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ABSTRACT
A new iterative algorithm for approximating fixed points is considered on the lines of

the iterative algorithm considered by Pansuwan and Sintunavarat [1]. The convergence of
the considered iterative algorithm is established. Finally, the convergence rate of the new
iterative algorithm is compared with that of the iterative algorithm considered in [1].
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1. Introduction
For a contraction mapping 𝑇 on

a complete metric space (𝑋, 𝑑), Banach
showed the existence of a unique fixed point
and the convergence of the Picard iterates
{𝑥𝑛}, where for 𝑥0 in 𝑋 ,

𝑥𝑛 = 𝑇𝑥𝑛−1, 𝑛 = 1, 2, 3, . . .

to the fixed point of 𝑇 . However, for non-
contraction mappings, the Picard iteration
need not converge to the fixed point, if it
exists. For instance, in the complete met-
ric space (𝑋, 𝑑) where 𝑋 = [0, 1] with the
usual metric, the self-mapping 𝑇 on 𝑋 de-
fined by𝑇𝑥 = 1−𝑥 for all 𝑥 ∈ 𝑋 is not a con-
traction mapping. In fact, 𝑇 is a nonexpan-
sive mapping. The mapping has a unique

fixed point 𝑥 = 1
2 and the sequence of Pi-

card iterates {𝑥𝑛} with 𝑥0 ≠ 1
2 does not con-

verge to the fixed point.
Thus a different technique is required

for approximation of the fixed point. In
this regard, many researchers have devel-
oped different iteration procedures for fixed
point approximation. Some of the promi-
nent authors in this regard are Mann [2]
in 1953, Ishikawa [3] in 1974, Jungck [4]
in 1976, Rhoades [5] in 1991, Noor [6] in
2000, Agarwal et al. [7] in 2007, etc. and
the references therein. We note here that,
for example, the Mann iterates defined by

𝑥𝑛 = (1 − 𝛼𝑛−1)𝑥𝑛−1 + 𝛼𝑛−1𝑇𝑥𝑛−1,
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where {𝛼𝑛} is a real sequence in [0, 1] con-
verges to the fixed point of 𝑇𝑥 = 1 − 𝑥.
Since then many authors have considered
the convergence and stability of new iter-
ation schemes.

Recently, Pansuwan and Sintu-
navarat [1] introduced a new hybrid
iterative algorithm to approximate fixed
point of Suzuki’s generalized nonexpansive
mappings as follows. For 𝑥0 ∈ 𝐶, a
nonempty subset of a Banach space 𝑋 and
a self mapping 𝑇 on 𝐶 satisfying condition
(C),

𝑥𝑛+1 = 𝑇𝑛𝑦𝑛

𝑦𝑛 = 𝑇
(
(1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑧𝑛

)
𝑧𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑇𝑥𝑛,

 (1.1)

where {𝛼𝑛} and {𝛽𝑛} are real sequences in
[0, 1] and 𝑛 = 0, 1, 2, . . . . They also
showed the convergence of Eq. (1.1) in uni-
formly convex Banach spaces.

In this paper, a new hybrid iteration
scheme is considered in a uniformly convex
Banach space. For 𝑥1 ∈ 𝐶, a nonempty sub-
set of a Banach space 𝑋 and a self mapping
𝑇 on 𝐶,

𝑥𝑛 = 𝑇𝑛
(
(1 − 𝛼𝑛−1)𝑦𝑛−1 + 𝛼𝑛−1𝑇𝑦𝑛−1

)
𝑦𝑛−1 = 𝑇

(
(1 − 𝛽𝑛−1)𝑥𝑛−1 + 𝛽𝑛−1𝑧𝑛−1

)
𝑧𝑛−1 = 𝑇𝑥𝑛−1,


(1.2)

where {𝛼𝑛} and {𝛽𝑛} are real sequences in
(0, 1) and 𝑛 = 0, 1, 2, . . . .

We put the above iteration scheme in
the form

𝑥𝑛 = 𝜇(𝑇, 𝑥𝑛−1)

= 𝑇𝑛
(
(1 − 𝛼𝑛−1)𝑇

(
(1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑇𝑥𝑛−1
)
+ 𝛼𝑛−1𝑇

2 ((1 − 𝛽𝑛−1)

𝑥𝑛−1 + 𝛽𝑛−1𝑇𝑥𝑛−1
) )
.

2. Preliminaries
In this section, some preliminary def-

initions and results required for our subse-
quent discussion are presented.

Definition 2.1 ([8]). A Banach space 𝑋 is
said to be uniformly convex if ∀ 𝜀 ∈ (0, 2]
there exists 𝛿 > 0 such that for 𝑥, 𝑦 ∈ 𝑋 ,

∥𝑥∥ ≤ 1,
∥𝑦∥ ≤ 1,
∥𝑥 − 𝑦∥ > 𝜀

 =⇒



𝑥 + 𝑦

2




 ≤ 1 − 𝛿.

Lemma2.2 ([9]). Let 𝑋 be a uniformly con-
vex Banach space and 0 < 𝛼 ≤ 𝑡𝑛 ≤
𝛽 < 1 for all 𝑛 ∈ N. Suppose that
{𝑥𝑛} and {𝑦𝑛} are sequences in 𝑋 such that
lim sup𝑛→∞ ∥𝑥𝑛∥ ≤ 𝑟 , lim sup𝑛→∞ ∥𝑦𝑛∥ ≤
𝑟 and lim sup𝑛→∞



𝑡𝑛𝑥𝑛 − (1 − 𝑡𝑛)𝑦𝑛


 = 𝑟

for some 𝑟 ≥ 0. Then

lim
𝑛→∞

∥𝑥𝑛 − 𝑦𝑛∥ = 0.

Let 𝐶 be a nonempty closed convex
subset of a Banach space 𝑋 and {𝑥𝑛} be a
bounded sequence in 𝑋 . Then, for each 𝑥
in 𝑋 , the asymptotic radius of {𝑥𝑛} at 𝑥 is
defined as

𝑟
(
𝑥, {𝑥𝑛}

)
= lim sup

𝑛→∞
∥𝑥𝑛 − 𝑥∥,

and the asymptotic centre of {𝑥𝑛} relative
to 𝐶 is defined as

𝐴
(
𝐶, {𝑥𝑛}

)
=
{
𝑥 ∈ 𝐶 : 𝑟

(
𝑥, {𝑥𝑛}

)
= 𝑟

}
.

The following is the definition of
𝑇-stability of iteration schemes given by
Harder and Hicks [10].

Definition 2.3 ( [10]). Let𝑇 : 𝑋 −→ 𝑋 and
𝑤 be a fixed point of 𝑇 . For any 𝑥0 ∈ 𝑋 , let
the sequence {𝑥𝑛} generated by the iteration
scheme 𝑥𝑛+1 = 𝜇(𝑇, 𝑥𝑛), 𝑛 = 0, 1, 2, . . .
converges to 𝑤. Let {𝑢𝑛} be an arbitrary
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sequence, and set 𝜖𝑛 =


𝑢𝑛+1 − 𝑥𝑛+1



,
𝑛 = 0, 1, 2, . . . . Then the iterative scheme
𝜇(𝑇, 𝑥𝑛) is called 𝑇-stable if and only if
lim𝑛→∞ 𝜖𝑛 = 0 implies lim𝑛→∞ 𝑢𝑛 = 𝑤.

Senter and Dotson [11] defined the
following condition and obtained a conver-
gence result.

Definition 2.4. [11] Let𝐶 be a convex sub-
set of a Banach space 𝑋 . A self mapping 𝑇
of 𝐶 with nonempty fixed point set 𝐹 in 𝐶
is said to satisfy Condition I if there exist
a nondecreasing function 𝑓 : [0,∞) −→
[0,∞) with 𝑓 (0) = 0 and 𝑓 (𝑟) > 0 for
𝑟 ∈ (0,∞), such that

𝑇𝑥 − 𝑥



 ≥ 𝑓
(
𝑑 (𝑥, 𝐹)

)
for all 𝑥 ∈ 𝐶,

where 𝑑 (𝑥, 𝐹) = inf
{
∥𝑥 − 𝑧∥ : 𝑧 ∈ 𝐹

}
.

3. Convergence result
In this section, the convergence of the

iteration scheme Eq. (1.2) to a fixed point of
a nonexpansive mapping in a Banach space
is discussed.

Lemma 3.1. Let 𝐶 be a nonempty closed
convex subset of a Banach space 𝑋 and 𝑇 :
𝐶 −→ 𝐶 be a nonexpansive mapping with
𝐹 (𝑇) ≠ ∅. For 𝑥0 ∈ 𝐶, let {𝑥𝑛} be the
sequence generated by the iteration scheme
Eq. (1.2), then lim𝑛→∞ ∥𝑥𝑛 − 𝑤∥ exists for
all 𝑤 ∈ 𝐹 (𝑇).

Proof. Let 𝑤 ∈ 𝐹 (𝑇) ≠ ∅, then for 𝑥 ∈
𝐶 since 𝑇 is a nonexpansive mapping, we
have,

∥𝑇𝑥 − 𝑤∥ ≤ ∥𝑥 − 𝑤∥.

By definition of the iteration scheme
Eq. (1.2), for nonnegative positive integer
𝑛 − 1,

∥𝑧𝑛−1 − 𝑤∥ = ∥𝑇𝑥𝑛−1 − 𝑤∥ ≤ ∥𝑥𝑛−1 − 𝑤∥,

and

∥𝑦𝑛−1 − 𝑤∥ =



𝑇 ((1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑧𝑛−1
)
− 𝑤





≤


(1 − 𝛽𝑛−1)(𝑥𝑛−1 − 𝑤) + 𝛽𝑛−1(𝑧𝑛−1 − 𝑤)




≤ (1 − 𝛽𝑛−1)∥𝑥𝑛−1 − 𝑤∥ + 𝛽𝑛−1∥𝑇𝑥𝑛−1 − 𝑤∥
≤ (1 − 𝛽𝑛−1)∥𝑥𝑛−1 − 𝑤∥ + 𝛽𝑛−1∥𝑥𝑛−1 − 𝑤∥
= ∥𝑥𝑛−1 − 𝑤∥

so that,

∥𝑥𝑛 − 𝑤∥ =


𝑇𝑛 ((1 − 𝛼𝑛−1)𝑦𝑛−1

+ 𝛼𝑛−1𝑇𝑦𝑛−1
)
− 𝑤




≤ (1 − 𝛼𝑛−1)



𝑦𝑛−1 − 𝑤


 + 𝛼𝑛−1



𝑇𝑦𝑛−1

− 𝑤




≤ (1 − 𝛼𝑛−1)


𝑦𝑛−1 − 𝑤)



 + 𝛼𝑛−1


𝑦𝑛−1

− 𝑤


 = ∥𝑦𝑛−1 − 𝑤∥,

i.e.,
∥𝑥𝑛 − 𝑤∥ ≤ ∥𝑥𝑛−1 − 𝑤∥.

Thus the sequence
{
∥𝑥𝑛 − 𝑤∥

}
of

nonnegative numbers is bounded and non-
increasing, and thus lim𝑛→∞ ∥𝑥𝑛−𝑤∥ exists
for all 𝑤 ∈ 𝐹 (𝑇). □

Theorem 3.2. Let 𝐶 be a nonempty closed
convex subset of a uniformly convex Banach
space 𝑋 and 𝑇 : 𝐶 −→ 𝐶 be a nonexpan-
sive mapping. For any 𝑥1 ∈ 𝐶, let {𝑥𝑛}
be the sequence generated by the iteration
scheme Eq. (1.2), then 𝐹 (𝑇) ≠ ∅ if and
only if {𝑥𝑛} is bounded and lim𝑛→∞ ∥𝑇𝑥𝑛−
𝑥𝑛∥ = 0.

Proof. Let 𝑤 ∈ 𝐹 (𝑇) ≠ ∅. Then by Lemma
3.1, lim𝑛→∞ ∥𝑥𝑛 − 𝑤∥ exists for all 𝑤 ∈
𝐹 (𝑇) and {𝑥𝑛} is bounded. Suppose that
lim𝑛→∞ ∥𝑥𝑛 − 𝑤∥ = 𝜇 so that

lim sup
𝑛→∞

∥𝑥𝑛 − 𝑤∥ = 𝜇. (3.1)
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Since ∥𝑧𝑛−1 − 𝑤∥ = ∥𝑇𝑥𝑛−1 − 𝑤∥ ≤
∥𝑥𝑛−1 − 𝑤∥, it follows that

lim sup
𝑛→∞

∥𝑧𝑛−1 − 𝑤∥ ≤ 𝜇. (3.2)

If 𝜇 = 0, then since ∥𝑇𝑥 −𝑤∥ ≤ ∥𝑥 −
𝑤∥, we get ∥𝑇𝑥𝑛 − 𝑥𝑛∥ ≤ 2∥𝑥𝑛 − 𝑤∥ and
taking the limit as 𝑛 → ∞, we get

lim
𝑛→∞

∥𝑇𝑥𝑛 − 𝑥𝑛∥ = 0.

If 𝜇 > 0, since 𝑦𝑛 = (1 − 𝛽𝑛)𝑧𝑛 +
𝛽𝑛𝑇𝑧𝑛, we have,

∥𝑦𝑛 − 𝑤∥ ≤ (1 − 𝛽𝑛)∥𝑇𝑥𝑛 − 𝑤∥ + 𝛽𝑛∥𝑇𝑧𝑛
− 𝑤∥ ≤ ∥𝑥𝑛 − 𝑤∥,

and taking the limit supremum as 𝑛 → ∞,
we get

lim sup
𝑛→∞

∥𝑦𝑛 − 𝑤∥ ≤ 𝜇.

Again, since (from the proof of
Lemma 3.1) ∥𝑥𝑛−𝑤∥ ≤ ∥𝑦𝑛−1−𝑤∥, taking
limit infimum as 𝑛 → ∞, we get

𝜇 = lim inf
𝑛→∞

∥𝑥𝑛 − 𝑤∥

≤ lim inf
𝑛→∞

∥𝑦𝑛−1 − 𝑤∥ ≤ 𝜇,

i.e.,
lim
𝑛→∞

∥𝑦𝑛−1 − 𝑤∥ = 𝜇.

This implies that

𝜇 = lim sup
𝑛→∞

∥𝑦𝑛−1 − 𝑤∥

= lim sup
𝑛→∞




𝑇 ((1 − 𝛽𝑛−1)𝑥𝑛−1 + 𝛽𝑛−1𝑧𝑛−1
)

− 𝑤





≤ lim sup
𝑛→∞




(1 − 𝛽𝑛−1)𝑥𝑛−1 + 𝛽𝑛−1𝑧𝑛−1 − 𝑤





≤ lim sup
𝑛→∞

{
(1 − 𝛽𝑛−1)∥𝑥𝑛−1 − 𝑤∥

+ 𝛽𝑛−1∥𝑇𝑥𝑛−1 − 𝑤∥
}

≤ lim sup
𝑛→∞

∥𝑥𝑛−1 − 𝑤∥ = 𝜇,

i.e.,

lim sup
𝑛→∞




(1 − 𝛽𝑛−1)(𝑥𝑛−1 − 𝑤)

+ 𝛽𝑛−1(𝑧𝑛−1 − 𝑤)



 = 𝜇.

It then follows from Lemma 3.1 that
lim sup𝑛→∞ ∥𝑥𝑛 − 𝑇𝑥𝑛∥ = 0.

Conversely, let {𝑥𝑛} be bounded and
lim sup𝑛→∞ ∥𝑥𝑛 − 𝑇𝑥𝑛∥ = 0. Let 𝑢 ∈
𝐴
(
𝐶, {𝑥𝑛}

)
. Then,

𝑟
(
𝑇𝑢, {𝑥𝑛}

)
= lim sup

𝑛→∞
∥𝑇𝑢 − 𝑥𝑛∥

≤ lim sup
𝑛→∞

(
∥𝑇𝑢 − 𝑇𝑥𝑛∥ + ∥𝑇𝑥𝑛 − 𝑥𝑛∥

)
= lim sup

𝑛→∞
∥𝑢 − 𝑥𝑛∥

= 𝑟
(
𝑢, {𝑥𝑛}

)
.

This implies 𝑇𝑢 ∈ 𝐴
(
𝐶, {𝑥𝑛}

)
. But

as 𝑋 is a uniformly convex Banach space,
𝐴
(
𝐶, {𝑥𝑛}

)
is a singleton set and hence

𝑇𝑢 = 𝑢, i.e., 𝑢 ∈ 𝐹 (𝑇) and 𝐹 (𝑇) ≠ ∅, as
required. □

Theorem 3.3. Let 𝐶 be a nonempty closed
convex subset of a uniformly convex Ba-
nach space 𝑋 and 𝑇 : 𝐶 −→ 𝐶 be
a nonexpansive mapping with 𝐹 (𝑇) ≠
∅. Then the sequence {𝑥𝑛} generated by
the iteration scheme Eq. (1.2) converges
strongly to an element of 𝐹 (𝑇) if and only if
lim inf𝑛→∞



𝑥𝑛 − 𝐹 (𝑇)


 = 0, where



𝑥𝑛 −
𝐹 (𝑇)



 = inf𝑤∈𝐹 (𝑇 ) ∥𝑥𝑛 − 𝑤∥.

Proof. If the sequence {𝑥𝑛} defined by the
iteration scheme Eq. (1.2) strongly con-
verges to a fixed point of 𝑇 , then obviously

lim inf
𝑛→∞



𝑥𝑛 − 𝐹 (𝑇)


 = 0.

To prove the converse, we first note
that 𝐹 (𝑇) is closed. If {𝑤𝑘} is a sequence

93



N. Haokip | Science & Technology Asia | Vol.30 No.4 October - December 2025

in 𝐹 (𝑇) which converges to some 𝑤 ∈ 𝐶,
then since 𝑇 is nonexpansive,

∥𝑤𝑛 − 𝑇𝑤∥ = ∥𝑇2𝑤𝑛 − 𝑇𝑤∥ ≤ ∥𝑇𝑤𝑛 − 𝑤∥
= ∥𝑤𝑛 − 𝑤∥,

and thus,

0 = lim
𝑛→∞

∥𝑤𝑛 − 𝑤∥ ≥ lim
𝑛→∞

∥𝑤𝑛 − 𝑤∥

=


 lim
𝑛→∞

𝑤𝑛 − 𝑇𝑤


 = ∥𝑤 − 𝑇𝑤∥

showing that 𝑤 ∈ 𝐹 (𝑇), and hence 𝐹 (𝑇) is
closed.

We know, from Lemma 3.1 that
lim𝑛→∞ ∥𝑥𝑛−𝑤∥ exists for all 𝑤 ∈ 𝐹 (𝑇) so
that



𝑥𝑛+1 − 𝐹 (𝑇)


 ≤



𝑥𝑛 − 𝐹 (𝑇)


, which

implies the sequence
{

𝑥𝑛 − 𝐹 (𝑇)



} is non-
increasing and bounded below, and there-
fore, lim inf𝑛→∞



𝑥𝑛 − 𝐹 (𝑇)


 exists.

Since lim inf𝑛→∞


𝑥𝑛 − 𝐹 (𝑇)



 = 0,
it follows that lim𝑛→∞



𝑥𝑛 − 𝐹 (𝑇)


 = 0.

Consider a subsequence
{
𝑥𝑛𝑘

}
of {𝑥𝑛} such

that ∥𝑥𝑛𝑘 − 𝑤𝑘 ∥ < 1
2𝑘 for all 𝑘 ≥ 1 and

{𝑤𝑘} ⊆ 𝐹 (𝑇). Then


𝑥𝑛𝑘+1 −𝑤𝑘



 ≤ 

𝑥𝑛𝑘 −
𝑤𝑘



 < 1
2𝑘 , which implies

𝑤𝑘+1 − 𝑤𝑘



 ≤ 

𝑤𝑘+1 − 𝑥𝑛𝑘+1




+


𝑥𝑛𝑘+1 − 𝑤𝑘



 < 1
2𝑘−1 ,

showing that {𝑤𝑘} is a Cauchy sequence.
Since 𝐹 (𝑇) is closed, {𝑤𝑘} converges in
𝐹 (𝑇), say, lim𝑘→∞ 𝑤𝑘 = 𝑤 ∈ 𝐹 (𝑇). Then
as 𝑘 → ∞,

𝑥𝑛𝑘 −𝑤



 ≤ 

𝑥𝑛𝑘 −𝑤𝑘



+ ∥𝑤𝑘 −𝑤∥ −→ 0,

showing that lim𝑘→∞


𝑥𝑛𝑘 − 𝑤



 = 0. Now,
since lim𝑛→∞ ∥𝑥𝑛−𝑤∥ exists, wemust have

lim
𝑛→∞

∥𝑥𝑛 − 𝑤∥ = 0,

as required. □

Example 3.4. Consider the closed convex
subset 𝐶 = [0, 1] of the Banach space of
real numbers R which is uniformly convex.
Let 𝑇 : 𝐶 −→ 𝐶 be defined by 𝑇𝑥 =
3
4𝑥. Then 𝑇 is a nonexpansive mapping and
𝐹 (𝑇) = {0} ≠ ∅.

Taking 𝛼𝑛 = 1
𝑛+1 and 𝛽𝑛 = 1

𝑛2+1 , let
{𝑥𝑛} be the sequence generated by the it-
eration scheme Eq. (1.2). Taking the ini-
tial points 𝑥1 = 0.95, 0.55 and 0.25,
we compute the sequence generated by
Eq. (1.2) (using Sagemath1) and the results
are shown in Table 1.1 and Fig. 1 below.

From Table 1 and Fig. 1, it is seen
that lim inf𝑛→∞ 𝑥𝑛 = 0 and hence by The-
orem 3.3, the sequence {𝑥𝑛} generated by
the iteration scheme Eq. (1.2) converges
strongly to the fixed point of 𝑇 .

Next, we prove a strong convergence
result using the definition of condition (I)
given by Senter and Dotson [11] for metric
spaces.

Theorem 3.5. Let 𝐶 be a nonempty closed
convex subset of a uniformly convex Banach
space 𝑋 and 𝑇 : 𝐶 −→ 𝐶 be a nonexpan-
sive mapping with 𝐹 (𝑇) ≠ ∅. If 𝑇 satis-
fies Condition(I), then the sequence defined
by the iteration scheme Eq. (1.2) converges
strongly to some fixed point of 𝑇 .

Proof. As in the proof of Theorem
3.3, 𝐹 (𝑇) is closed. By Theorem 3.2,
lim𝑛→∞ ∥𝑇𝑥𝑛 − 𝑥𝑛∥ = 0. Since 𝑇 satisfies
Condition (I), we have

lim
𝑛→∞

𝑓
(

𝑥𝑛 − 𝐹 (𝑇)



) ≤ lim
𝑛→∞



𝑥𝑛−𝑇𝑥𝑛

 = 0.

Since 𝑓 is a non-decreasing function
𝑓 : [0,∞) −→ [0,∞) with 𝑓 (0) = 0,
𝑓 (𝑡) > 0 for all 𝑡 ∈ (0,∞),

lim
𝑛→∞

𝑓
(

𝑥𝑛 − 𝐹 (𝑇)



) = 0.
1https://www.sagemath.org/
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Table 1. Sequence generated by Eq. (1.2).

𝑛 𝑥0 = 0.95 𝑥0 = 0.55 𝑥0 = 0.25

1 0.950000000000000 0.550000000000000 0.250000000000000
2 0.306848144531250 0.177648925781250 0.080749511718750
3 0.084548050761222 0.048948871493339 0.022249487042427
4 0.018339428948916 0.010617564128319 0.004826165512872
5 0.003055222784582 0.001768813191074 0.000804005995942
6 0.000387072402088 0.000224094548577 0.000101861158444
7 0.000037114504506 0.000021487344714 9.7669748701×10−6

8 2.6861473578×10−6 1.5551379440×10−6 7.0688088365×10−7

9 1.4649892143×10−7 8.4815165043×10−8 3.8552347747×10−8

10 6.0143243992×10−9 3.4819772837×10−9 1.5827169471×10−9

Fig. 1. Hybrid iteration Eq. (1.2) with different initial points.

The conclusion of the proof follows
as in the proof of Theorem 3.3. □

Now, we obtain a stability result for
the iteration scheme Eq. (1.2) in the next
theorem.

Theorem 3.6. Let 𝐶 be a nonempty closed
convex subset of a uniformly convex Banach
space 𝑋 and 𝑇 : 𝐶 −→ 𝐶 be a nonex-
pansive mapping with 𝐹 (𝑇) ≠ ∅ satisfying
Condition (I) or, lim inf𝑛→∞



𝑥𝑛 −𝐹 (𝑇)


 =

0. Then, for an arbitrary point 𝑥1 ∈ 𝐶, the

sequence {𝑥𝑛} generated by Eq. (1.2) is 𝑇-
stable.

Proof. Let {𝑟𝑛} be an arbitrary sequence in
𝐶. Let {𝑥𝑛} where 𝑥𝑛 = 𝑓

(
𝑇, 𝑥𝑛−1

)
be

the the sequence generated by the iteration
scheme Eq. (1.2), which converges to some
𝑤 ∈ 𝐹 (𝑇) (by Theorem 3.3 & 3.5), and let
𝜀𝑛 =



𝑟𝑛 − 𝑓 (𝑇, 𝑥𝑛−1)


.

Then using Eq. (1.2), we have,

∥𝑟𝑛 − 𝑤∥ ≤ ∥𝑟𝑛 − 𝑓 (𝑇, 𝑥𝑛−1)∥ + ∥ 𝑓 (𝑇, 𝑥𝑛−1)
− 𝑤∥ = 𝜀𝑛 + ∥ 𝑓 (𝑇, 𝑟𝑛−1) − 𝑤∥
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= 𝜀𝑛 +



𝑇𝑛

(
(1 − 𝛼𝑛−1)𝑇

(
(1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑇𝑥𝑛−1
)
+ 𝛼𝑛−1𝑇

2 ((1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑇𝑥𝑛−1
) )

− 𝑤





≤ 𝜀𝑛 +



(1 − 𝛼𝑛−1)𝑇

(
(1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑇𝑥𝑛−1
)
+ 𝛼𝑛−1𝑇

2 ((1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑇𝑥𝑛−1
)
− 𝑤





≤ 𝜀𝑛 + (1 − 𝛼𝑛−1)



𝑇 ((1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑇𝑥𝑛−1
)
− 𝑤



 + 𝛼𝑛−1


𝑇2 ((1−

𝛽𝑛−1)𝑥𝑛−1 + 𝛽𝑛−1𝑇𝑥𝑛−1
)
− 𝑤




≤ 𝜀𝑛 + (1 − 𝛼𝑛−1)



(1 − 𝛽𝑛−1)𝑥𝑛−1

+ 𝛽𝑛−1𝑇𝑥𝑛−1 − 𝑤


 + 𝛼𝑛−1



(1 − 𝛽𝑛−1)
𝑥𝑛−1 + 𝛽𝑛−1𝑇𝑥𝑛−1 − 𝑤




≤ 𝜀𝑛 + (1 − 𝛼𝑛−1) (1 − 𝛽𝑛−1)



𝑥𝑛−1 − 𝑤




+ (1 − 𝛼𝑛−1)𝛽𝑛−1


𝑇𝑥𝑛−1 − 𝑤




+ 𝛼𝑛−1(1 − 𝛽𝑛−1)



𝑥𝑛−1 − 𝑤




+ 𝛼𝑛−1𝛽𝑛−1


𝑇𝑥𝑛−1 − 𝑤




≤ 𝜀𝑛 + (1 − 𝛼𝑛−1) (1 − 𝛽𝑛−1)



𝑥𝑛−1 − 𝑤




+ (1 − 𝛼𝑛−1)𝛽𝑛−1


𝑥𝑛−1 − 𝑤



 + 𝛼𝑛−1(1−
𝛽𝑛−1)



𝑥𝑛−1 − 𝑤


 + 𝛼𝑛−1𝛽𝑛−1



𝑥𝑛−1 − 𝑤




≤ 𝜀𝑛 +
{
1 − 𝛼𝑛−1 − 𝛽𝑛−1 + 𝛼𝑛−1𝛽𝑛−1

+ 𝛽𝑛−1 − 𝛼𝑛−1𝛽𝑛−1 + 𝛼𝑛−1 − 𝛼𝑛−1𝛽𝑛−1

+ 𝛼𝑛−1𝛽𝑛−1

}

𝑥𝑛−1 − 𝑤




= 𝜀𝑛 +


𝑥𝑛−1 − 𝑤



.
If lim𝑛→∞ 𝜀𝑛 = 0, then since

lim𝑛→∞ 𝑥𝑛 = 𝑤 it follows that lim𝑛→∞ 𝑟𝑛 =
𝑤. On the other hand, if lim𝑛→∞ 𝑟𝑛 = 𝑤,
then lim𝑛→∞ 𝜀𝑛 = 0. Thus the sequence
{𝑥𝑛} generated by the iteration scheme
Eq. (1.2) is 𝑇– stable. □

In the following example, we give a
numerical comparison on the rate of con-
vergence to a fixed point of the iteration
schemes Eq. (1.1)-(1.2) using Sagemath.

Example 3.7. Consider the closed convex
subset 𝐶 = [0, 1] of the Banach space of
real numbers R which is uniformly convex.
Let 𝑇 : 𝐶 −→ 𝐶 be defined by 𝑇𝑥 = 1 − 𝑥
for all 𝑥 ∈ 𝐶. Then 𝑇 is a nonexpansive
mapping and 𝐹 (𝑇) =

{ 1
2
}

≠ ∅. Taking
𝛼𝑛 = 1

𝑛+1 and 𝛽𝑛 = 1
𝑛2+3 , the sequences

{𝑥𝑛} and {𝑦𝑛} respectively generated by the
iteration schemes Eq. (1.1)-(1.2) with initial
point 𝑥0 = 0.75 = 𝑦0 are calculated and
shown in Table 2 and Fig. 2 below.

Table 2. Sequence generated by Eq. (1.1)-(1.2).

𝑛 𝑥𝑛 𝑦𝑛

1 0.75 0.75
2 0.68 0.50
3 0.50 0.50

Fig. 2. Iterations Eq. (1.1)-(1.2) with initial
point 0.75.

From Table 2 and Fig. 2, it is
seen that the sequence {𝑦𝑛} generated by
Eq. (1.2) converges to the fixed point 𝑥 = 1

2
faster than the sequence {𝑥𝑛} generated by
the iteration scheme Eq. (1.1). Taking the
initial point 𝑥0 = 0.25 = 𝑦0 or taking
𝛼𝑛 = 2

𝑛+2 and 𝛽𝑛 = 3
𝑛2+3 , it is seen that the

sequence {𝑦𝑛} generated by Eq. (1.2) con-
verges to the fixed point 𝑥 = 1

2 faster than
the sequence {𝑥𝑛} generated by the iteration
scheme Eq. (1.1).
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Table 3. Sequence generated by Eq. (1.1)-(1.2) with initial point 0.97.

𝑛 𝑥𝑛 𝑦𝑛

1 0.970000000000000 0.970000000000000
2 0.558720000000000 0.365858133333333
3 0.179291391512381 0.123309661505829
4 0.049497484605731 0.035314940037069
5 0.011450189029753 0.008367570763303
6 0.002180078826480 0.001619077843863
7 0.000338239290634 0.000254084310369
8 0.000042518970307 0.000032210943675
9 4.3155364893×10−6 3.2905449519×10−6

10 3.5286071727×10−7 2.7043171954×10−7

Fig. 3. Iterations Eq. (1.1)-(1.2) with initial point 0.97.

Now, let 𝑇 : 𝐶 −→ 𝐶 be defined by
𝑇𝑥 = 4

5𝑥 for all 𝑥 ∈ 𝐶. Then 𝑇 is a non-
expansive mapping, in fact, a contraction
mapping with a unique fixed point 𝑥 = 0.
Taking 𝛼𝑛 = 2

𝑛+2 and 𝛽𝑛 = 3
𝑛2+3 , the se-

quences {𝑥𝑛} and {𝑦𝑛} respectively gener-
ated by the iteration schemes Eq. (1.1)-(1.2)
with initial point 𝑥0 = 0.97 = 𝑦0 are calcu-
lated and shown in Table 3 and Fig. 3 be-
low.

From Table 3 and Fig. 3, it is

seen that the sequence {𝑦𝑛} generated by
Eq. (1.2) converges to the fixed point 𝑥 = 0
faster than the sequence {𝑥𝑛} generated by
the iteration scheme Eq. (1.1).

A similar result is also seen with ini-
tial point 𝑥0 = 0.85 = 𝑦0, 𝛼𝑛 = 1

𝑛+1 and
𝛽𝑛 = 1

𝑛2+3 for all 𝑛 ∈ N.

Conclusion
In this paper, a new hybrid iteration

scheme is introduced and its convergence
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as well as 𝑇-stability are discussed in a uni-
formly convex Banach space. Some nu-
merical examples are also presented for a
possible faster convergence rate of the se-
quence generated by the introduced itera-
tion scheme to that of the sequence gener-
ated by the iteration scheme Eq. (1.1). Fur-
ther study may be done to prove that the it-
eration scheme Eq. (1.2) converges faster to
a (or the) fixed point than that of Eq. (1.1),
for example by using Berinde’s method.
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