mapping contracting
perimeters of triangles.

Also, 𝑑 (𝑇𝑎, 𝑇𝑏) + 𝑑 (𝑇𝑏, 𝑇𝑐) +
𝑑 (𝑇𝑐, 𝑇𝑎) = 4

3 = 4
3 (𝑑 (𝑎, 𝑇𝑎) + 𝑑 (𝑏, 𝑇𝑏) +

𝑑 (𝑐, 𝑇𝑐)).
Therefore, 𝑇 is not a generalized Kannan
type mapping.

On the other hand,

𝑑 (𝑇𝑎, 𝑇𝑏) + 𝑑 (𝑇𝑏, 𝑇𝑐) + 𝑑 (𝑇𝑐, 𝑇𝑎)

=
4
7
(𝑑 (𝑎, 𝑇𝑏) + 𝑑 (𝑎, 𝑇𝑐) + 𝑑 (𝑏, 𝑇𝑎)+

𝑑 (𝑏, 𝑇𝑐) + 𝑑 (𝑐, 𝑇𝑎) + 𝑑 (𝑐, 𝑇𝑏)).

Thus, 𝑇 is not a generalized Chatterjea type
mapping.

For any four distinct points of 𝑀 , the
condition (2.1) holds for 𝛼 ∈ [ 2

3 , 1). Thus,
𝑇 is a perimetric contraction on quadrilat-
erals on 𝑀 . Also, 𝑇 does not contain any
periodic points of orders 2 and 3. There-
fore, by Theorem 2.4, 𝐹𝑖𝑥(𝑇) ≠ 𝜙. Note
that 𝐹𝑖𝑥(𝑇) = {0}.

In the following flowchart, we sum-
marize the implications as observed in the
above examples:

“The question of whether the class
of mappings that contract the perimeters of
triangles constitutes a subclass of perimet-
ric contractions on quadrilaterals remains
an open problem for researchers.”

Now, we establish fixed-point theo-
rems without considering the completeness
of the underlying space in the presence of
different sets of adequate conditions.

Theorem 2.14. Let (𝑀, 𝑑) be a metric
space with at least four points, and let 𝑇 :
𝑀 → 𝑀 be a perimetric contraction on
quadrilaterals on 𝑀 satisfying the follow-
ing conditions:
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Perimetric contraction
on quadrilaterals

Kannan type
mapping

Mapping
contracting
perimeter
of triangles

Chatterjea
type mapping

Generalized
Kannan type
mapping

Generalized
Chatterjea

type mapping

Fig. 2. Perimetric contractions on quadrilaterals do not imply those classes of mappings.

(i) 𝑇 does not attain periodic points
of order 2 and 3.

(ii) There exists 𝑥0 ∈ 𝑀 such
that the sequence of iterations 𝑥0, 𝑥1 =
𝑇𝑥0, . . . , 𝑥𝑛 = 𝑇𝑥𝑛−1, . . . has a convergent
subsequence {𝑥𝑛𝑘 } converging to 𝑥∗.

Then 𝑥∗ is a fixed point of 𝑇 . The
number of fixed points is at most three.

Proof. Since𝑇 is continuous and 𝑥𝑛𝑘 → 𝑥∗,
we have 𝑇𝑥𝑛𝑘 = 𝑥𝑛𝑘+1 → 𝑇𝑥∗.

If possible, suppose that 𝑇𝑥∗ ≠ 𝑥∗.
Now, consider two open balls 𝐵 = 𝐵(𝑥∗, 𝑟)
and 𝐵∗ = 𝐵(𝑇𝑥∗, 𝑟), with 0 ≤ 𝑟 <
1
3𝑑 (𝑥∗, 𝑇𝑥∗).

Thus, there exists 𝑁 ∈ N such that
𝑥𝑛𝑖 ∈ 𝐵 and 𝑥𝑛𝑖+1 ∈ 𝐵∗ for all 𝑖 > 𝑁 .

Hence,

𝑑 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1) > 𝑟 for all 𝑖 > 𝑁. (2.7)

If the sequence {𝑥𝑛} does not contain a
fixed point of 𝑇 , then from (2.2) of Theo-
rem 2.4, we get

𝑑 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝛼𝑛𝜆0 for all 𝑛 ∈ N ∪ {0}.

where 𝜆0 = 𝑑 (𝑥0, 𝑥1) + 𝑑 (𝑥1, 𝑥2) +
𝑑 (𝑥2, 𝑥3) + 𝑑 (𝑥3, 𝑥0) and 𝛼 ∈ [0, 1).

Thus, we have

𝑑 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1) ≤ 𝛼𝑛𝑖𝜆0 for all 𝑛𝑖 ∈ N ∪ {0}.
=⇒ lim

𝑖→∞
𝑑 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1) = 0,

which contradicts (2.7). Hence, 𝑇𝑥∗ = 𝑥∗.
The existence of at most three fixed

points follows from Theorem 2.4. □

In the following theorem, we assume
that 𝑇 is a perimetric contraction on quadri-
laterals and is defined on a dense subset of
𝑀 .

Theorem 2.15. Let (𝑀, 𝑑) be a metric
space with at least four points. Suppose 𝑇
satisfies the following conditions:

(i) 𝑇 does not attain periodic points
of order 2 and 3.

(ii) 𝑇 is a perimetric contraction on
quadrilaterals on 𝐷, where 𝐷 is a dense
subset of 𝑀 .

(iii) There exists 𝑥0 ∈ 𝑀 such
that the sequence of iterations 𝑥0, 𝑥1 =

64



A. Banerjee et al. | Science & Technology Asia | Vol.30 No.4 October - December 2025

𝑇𝑥0, . . . 𝑥𝑛 = 𝑇𝑥𝑛−1, . . . has a convergent
subsequence 𝑥𝑛𝑘 converging to 𝑥∗.

Then 𝑥∗ is a fixed point of 𝑇 . The
number of fixed points is at most three.

Proof. Suppose that, 𝑤, 𝑥, 𝑦, 𝑧 be four dis-
tinct points of 𝑀 . Here, four cases may oc-
cur.

Case- I:- Let 𝑤, 𝑥, 𝑦 ∈ 𝐷 and 𝑧 ∈
𝑀 \ 𝐷. Then there exists a sequence {𝑑𝑛}
in 𝑀 such that 𝑑𝑛 → 𝑧. Also, suppose that
each element of the sequence and 𝑤, 𝑥, 𝑦, 𝑧
are distinct. Now,

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇 𝑧)
+ 𝑑 (𝑇𝑧, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇𝑤)

≤𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇𝑤)
+ 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧)

≤𝛼[𝑑 (𝑤, 𝑥) + 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑑𝑛) + 𝑑 (𝑑𝑛, 𝑤)]
+ 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧).

Taking the limit as 𝑛→ ∞, we get

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝛼[𝑑 (𝑤, 𝑥) + 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑧, 𝑤)] .

Case- II:- Let 𝑤, 𝑥 ∈ 𝐷 and 𝑦, 𝑧 ∈
𝑀 \ 𝐷. Then there exists a sequence
{𝑐𝑛}, {𝑑𝑛} in 𝑀 such that 𝑐𝑛 → 𝑦 and
𝑑𝑛 → 𝑧. Also, suppose that each element
of the sequences and 𝑤, 𝑥, 𝑦, 𝑧 are distinct.
Now,

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑐𝑛) + 𝑑 (𝑇𝑐𝑛, 𝑇 𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑐𝑛)
+ 𝑑 (𝑇𝑐𝑛, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇 𝑧)
+ 𝑑 (𝑇𝑧, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇𝑤)

≤𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑐𝑛) + 𝑑 (𝑇𝑐𝑛, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇𝑤)
+ 2𝑑 (𝑇𝑐𝑛, 𝑇 𝑦) + 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧)

≤𝛼[𝑑 (𝑤, 𝑥) + 𝑑 (𝑥, 𝑐𝑛) + 𝑑 (𝑐𝑛, 𝑑𝑛) + 𝑑 (𝑑𝑛, 𝑤)]
+ 2𝑑 (𝑇𝑐𝑛, 𝑇 𝑦) + 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧).

Taking the limit as 𝑛→ ∞, we get

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝛼[𝑑 (𝑤, 𝑥) + 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑧, 𝑤)] .

Case- III:- Let 𝑤 ∈ 𝐷 and 𝑥, 𝑦, 𝑧 ∈
𝑀 \ 𝐷. Then there exists a sequence
{𝑏𝑛}, {𝑐𝑛}, {𝑑𝑛} in 𝑀 such that 𝑏𝑛 →

𝑥, 𝑐𝑛 → 𝑦 and 𝑑𝑛 → 𝑧. Also, suppose that
each element of the sequences and 𝑤, 𝑥, 𝑦, 𝑧
are distinct. Now,

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝑑 (𝑇𝑤,𝑇𝑏𝑛) + 𝑑 (𝑇𝑏𝑛, 𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑏𝑛)
+ 𝑑 (𝑇𝑏𝑛, 𝑇𝑐𝑛) + 𝑑 (𝑇𝑐𝑛, 𝑇 𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑐𝑛)
+ 𝑑 (𝑇𝑐𝑛, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇 𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑑𝑛)
+ 𝑑 (𝑇𝑑𝑛, 𝑇𝑤)

≤𝑑 (𝑇𝑤,𝑇𝑏𝑛) + 𝑑 (𝑇𝑏𝑛, 𝑇𝑐𝑛) + 𝑑 (𝑇𝑐𝑛, 𝑇𝑑𝑛)
+ 𝑑 (𝑇𝑑𝑛, 𝑇𝑤) + 2𝑑 (𝑇𝑏𝑛, 𝑇𝑥) + 2𝑑 (𝑇𝑐𝑛, 𝑇 𝑦)
+ 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧)

≤𝛼[𝑑 (𝑤, 𝑏𝑛) + 𝑑 (𝑏𝑛, 𝑐𝑛) + 𝑑 (𝑐𝑛, 𝑑𝑛) + 𝑑 (𝑑𝑛, 𝑤)]
+ 2𝑑 (𝑇𝑏𝑛, 𝑇𝑥) + 2𝑑 (𝑇𝑐𝑛, 𝑇 𝑦) + 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧).

Taking the limit as 𝑛→ ∞, we get

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝛼[𝑑 (𝑤, 𝑥) + 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑧, 𝑤)] .

Case- IV:- Let 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑀 \ 𝐷.
Then there exists a sequence
{𝑎𝑛}, {𝑏𝑛}, {𝑐𝑛}, {𝑑𝑛} in 𝑀 such that
𝑎𝑛 → 𝑤, 𝑏𝑛 → 𝑥, 𝑐𝑛 → 𝑦 and 𝑑𝑛 → 𝑧.
Also, suppose that each element of the
sequences and 𝑤, 𝑥, 𝑦, 𝑧 are distinct. Now,

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝑑 (𝑇𝑤,𝑇𝑎𝑛) + 𝑑 (𝑇𝑎𝑛, 𝑇𝑏𝑛) + 𝑑 (𝑇𝑏𝑛, 𝑇𝑥)
+ 𝑑 (𝑇𝑥, 𝑇𝑏𝑛) + 𝑑 (𝑇𝑏𝑛, 𝑇𝑐𝑛) + 𝑑 (𝑇𝑐𝑛, 𝑇 𝑦)
+ 𝑑 (𝑇𝑦, 𝑇𝑐𝑛) + 𝑑 (𝑇𝑐𝑛, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇 𝑧)
+ 𝑑 (𝑇𝑧, 𝑇𝑑𝑛) + 𝑑 (𝑇𝑑𝑛, 𝑇𝑎𝑛) + 𝑑 (𝑇𝑎𝑛, 𝑇𝑤)

≤𝑑 (𝑇𝑎𝑛, 𝑇𝑏𝑛) + 𝑑 (𝑇𝑏𝑛, 𝑇𝑐𝑛) + 𝑑 (𝑇𝑐𝑛, 𝑇𝑑𝑛)
+ 𝑑 (𝑇𝑑𝑛, 𝑇𝑎𝑛) + 2𝑑 (𝑇𝑎𝑛, 𝑇𝑤) + 2𝑑 (𝑇𝑏𝑛, 𝑇𝑥)
+ 2𝑑 (𝑇𝑐𝑛, 𝑇 𝑦) + 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧)

≤𝛼[𝑑 (𝑎𝑛, 𝑏𝑛) + 𝑑 (𝑏𝑛, 𝑐𝑛) + 𝑑 (𝑐𝑛, 𝑑𝑛) + 𝑑 (𝑑𝑛, 𝑎𝑛)]
+ 2𝑑 (𝑇𝑎𝑛, 𝑇𝑤) + 2𝑑 (𝑇𝑏𝑛, 𝑇𝑥) + 2𝑑 (𝑇𝑐𝑛, 𝑇 𝑦)
+ 2𝑑 (𝑇𝑑𝑛, 𝑇 𝑧).

Taking the limit as 𝑛→ ∞, we get

𝑑 (𝑇𝑤,𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑦, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇𝑤)
≤𝛼[𝑑 (𝑤, 𝑥) + 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) + 𝑑 (𝑧, 𝑤)] .

Thus, in each of the above cases, 𝑇
is a perimetric contraction on quadrilaterals
on 𝑀 . Therefore, by Theorem 2.14 the re-
sult follows. □
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3. Conclusion
In this article, extending the contrac-

tion mappings in four point analogue, we
have proposed the idea of a mapping that
characterizes the contraction of perimeters
of quadrilaterals. A fixed point result of
such mapping is obtained in a complete
metric space. Notably, achieving a fixed
point requires avoiding periodic points of
order 2 and 3 and these mappings can attain
a maximum of three fixed points. Thus, we
derive a necessary condition for the fixed
point to be unique. In addition, a subset
of these perimeter-based mappings is the
class of contraction mappings. As a result,
we prove Banach’s fixed point theorem in
an alternative way using our result. Fur-
thermore, we provide nontrivial examples
to validate our findings, distinguishing peri-
metric contraction on quadrilaterals from
different well-known classes. Finally, we
establish fixed point results of these map-
pings in a metric space without considering
its completeness.
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