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ABSTRACT

A new iterative algorithm for approximating fixed points is considered on the lines of
the iterative algorithm considered by Pansuwan and Sintunavarat [[I]. The convergence of
the considered iterative algorithm is established. Finally, the convergence rate of the new
iterative algorithm is compared with that of the iterative algorithm considered in [[I]].
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1. Introduction

For a contraction mapping 7 on
a complete metric space (X,d), Banach
showed the existence of a unique fixed point
and the convergence of the Picard iterates
{x,}, where for xo in X,

xXp,=Tx,_1, n=1,2 3, ...

to the fixed point of T. However, for non-
contraction mappings, the Picard iteration
need not converge to the fixed point, if it
exists. For instance, in the complete met-
ric space (X, d) where X = [0, 1] with the
usual metric, the self-mapping 7 on X de-
finedby Tx = 1—x forall x € X isnota con-
traction mapping. In fact, T' is a nonexpan-
sive mapping. The mapping has a unique

fixed point x = % and the sequence of Pi-
card iterates {x, } with xg # % does not con-
verge to the fixed point.

Thus a different technique is required
for approximation of the fixed point. In
this regard, many researchers have devel-
oped different iteration procedures for fixed
point approximation. Some of the promi-
nent authors in this regard are Mann [2]
in 1953, Ishikawa [B3] in 1974, Jungck [4]
in 1976, Rhoades [5] in 1991, Noor [6] in
2000, Agarwal et al. [7] in 2007, etc. and
the references therein. We note here that,
for example, the Mann iterates defined by

Xn = (1 - an—l)xn—l +an_1Tx,-1,
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where {«,} is a real sequence in [0, 1] con-
verges to the fixed point of Tx 1 - x.
Since then many authors have considered
the convergence and stability of new iter-
ation schemes.

Recently, Pansuwan and Sintu-
navarat [|I]] introduced a new hybrid
iterative algorithm to approximate fixed
point of Suzuki’s generalized nonexpansive
mappings as follows. For xp € C, a
nonempty subset of a Banach space X and
a self mapping T on C satisfying condition

©,

Xn+l = Tnyn
Yn =T((1 - ap)xn +@nze) ¢ (1.1)
in = (1 - ,Bn)xn + BnTxy,

where {a,} and {8, } are real sequences in
[0,1] and n = 0, 1, 2, ... . They also
showed the convergence of Eq. ([L.1]) in uni-
formly convex Banach spaces.

In this paper, a new hybrid iteration
scheme is considered in a uniformly convex
Banach space. Forx; € C, anonempty sub-
set of a Banach space X and a self mapping
T on C,

Xn = Tn((l - a’n—l)yn—l + a'n—lTyn—l)

Yn-1 = T((l = Bn-1)Xn-1 +,3n—1zn—1)

Zn-1 =Txuq,

(1.2)
where {a,} and {8, } are real sequences in
(0,H)andn=0,1, 2, ....

We put the above iteration scheme in
the form

xp = p(T, xn-1)
= T"((1 = - )T((1 = Bu-1)¥-1
+ Br-1Txn-1) + @1 T?((1 = Bu1)
Xp-1 +/3n—1Txn—1))-
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2. Preliminaries

In this section, some preliminary def-
initions and results required for our subse-
quent discussion are presented.

Definition 2.1 ([§]). A Banach space X is
said to be uniformly convex if V & € (0, 2]
there exists ¢ > 0 such that forx,y € X,

= =]

Lemma 2.2 ([9]). Let X be a uniformly con-
vex Banach space and 0 < a < t, <
B < 1 forall n € N. Suppose that
{xn} and {y,} are sequences in X such that
limsup,, e [[Xnll < r, imsup,, e [[yall <
r and lim sup,,_, thx,, -(1- tn)yn” =r
for somer > 0. Then

llxll < 1,

Iyl <1,
lx =yl >&

’}E}I‘}o Il — yn” =0.

Let C be a nonempty closed convex
subset of a Banach space X and {x,,} be a
bounded sequence in X. Then, for each x
in X, the asymptotic radius of {x,} at x is
defined as

r(x, {xn}) = limsup |lx, — xl,
n—oo
and the asymptotic centre of {x,} relative
to C is defined as

A(C, {x,}) = {x €C: r(x,{xn}) = r}.

The following is the definition of
T-stability of iteration schemes given by
Harder and Hicks [[10].

Definition 2.3 ([[10]). LetT : X — X and
w be a fixed point of 7. For any xg € X, let
the sequence {x, } generated by the iteration
scheme x,+1 = u(T,x,), n = 0,1,2,...
converges to w. Let {u,} be an arbitrary
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sequence, and set €, Hunﬂ - xn+1H,
n =0,1,2,.... Then the iterative scheme
u(T,xy,) is called T-stable if and only if
lim, . €, = 0 implies lim;,—co u, = w.

Senter and Dotson [[11] defined the
following condition and obtained a conver-
gence result.

Definition 2.4. [|]11] Let C be a convex sub-
set of a Banach space X. A self mapping T’
of C with nonempty fixed point set F in C
is said to satisfy Condition I if there exist
a nondecreasing function f : [0,c0) —
[0,00) with f(0) = 0 and f(r) > O for
r € (0, ), such that

|Tx - x| > f(d(x,F)) forall xeC,
where d(x, F) = inf{||x -7z € F}.

3. Convergence result

In this section, the convergence of the
iteration scheme Eq. ([.2) to a fixed point of
a nonexpansive mapping in a Banach space
is discussed.

Lemma 3.1. Let C be a nonempty closed
convex subset of a Banach space X and T :
C — C be a nonexpansive mapping with
F(T) # 0. For xy € C, let {x,} be the
sequence generated by the iteration scheme
Eq. (L.2), then lim,_e ||x, — w|| exists for
allw e F(T).

Proof. Letw € F(T) # 0, then for x €
C since T is a nonexpansive mapping, we
have,

ITx = wll < [lx —wll.

By definition of the iteration scheme
Eq. (1.2), for nonnegative positive integer
n—1,

lzn-1 = wll = ITxp-1 = wll < llxn-1 = wl,
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and
ynt = wlh = [7(C1 = Ba1)was

+ Bn-1Zn-1) — WH

< ”(1 ~ Bn-1)(Xn-1 = W) + Bu-1(zn-1 — W)”
< (I =Bn-Dlxn-1 = wll + Bn-1llTxp-1 — wl|
< (1= Bn-Dlxn-1 = wll + Bn-1llxp-1 — wl|

= |lxn-1 — wl|
so that,

¢, = wll = |7 ((1 = @n=1)yn-1
+ @y 1Typ 1) = w|
< (1= ap-1)||[yn=1 = w|| + @n1||Tyn-1
- wl|
< (1= ap-1)||yn-1 = w)|| + @n-1||yn-1

~w|| = llyn-1 = wll,

1e.,
llxn = wll < llxn-1—wll.

Thus the sequence {llxn - w||} of
nonnegative numbers is bounded and non-
increasing, and thus lim,,_,« ||, —w/|| exists
forallw € F(T). |

Theorem 3.2. Let C be a nonempty closed
convex subset of a uniformly convex Banach
space X and T : C — C be a nonexpan-
sive mapping. For any x; € C, let {x,}
be the sequence generated by the iteration
scheme Eq. (I.2)), then F(T) # 0 if and
only if {x,, } is bounded and lim,,_, ||Tx,, —
xnll = 0.

Proof. Letw € F(T) # 0. Then by Lemma
B.1|, lim, e ||x, — w|| exists for all w €
F(T) and {x,} is bounded. Suppose that
lim,, e [|X;, — w|| = u so that

3.1)

lim sup ||x, — w|| = u.
n—o0o
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Since [|zp-1 = wll = [[Txp-1 —w| <
|[x;—1 — w]|, it follows that

limsup ||z-1 — wl|| < u.

n—oo

(3.2)

If u = 0, then since ||Tx —w|| < ||x —
wll, we get ||Tx, — xpll < 2[lx, — wl| and
taking the limit as n — oo, we get

lim ||Tx;, — x,|| = 0.
n—oo

If u > 0, since y, = (1 — Bu)zn +
BnTz,, we have,

Iyn =wll < (1 = B)ITxn = wll + BullTzn
—wll < llxn = wl,

and taking the limit supremum as n — oo,
we get

limsup ||y, —wl| < u.

n—oo

Again, since (from the proof of
Lemma B.1)) [lx, = wl| < [[yn-1—wll, taking
limit infimum as n — oo, we get

u = liminf ||x;,, — w||

n—oo

< lim inf [|y,—1 - wil < g,
n—o0

1e.,

lim flyn-1 = wll = .

This implies that

p = limsup [[y,-1 — w||

n—oo

= lim sup HT((l — Bu-1)Xn-1 + Bn-12n-1)

n—oo

< lim sup H(l - ﬁn—l)xn—l + Bn—lzn—l - WH

n—oo

< Tim sup { (1= fp-1) n-1 = wl

n—oo

+ ButllTxo1 = wil}
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< limsup ||xp-1 — w|| = u,
n—oo

1e.,

tim sup[(1 = 1) (ta-1 = )

n—o0

+  Bu-1(zn-1 - W)H = u.

It then follows from Lemma J.1 that
i $up, oo [0 = 74| = 0.

Conversely, let {x,,} be bounded and
limsup, _, llXn — Txul|l = 0. Letu €
A(C, {x,}). Then,

r(Tu, {xn}) = limsup ||Tu — x,||

n—oo
< lim sup (||Tu — T, || + | Tx, - xn||)
n—oo

= lim sup ||u — x,||
n—oo

= r(u, {xu}).

This implies Tu € A(C, {x,}). But
as X is a uniformly convex Banach space,
A(C,{x,}) is a singleton set and hence
Tu = u,ie.,u € F(T)and F(T) + 0, as
required. O

Theorem 3.3. Let C be a nonempty closed
convex subset of a uniformly convex Ba-
nach space X and T C — C be
a nonexpansive mapping with F(T) #
0. Then the sequence {x,} generated by
the iteration scheme Eq. (1.2) converges
strongly to an element of F (T) if and only if
lim inf, ||xn - F(T)H = 0, where ||xn —
F(T)| = infwer(r lxn = wll.

Proof. If the sequence {x,} defined by the
iteration scheme Eq. ([.2) strongly con-
verges to a fixed point of 7, then obviously

lim inf ||x, — F(T)|| = 0.

To prove the converse, we first note
that F(T) is closed. If {wy} is a sequence
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in F(T) which converges to some w € C,
then since T is nonexpansive,

lwn =Twll = IT?wn = Twll < [|Tw, — wl|

= ”W}’l - W”v

and thus,

0= hm lwn —w|| > lirn lw, —wl|
n—

|| 1m W —Tw” =|lw-Tw||

showing that w € F(T), and hence F(T) is
closed.

We know, from Lemma that
lim,, —c0 ||X;, —w]|| exists forallw € F(T) so
that ||xn+1 - F(T)H < ||xn - F(T)”, which
implies the sequence {Hxn - F(T) ||} is non-
increasing and bounded below, and there-
fore, lim inf,, 0 ||xn -F (T)H exists.

Since lim inf, e |[x, = F(T)|| = 0,
it follows that lim, e |[x, — F(T)|
Consider a subsequence {xnk} of {x,} such
that ||x,, — wi|l < 2% for all k > 1 and
{wi} C F(T). Then “xnk+1 - wkH < Hxnk -
wi| < ¢, which implies

e = will < fwier = e, |
1

Wk” < k- Yy

+ H'xnk+1

showing that {w;} is a Cauchy sequence.
Since F(T) is closed, {wy} converges in
F(T), say, limg_,co wx = w € F(T). Then
as k — oo,

”xﬂk _W” < ”xnk _Wk” + ”Wk - W” — 0,

showing that limy_, Hxnk - w|| = 0. Now,
since lim,,_, ||x,—w|| exists, we must have

lim [lx, —wl| =0,
n—oo

O

as required.
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Example 3.4. Consider the closed convex
subset C = [0, 1] of the Banach space of
real numbers R which is uniformly convex.
Let T : C — C be defined by Tx
%x. Then T is a nonexpansive mapping and
F(T)={0} # 0.

Taking a, = ﬁ and 3, = ﬁ, let
{x,} be the sequence generated by the it-
eration scheme Eq. ([.2). Taking the ini-
tial points x; 0.95, 0.55 and 0.25,
we compute the sequence generated by
Eq. (1.2) (using Sagemathﬂ]) and the results
are shown in Table 1.1 and Fig. 1 below.

From Table [[] and Fig. [l it is seen
that lim inf,,,. x, = 0 and hence by The-
orem B.3, the sequence {x,} generated by
the iteration scheme Eq. (1.2) converges
strongly to the fixed point of 7.

Next, we prove a strong convergence
result using the definition of condition (I)
given by Senter and Dotson [[11] for metric
spaces.

Theorem 3.5. Let C be a nonempty closed
convex subset of a uniformly convex Banach
space X and T : C — C be a nonexpan-
sive mapping with F(T) # 0. If T satis-
fies Condition(l), then the sequence defined
by the iteration scheme Eq. ([.2) converges
strongly to some fixed point of T.

Proof. As in the proof of Theorem
B.3, F(T) is closed. By Theorem j.2,
lim,,—e0 [|Txn — x|l = 0. Since T satisfies

Condition (I), we have
tim 7 (= FD) < i T =0

Since f is a non-decreasing function
f : [0,00) — [0,00) with f(0) =
f(t) >0forallt € (0, c0),

lim f ([lxn = F(D)]) =

Uhttps://www.sagemath.org/
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Table 1. Sequence generated by Eq. ([L.2).

n xo =0.95 xo = 0.55 xo =0.25

1 0.950000000000000 0.550000000000000 0.250000000000000
2 0.306848144531250 0.177648925781250 0.080749511718750
3 0.084548050761222 0.048948871493339 0.022249487042427
4 0.018339428948916 0.010617564128319 0.004826165512872
5 0.003055222784582 0.001768813191074 0.000804005995942
6 0.000387072402088 0.000224094548577 0.000101861158444
7 0.000037114504506 0.000021487344714 9.7669748701x10~6
8 2.6861473578x10°6 1.5551379440x10~6 7.0688088365x10°7
9 1.4649892143x10~"7 8.4815165043x1078 3.8552347747x1078
1 6.0143243992x10~* 3.4819772837x107° 1.5827169471x107?

2 a

1)
Y

6

Fig. 1. Hybrid iteration Eq. ([.2) with different initial points.

The conclusion of the proof follows
as in the proof of Theorem B.3. O

Now, we obtain a stability result for
the iteration scheme Eq. ([.2) in the next
theorem.

Theorem 3.6. Let C be a nonempty closed
convex subset of a uniformly convex Banach
space X and T : C — C be a nonex-
pansive mapping with F(T) # O satisfying
Condition (1) or, lim inf,, ||x,, - F(T)” =
0. Then, for an arbitrary point x1 € C, the
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sequence {x,} generated by Eq. (1.2) is T-
stable.

Proof. Let {r,} be an arbitrary sequence in
C. Let {x,} where x, = f(T,x,-1) be
the the sequence generated by the iteration
scheme Eq. ([L.2)), which converges to some
w € F(T) (by Theorem B.3 & B.3), and let

En = ”rn - f(T’xn—l)”'
Then using Eq. ([.2), we have,

lrn = wll < llrn = f(T, xn-D)Il + 1 (T, xp-1)
—wll =&y +1f(T,rn-1) - wl
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o]

7"((1 = @ )T ((1 = 1)1

+ Br-1Txn-1) + @p-1T%((1 = Br-1)Xn-1

+ﬁn-1Txn_1)) - WH

<é&n+ H(l — )T ((1 = Bp-1)Xn-1

+ Br-1Txn-1) + @p1T*((1 = Bu-1)Xn-1

+ Bpn-1Txp-1) —w
<en+ (1= an)|T((1 = Bu=1)xn-1

+ Bn-1Txn-1) — w” + a/n_1||T2((1—
Bn-1)xn-1+ Pn-1Txn-1) — w|

<é&n+ (1= an-1)|| (1= Bao1)xn-1

+ Bn-1Txn-1 — w|| + an-1[/(1 = Bu-1)
Xn-1 + Bn1Txp_1 — |

<é&n+ (1= an1)(1 = Buet)|xn=1 — w|
+ (1= an-1)Bn1|[Txn-1 — w||

+ @p-1(1 = Bu-1)|rn-1 — w|

+ @n1Pn-1||[Txn-1 — w||

<en+ (1= an-1)(1 = Bp-1)|prn-1 - |

+(1- a’n—l)ﬁn—len—l - W” +ay-1(1-

Br-D|xn=1 = w|| + @n-1Bn-1[n-1 — w||

<épt {1 — Up-1— Pn-1+an-10n-1
+ Bn-1— Un-1Pn-1 + Un_1 — ¥n-1Pn-1
+ a’n—lﬁn—l}”xn—l - WH

=&p + Hxn_l — W”

If lim, &, 0, then since
lim,, 0 X, = w it follows thatlim,, e 7, =
w. On the other hand, if lim,, o 7, = W,
then lim,, . &, = 0. Thus the sequence
{xn} generated by the iteration scheme

Eq. (1.2) is 7 stable. O

In the following example, we give a
numerical comparison on the rate of con-
vergence to a fixed point of the iteration
schemes Eq. ([L.1)-(1.2) using Sagemath.
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Example 3.7. Consider the closed convex
subset C = [0, 1] of the Banach space of
real numbers R which is uniformly convex.
Let7T : C — Cbedefinedby Tx =1 —x
for all x € C. Then T is a nonexpansive
mapping and F(T) = {%} # (. Taking
an, —7 and B, = =3 the sequences
{x,} and {y, } respectively generated by the
iteration schemes Eq. ([L.1))-([.2) with initial
point xg = 0.75 = yq are calculated and
shown in Table P and Fig. 2 below.

Table 2. Sequence generated by Eq. ([L1)-(L.2).

n -xn yl’l
1 0.75 0.75
2 0.68 0.50
3 0.50 0.50
073 (1)
*e(2)
Fig. 2. Iterations Eq. ([L.1)-(.2) with initial
point 0.75.

From Table B and Fig. [, it is
seen that the sequence {y,} generated by
Eq. ([.2) converges to the fixed point x = %
faster than the sequence {x, } generated by
the iteration scheme Eq. ([L.1). Taking the
initial point xq 0.25 = yg or taking
a, = % and 8, = n2i+3’ it is seen that the
sequence {y,} generated by Eq. ([.2) con-
verges to the fixed point x = % faster than
the sequence {x, } generated by the iteration

scheme Eq. ([L.1)).
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Table 3. Sequence generated by Eq. ([L.I))-([.2) with initial point 0.97.

n Xn yn
1 0.970000000000000 0.970000000000000
2 0.558720000000000 0.365858133333333
3 0.179291391512381 0.123309661505829
4 0.049497484605731 0.035314940037069
5 0.011450189029753 0.008367570763303
6 0.002180078826480 0.001619077843863
7 0.000338239290634 0.000254084310369
8 0.000042518970307 0.000032210943675
9 4.3155364893%x1076 3.2905449519%x106
10 3.5286071727%x10°7 2.7043171954%x10°7
q
e (1)
oo (2)
0.8 1
0.6 4
0.4 4
0.2 4
é 4 6 8

Fig. 3. Iterations Eq. ([L.1)-(.2) with initial point 0.97.

Now, let T : C —> C be defined by
Tx = %x for all x € C. Then T is a non-
expansive mapping, in fact, a contraction
mapping with a unique fixed point x = 0.
Taking a, % and B, ﬁ, the se-
quences {x,} and {y,} respectively gener-
ated by the iteration schemes Eq. (L.1))-(.2)
with initial point xo = 0.97 = yg are calcu-
lated and shown in Table B and Fig. [ be-
low.

From Table B and Fig. [, it is
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seen that the sequence {y,} generated by
Eq. (I.2) converges to the fixed point x = 0
faster than the sequence {x, } generated by
the iteration scheme Eq. ([L.1)).

A similar result is also seen with ini-
tial point xg = 0.85 = yg, a, = ﬁ and
Bn = n%ﬁ for all n € N.

Conclusion
In this paper, a new hybrid iteration
scheme is introduced and its convergence
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as well as T-stability are discussed in a uni-
formly convex Banach space. Some nu-
merical examples are also presented for a
possible faster convergence rate of the se-
quence generated by the introduced itera-
tion scheme to that of the sequence gener-
ated by the iteration scheme Eq. ([L.1)). Fur-
ther study may be done to prove that the it-
eration scheme Eq. ([1.2) converges faster to
a (or the) fixed point than that of Eq. (L.1),
for example by using Berinde’s method.
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