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ABSTRACT
Air pollution from particulate matter (PM2.5) poses serious global health risks. This

study evaluated five fuzzy clustering methods—Fuzzy C-Means (FCM), Fuzzy Possibilistic
C-Means (FPCM), Possibilistic Fuzzy C-Means (PFCM), Fuzzy Gustafson-Kessel (FGK),
and FuzzyC-Shells (FCS)—integratedwithDynamic TimeWarping (DTW) to cluster PM2.5
levels across 33 Indonesian capital cities. Using an ecological time series design, daily PM2.5
data (March 6, 2023–March 5, 2024; 12,045 data points) from PlumeLabs were analyzed in R
4.4.2 with descriptive and inferential statistics, including the Kolmogorov-Smirnov, Kruskal-
Wallis, and Dunn tests. Three clusters—high, moderate, and low pollution—were identified.
The DTW+FCSmethod showed the best performance (PCI: 0.798, MPCI: 0.697, PEI: 0.357,
XBI: 0.197) with significant differences (𝑝 < 0.000). These findings highlight DTW+FCS
as the optimal approach and emphasize targeted air quality strategies for Indonesia’s high-
pollution areas.
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1. Introduction
Air pollution has become a critical

environmental and public health concern
globally, with particulate matter (PM) pos-
ing significant risks to human well-being.
Among these pollutants, PM2.5 (particulate
matter with an aerodynamic diameter of ≤
2.5 μm) is particularly hazardous due to its
ability to penetrate deep into the respiratory
system, leading to various health complica-
tions, including cardiovascular and respira-
tory diseases [1]. In urban environments,
PM2.5 originates from vehicular emissions,
industrial activities, and biomass burning
[2]. Effective monitoring and clustering of
PM2.5 pollution levels are essential for de-
veloping mitigation strategies and improv-
ing air quality management. However, tra-
ditional clustering techniques often fail to
account for air pollution data’s dynamic and
uncertain nature [3].

Clustering is a widely employed data
mining technique used to classify datasets
into distinct groups based on shared char-
acteristics. While hard clustering methods
such as K-means assign each data point to
a single cluster, they lack the flexibility to
capture uncertainty inherent in environmen-
tal data [4,5]. To address this limitation,
fuzzy clustering has emerged as an effective
approach, allowing data points to belong
to multiple clusters with varying degrees
of membership. Several fuzzy cluster-
ing methods have been proposed, including
Fuzzy C-Means (FCM), Fuzzy Possibilis-
tic C-Means (FPCM), Possibilistic Fuzzy
C-Means (PFCM), FuzzyGustafson-Kessel
(FGK), and Fuzzy C-Shells (FCS), each
demonstrating different strengths in han-
dling complex datasets [6].

Recent studies have explored the use
of fuzzy clustering in diverse domains. For
instance, [7] applied FCM for tumour re-
gion classification, highlighting its effi-

cacy in distinguishing overlapping features.
Similarly, [8] demonstrated the superior
performance of PFCM in classifying agri-
cultural datasets with high ambiguity. [9]
Implemented FGK for districts/cities based
on poverty issues factors in Kalimantan Is-
land, Indonesia, while [10] applied FCS
to stock market clustering. These studies
emphasize the growing relevance of fuzzy
clustering in handling complex, ambiguous
data structures.

The increasing complexity of air pol-
lution data necessitates more advanced an-
alytical techniques. While traditional clus-
tering methods have been applied to PM2.5
classification [11], their ability to manage
time series data remains limited. Given that
PM2.5 concentrations exhibit temporal fluc-
tuations influenced by meteorological con-
ditions and human activities, an advanced
technique is required to capture these vari-
ations. Dynamic Time Warping (DTW) has
emerged as a powerful method for analyz-
ing time series data, enabling the compar-
ison of sequences with varying temporal
alignments [12, 13]. Integrating DTW with
fuzzy clustering methods offers a novel ap-
proach to classifying PM2.5 pollution levels
dynamically.

Despite the advancements in fuzzy
clustering and DTW, there remains a gap
in research regarding the optimal fuzzy
clustering method for PM2.5 time series
data. Previous studies primarily focused
on regional air pollution clustering without
comprehensively comparing multiple fuzzy
clustering techniques [13]. Moreover, ex-
isting research has largely overlooked the
integration of DTW in PM2.5 classification,
leaving a significant gap in understanding
the most effective approach for analyzing
dynamic pollution data.

To address this gap, this study aims
to evaluate and compare five fuzzy cluster-
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ing methods: FCM, FPCM, PFCM, FGK,
and FCS integrated with DTW for classify-
ing PM2.5 time series data from Indonesia.
The research seeks to determine themost ef-
fective method for identifying high, moder-
ate, and low pollution clusters.

The integration of DTW with fuzzy
clustering methods is a crucial aspect of this
study, designed to enhance the analysis of
time-series data on PM2.5 concentrations.
The procedure begins with the application
of DTW as a pre-processing step to mea-
sure the similarity between the PM2.5 time
series of different cities. Unlike traditional
distancemetrics such as Euclidean distance,
which compares time series on a point-by-
point basis, DTW finds the optimal align-
ment between two time series by ”warping”
the time axis, thus accommodating varia-
tions in timing and speed [15]. This process
results in a distancematrix where each entry
represents the DTW distance between the
PM2.5 profiles of two cities. This matrix,
which captures the shape-based similarity
of the pollution patterns, is then used as the
primary input for the various fuzzy clus-
tering algorithms. By feeding this DTW-
derived distance matrix into the clustering
algorithms, we can group cities based on the
similarity of their pollution pattern trajecto-
ries over the entire study period, rather than
merely their average pollution levels.

The novelty of this study lies in
its comprehensive comparison of multi-
ple fuzzy clustering techniques applied
to PM2.5 time series data using DTW.
While previous research has explored fuzzy
clustering in various domains, this study
uniquely integrates DTW to enhance the
accuracy of air pollution classification.
The findings will contribute to developing
data-driven air quality management strate-
gies, supporting policymakers in mitigating
PM2.5 related health risks.

2. Materials and Methods
2.1 Study design, setting, and study size

This study employed a time series
ecological study to systematically classify
PM2.5 pollution levels in Indonesia. Its
study is particularly effective for identify-
ing and analyzing temporal trends and as-
sociations within historical data sets [14],
making it ideal for assessing PM2.5 pollu-
tant levels. The study included 33 cities
selected to represent major urban centres
across Indonesia. The final dataset com-
prised 365 daily observations per city, to-
talling 12,045 data points, ensuring a ge-
ographically diverse representation of In-
donesia’s air pollution landscape.

2.2 Data source, data preprocessing and
parameter specification

All analyses are based on a time-
series dataset of daily mean PM2.5 concen-
trations (𝜇g/m3) for 33 provincial capitals
in Indonesia. The data were obtained from
Plume Labs Air Quality and cover one year
fromMarch 6, 2023, to March 5, 2024. The
data is publicly available under a creative
commons license, from historical archives
available at https://plumelabs.com/. Prior
to analysis, the dataset underwent a rigor-
ous preprocessing protocol. Time series for
each city were inspected for missing values.
In all analyses of this study, basic data in the
form of daily PM2.5 averages for each city
were used.

Statistical analysis is applied in this
study. Outliers were identified using the in-
terquartile range (IQR) method. The clus-
tering analysis was performed in R using
the dtwclust package for DTW analysis,
ppclust package for FCM, FPCM, PFCM,
FGK analysis, 𝑒1071 package for 𝐹𝐶𝑆
analysis, 𝑓 𝑐𝑙𝑢𝑠𝑡 package for cluster evalua-
tion, and 𝑔𝑔𝑝𝑙𝑜𝑡2 package for visualisation
and different tests.
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In this study, the number of clusters
was set to 𝑘 = 3, corresponding to low,
moderate, and high levels of PM2.5 pol-
lution. This pre-specification is based on
the practical objective of generating policy-
relevant classifications that are both inter-
pretable and actionable for environmental
management and public health interven-
tions. Creating a small number of distinct
categories aligns with the structure of most
air quality indices used globally and simpli-
fies the formulation of targeted mitigation
strategies for distinct pollution tiers. This
approach of defining a realistic number of
clusters based on practical goals has been
utilised in previous environmental studies
analysing PM2.5 data, which similarly aim
to provide clear outputs for decision-makers
like in some countries [11, 14, 17]. By
defining the clusters a priori, we ensure
the results are directly translatable to estab-
lished air quality management frameworks.

2.3 Statistical analysis
This study employs statistical meth-

ods to derive generalizations from the find-
ings [15, 16]. Data analysis was performed
using R 4.4.2 for statistical computations
and visualization. The analysis consisted of
two main stages: descriptive statistics and
inferential statistics. Descriptive statistics
included central tendency and dispersion
measures such as minimum, mean, maxi-
mum, standard deviation and interquartile
range to summarize variable distributions
[17, 18]. Furthermore, DTW is used to
measure the similarity between two-time
series. Fuzzy clustering as a soft comput-
ing method is also implemented to find the
optimal cluster based on the degree ofmem-
bership [19]. The clustering results using
DTW integration and each fuzzy cluster-
ing method used will be validated to deter-
mine the best integration in clustering cities

based on pollutant levels. This study di-
vides pollutant levels into three categories:
low, moderate and high.

Next up, inferential statistical anal-
ysis began with normality testing using
the Kolmogorov-Smirnov test to determine
whether the data followed a normal distri-
bution [20]. This guided the selection of
either parametric or nonparametric statisti-
cal tests. If data were normally distributed,
Analysis of Variance (ANOVA) was ap-
plied as a parametric test, followed by the
Bonferroni test for post hoc comparisons
[21, 22]. If the data were not normally dis-
tributed, the Kruskal-Wallis was used as a
nonparametric alternative, with the Dunn
test employed for post hoc analysis [23].
This test is an alternative when the data does
not meet the normality assumption required
by the ANOVA test and can be applied to
more than three groups of dependent vari-
ables [24, 25]. The data compared by clus-
ter is the result of the best method. The dif-
ference test in this study was conducted to
confirm that the three clusters formed were
distinct and to ensure the accuracy of the
formed clusters.

2.4 Dynamic Time Warping (DTW)
This stage calculates a distance ma-

trix that measures the difference between
each pair of time series data. DTW helps
identify the similarity of PM2.5 pollutant
concentrations. Each pair of cities is com-
pared against the concentration time series
data to generate the DTW distance. The
main characteristic of DTW is its ability to
compare time series with different lengths.
DTWperforms dynamically within the time
series to achieve an optimal fit, thus making
amore flexible and accurate comparison be-
tween two-time series [26]. The result of
this process is the dynamic distance, a mea-
sure of similarity between the two matched
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time series [27]. The DTW method in-
volves the following steps:

Step 1-Calculating the local cost ma-
trix (D). This step calculates the distance
between each element of order a and each
element of order b. The distance (𝑑𝑖 𝑗) is
the absolute value of the element difference,
where 𝑑𝑖 𝑗 is the distance between elements
𝑎𝑖 and 𝑏 𝑗 .

𝑑𝑖 𝑗 = |𝑎𝑖 − 𝑏 𝑗 |, (2.1)

𝐷 =


𝑑11 𝑑12 · · · 𝑑1 𝑗
𝑑21 𝑑22 · · · 𝑑2 𝑗
...

...
...

...
𝑑𝑛1 𝑑𝑛2 · · · 𝑑𝑛𝑚


. (2.2)

Step 2: Construct the global cost ma-
trix (G). This step is used to determine the
optimal warping path. The matrix G is the
same size as the matrix D. 𝑔𝑖 𝑗 is the element
of the global costmatrix. The element of the
G matrix G (𝑔𝑖 𝑗) can be calculated with the
following equation.

𝑔𝑖 𝑗 = 𝑑𝑖 𝑗 +min(𝑔(𝑖−1) , 𝑗 , 𝑔𝑖, ( 𝑗−1) , 𝑔(𝑖−1) , ( 𝑗−1) ),

(2.3)

𝐺 =


𝑔11 𝑔12 · · · 𝑔1 𝑗
𝑔21 𝑔22 · · · 𝑔2 𝑗
...

...
...

...
𝑔𝑛1 𝑔𝑛2 · · · 𝑔𝑛𝑚


. (2.4)

Step 3-Determine the cost function
that becomes the starting point of the warp-
ing path. The starting point of the warp-
ing path is the point with the lowest cu-
mulative cost in the global cost matrix.
The starting point of the warping path is
𝑔𝑛𝑚. Step 4-Determine the optimal warp-
ing path. The warping path is a path
through matrix G that starts from the start-
ing point and ends at 𝑔1,1, with the lowest
cumulative cost. Starting from 𝑔𝑛𝑚, select

neighbouring cells from the three options
𝑔(𝑖−1) , 𝑗 , 𝑔𝑖, ( 𝑗−1) , 𝑔(𝑖−1) , ( 𝑗−1) until reaching
𝑔1,1.

Step 5-Calculating DTW distance
(𝑑𝐷𝑇𝑊 ). The DTW distance is calculated
as the cumulative value of the optimal warp-
ing path. Calculate the cumulative value by
taking the total cost along the warping path.

𝑑𝐷𝑇𝑊 =
∑

(𝑖, 𝑗 ) ∈𝑝𝑎𝑡ℎ
(𝑔𝑖 𝑗). (2.5)

2.5 Fuzzy clustering
The fuzzy clustering methods used in

this study are FCM, which focuses on clus-
ter centering; FPCM, which integrates pos-
sibilistic principles into fuzzy clustering;
PFCM, which is a variation of FPCMwith a
different emphasis; FGK, which takes into
account the shape of the cluster; and FCS,
which is used to identify clusters with non-
linear shapes. Each of these methods uses a
different analysis to analyze the data.

FCM is a data clustering method of
the k-means method, which incorporates
fuzzy principles into its membership func-
tion [28]. In FCM, the objective function
𝑃𝑡 uses 𝜇𝑖𝑘 as a random number of mem-
bership elements, was the rank of fuzzy
weights, 𝑣𝑘 𝑗 as the cluster centre, and 𝑑𝑖𝑘
as the distance of sample 𝑥𝑖 𝑗 to cluster cen-
tre 𝑣𝑘 𝑗 . The FCM objective function at the
𝑡-th iteration (𝑃𝑡 ) is as follows [29].

𝑃𝑡 =
𝑛∑
𝑖=1

𝑐∑
𝑘=1

((𝜇𝑖𝑘)𝑤 (
𝑚∑
𝑗=1

(𝑥𝑖 𝑗 − 𝑣𝑘 𝑗)2)).

(2.6)

FPCM is the development of FCM
and Possibilistic C-Means. FPCM relies on
two parameters, namely fuzziness and pos-
sibilistic parameters [30]. In FPCM, the ob-
jective function 𝑃𝑡 uses 𝜇𝑖𝑘 and 𝜏𝑖𝑘 as ran-
dom numbers of membership elements and
typicality, 𝑤 and 𝑣 as the rank of fuzzy and
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possibilistic weights, and 𝑑𝑖𝑘 as the distance
of sample 𝑥𝑖 𝑗 with cluster center 𝑣𝑘 𝑗 . The
FPCM objective function at the 𝑡-th itera-
tion (𝑃𝑡 ) is as follows [31].

𝑃𝑡 =
𝑛∑
𝑖=1

𝑐∑
𝑘=1

(((𝜇𝑖𝑘)𝑤

+ (𝜏𝑖𝑘)𝑣)(
𝑚∑
𝑗=1

(𝑥𝑖 𝑗 − 𝑣𝑘 𝑗)2)). (2.7)

Furthermore, the method used is
PFCM. The difference between PFCM and
FPCM is the order of application, PFCM
first uses a fuzzy approach to determine the
cluster center and calculate the membership
degree [32]. After that, PFCM applies the
possibilistic principle. In PFCM, the ob-
jective function 𝑃𝑡 uses 𝜇𝑖𝑘 and 𝜏𝑖𝑘 as ran-
dom numbers of membership elements and
typicality, 𝑤 and 𝑣 as fuzzy and possibilis-
tic weighting ranks, 𝑑𝑖𝑘 as the distance of
sample 𝑥𝑖 𝑗 with cluster center 𝑣𝑘 𝑗 , Ω𝑘 as a
random number of reference distance. The
PFCM objective function at the 𝑡-th itera-
tion (𝑃𝑡 ) is as follows [31].

𝑃𝑡 =
𝑛∑
𝑖=1

𝑐∑
𝑘=1

(((𝜇𝑖𝑘)𝑤

+ (𝜏𝑖𝑘)𝑣) (
𝑚∑
𝑗=1

(𝑥𝑖 𝑗 − 𝑣𝑘 𝑗)2))

+
𝑛∑
𝑖=1

(1 − 𝜏𝑖𝑘)𝑛
𝑐∑

𝑘=1

Ω𝑘 . (2.8)

FGK is a method that classifies data
based on the membership value of each data
in a cluster [33]. In FGK, the objective
function 𝑃𝑡 uses 𝜇𝑖𝑘 as a random number
of membership elements, w as the rank of
fuzzy weights, 𝐴𝑘 as the cluster norm in-
ducer, 𝑑𝑖𝑘𝐴𝑘 as the distance of sample 𝑥𝑖 𝑗
and cluster center 𝑣𝑘 𝑗 with cluster norm in-
ducer, 𝐹𝑘 as the 𝑘-th adaptive covariance

matrix element, and 𝑣𝑘 𝑗 as the cluster cen-
ter. The FGK objective function at the 𝑡-th
iteration (𝑃𝑡 ) is as follows [33].

𝑃𝑡 =
𝑛∑
𝑖=1

𝑐∑
𝑘=1

((𝜇𝑖𝑘)𝑤 (
𝑚∑
𝑗=1

(𝑥𝑖 𝑗 − 𝑣𝑘 𝑗)2)𝐴2
𝑘).

(2.9)

The FCS method is a development
method of FCM. Both FCS and FCM share
similar characteristics in terms of having
cluster centres. However, FCS adds a
unique dimension in its clustering process
by including radius as an additional param-
eter. In FCS, the objective function 𝑃𝑡 uses
𝜇𝑖𝑘 as the random number of membership
elements, w as the rank of fuzzy weights,
𝑣𝑘 𝑗 as the cluster center, and 𝑑𝑖𝑘 as the sam-
ple distance between sample 𝑥𝑖 𝑗 and proto-
type (𝑣𝑘 𝑗 , 𝑟𝑘). The FCS objective function
at the the 𝑡-th iteration (𝑃𝑡 ) is as follows
[34].

𝑃𝑡 =
𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝜇𝑖𝑘)𝑤 (𝑑𝑖𝑘)2. (2.10)

2.6 Index of cluster validation
Cluster validation is a step to evalu-

ate cluster analysis results based on quan-
titative criteria and objective reality. Clus-
ter validation not only aims to assess the re-
sults of cluster analysis but is also a method
to evaluate the performance of the clus-
tering method that has been implemented
[35]. There are four cluster validations
used in this study, namely Partition Coeffi-
cient Index (PCI), Modified Partition Coef-
ficient Index (MPCI), Partition Entropy In-
dex (PEI), and Xie-Benni Index (XBI).

The Partition Coefficient Index PCI
is used to evaluate the compactness of fuzzy
clusters by measuring how strongly data
points belong to specific clusters. The for-

131



N.R. Sasmita et al. | Science & Technology Asia | Vol.30 No.4 October - December 2025

mula gives it:

𝑃𝐶𝐼 =
1

𝑛

𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝜇𝑖𝑘)2, (2.11)

where n represents the total number
of data points, c is the number of clusters,
and 𝜇𝑖𝑘 denotes the membership value of
the 𝑖-th data point in the 𝑘-th cluster, which
ranges between 0 and 1. PEI values close
to 0 indicate that the clustering results are
more optimal [36]. A higher PCI value indi-
cates well-separated clusters, but this index
tends to favour a higher number of clusters.
The higher the PCI value, the more optimal
the clustering result is in distinguishing and
grouping the data into specific clusters [37].
Further, MPCI is an improved version of
PCI that normalizes the coefficient to avoid
overestimating the number of clusters. It is
defined as:

𝑀𝑃𝐶𝐼 =
𝑃𝐶𝐼

max(𝑃𝐶𝐼) , (2.12)

where max (𝑃𝐶𝐼) is the maximum PCI
value obtained across different cluster num-
bers. By normalizing the PCI value, MPCI
provides a better estimate of the correct
number of clusters without biasing toward
a larger number of clusters. A high MPCI
value indicates a good level of separation
between clusters, as well as an indication
that the data in each cluster has high ho-
mogeneity. The higher the index value, the
better the quality of separation and clarity
between the clusters formed [38].

PEI measures the fuzziness in a clus-
tering solution, with lower values indicating
well-defined clusters. It is calculated as:

𝑃𝐸𝐼 =
1

𝑛
(

𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝜇𝑖𝑘 log(𝜇𝑘))), (2.13)

where 𝑛 is the number of data points, 𝑐 is
the number of clusters, and 𝜇𝑖𝑘 is the mem-
bership value of the 𝑖-th data point in the

𝑘-th cluster. Since the logarithmic term am-
plifies lower membership values, PEI effec-
tively captures the degree of fuzziness in the
clustering structure, with smaller values in-
dicating more distinct clusters. Lastly, XBI
evaluates both the compactness and separa-
tion of clusters, helping to identify the opti-
mal clustering structure. It is expressed as:

𝑋𝐵𝐼 =

∑𝑛
𝑖=1

∑𝑐
𝑘=1 𝑢

2
𝑖𝑘 ∥𝑥𝑖 − 𝑣 𝑗 ∥2

𝑛 ×min𝑖𝑘 ∥𝑣 𝑗 − 𝑣𝑘 ∥2
, (2.14)

where 𝑥𝑖 represents the 𝑖-th data point, 𝑣 𝑗

is the centre of cluster 𝑗 , and ∥𝑥𝑖 − 𝑣 𝑗 ∥ is
the Euclidean distance between a data point
and its assigned cluster centre. The denom-
inator,min𝑖𝑘 ∥𝑣 𝑗−𝑣𝑘 ∥2, represents the min-
imum squared Euclidean distance between
any two cluster centres. A lower XBI value
indicates well-separated and compact clus-
ters, making it an effective measure for as-
sessing clustering quality. XBI is a vali-
dation to assess both the compactness of a
cluster and the separation between clusters,
thus providing a balanced way to evaluate
cluster structure. A smaller XBI value indi-
cates a more optimal cluster [39].

2.7 Different test and post hoc test
The ANOVA test is a parametric sta-

tistical analysis that evaluates the mean dif-
ference between three or more groups. The
assumption in applying the ANOVA test is
that the variance between groups must be
normal [22]. The Kruskal-Wallis test is a
nonparametric statistical analysis utilized to
identify whether there are statistically sig-
nificant differences between three or more
groups. This test is an alternative when the
data does not meet the normality assump-
tion required by the ANOVA test and can
be applied to more than three groups of de-
pendent variables [24].

Furthermore, in the Post Hoc test
stage, the Bonferroni Test is a post-hoc cor-
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rection method used after ANOVA if the
null hypothesis is rejected [40]. The Bon-
ferroni test is a widely used method in sta-
tistical analysis to address the problem of
type I error rates that can arise frommultiple
comparisons between groups [41]. Dunn’s
test was used to identify different groups af-
ter Kruskal-Wallis showed an overall me-
dian difference. This test is particularly use-
ful for comparing rankings between groups
and correcting for multiple comparisons,
generally using methods such as Bonferroni
correction to preserve type I error rates [23].

3. Result and Discussion
Table 1 provides an overview of

PM2.5 pollutant conditions and environ-
mental challenges faced by various cities in
Indonesia. Jakarta stands out with an aver-
age PM2.5 pollutant value of 70.84 𝜇g/m3,
far exceeding the average values of other
cities, and recording a maximum recorded
pollutant value of 173 𝜇g/m3. This shows
that Jakarta frequently experiences high
levels of air pollution and faces extreme
pollution peaks. In contrast, Palangka Raya
showed a different phenomenon with the
maximum value of PM2.5 pollutant reach-
ing 203 𝜇g/m3, the highest value among
all cities studied. However, the average
value was not as high as Jakarta. This result
shows that Palangka Raya experiences ex-
treme air pollution events even though the
average pollution is lower than Jakarta. A
visualization of the average PM2.5 levels for
each city in Indonesia during the specified
study period is illustrated in Fig. 1.

A comparison between Indonesian
cities shows significant variations in pollu-
tion levels, which can be attributed to var-
ious factors, such as geographical condi-
tions, industrial activity, and traffic conges-
tion. Ambon, with a mean value of 0.17
𝜇g/m3, a maximum of 4 𝜇g/m3, and a stan-

dard deviation of 0.554 𝜇g/m3, shows con-
sistent pollutant levels with less fluctuation
than Jakarta and Palangka Raya. This in-
dicates that PM2.5 pollutants in Ambon are
only sourced from consistent daily activi-
ties, without many extreme events that in-
crease pollutant levels drastically.

Furthermore, while the majority of
cities have lower and relatively uniform lev-
els, a few cities stand out with higher levels.
Jakarta faces great challenges in managing
air quality. This comparison is important
as it shows areas that need urgent attention
and reveals successes in lowering air pollu-
tion. Cities with lower levels may indicate
better environmental management practices
or geographical luck that results in less in-
tense dispersion of pollutants. Then, figure
2 displays the median marked by the cen-
ter line, showing the middle PM2.5 concen-
tration of each city. The length of the box
representing the IQR shows the variation of
concentration in each city within the middle
50% of the data, and the points outside the
whisker represent outlier values.

Fig.2 shows significant variation be-
tween cities. Some cities, such as Jakarta
and Palangka Raya show a wide range, in-
dicated by the length of the whiskers and the
presence of outliers. In contrast, cities such
as Ambon, Gorontalo, and Ternate have
very small boxes and short whiskers, in-
dicating small variations in PM2.5 concen-
trations. The standard deviation and IQR
values of PM2.5 for each city influence the
condition. Each city has outlier data above
Q3. These outliers in the PM2.5 data indi-
cate that there are events with pollutant con-
centrations that are very different from nor-
mal. Palangka Raya has high outlier data
compared to other cities.

Based on these outlier data and
highly diverse data, a fuzzy clustering
method was used to group the 33 cities.
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Table 1. Distribution of PM2.5 (𝜇g/m3) for 33 provincial capitals in Indonesia.

No Cities Summary Statistics
Minimum Mean Maximum Standard Deviation IQR

1 Ambon 0 0.17 4 0.55 0.00
2 Banda Aceh 0 1.77 15 2.81 2.00
3 Bandar Lampung 0 13.30 55 10.33 13.00
4 Bandung 6 34.69 87 12.81 16.00
5 Banjarmasin 0 7.07 88 8.08 9.00
6 Bengkulu 0 5.93 31 5.21 6.00
7 Denpasar 0 1.79 26 4.45 1.00
8 Gorontalo 0 0.41 5 0.89 0.00
9 Jakarta 1 70.84 173 30.21 41.75
10 Jambi 0 10.45 36 7.21 10.00
11 Jayapura 0 0.92 4 0.79 1.00
12 Kendari 0 3.20 18 4.42 6.00
13 Kupang 0 0.83 12 1.79 1.00
14 Makassar 0 4.73 22 5.35 8.00
15 Manado 0 1.46 16 2.65 2.00
16 Mataram 0 2.31 24 3.79 3.00
17 Medan 0 29.19 74 12.98 15.00
18 Padang 0 8.52 29 5.65 6.00
19 Palangkaraya 0 13.49 203 26.45 6.00
20 Palembang 0 15.59 99 16.51 17.00
21 Palu 0 6.83 18 3.50 5.00
22 Pangkalpinang 0 1.91 35 4.14 2.00
23 Pekanbaru 0 16.09 59 10.23 13.00
24 Pontianak 0 12.39 71 13.15 14.00
25 Samarinda 0 5.22 26 5.17 9.00
26 Semarang 0 23.51 72 13.51 16.75
27 Serang 0 38.93 125 26.83 40.00
28 Sorong 0 0.95 11 1.83 1.00
29 Surabaya 0 35.31 118 20.96 28.00
30 Tanjung Pinang 0 1.74 30 3.91 2.00
31 Tarakan 0 3.52 21 3.70 5.75
32 Ternate 0 0.52 12 1.42 0.00
33 Yogyakarta 0 14.99 81 17.67 20.00

Clustering Indonesian cities based on PM2.5
pollutants, it is important to identify pat-
terns and trends that are not immediately ap-
parent through descriptive statistical anal-
ysis. Fuzzy clustering provides flexibility
in clustering, allowing cities to be grouped
based on non-strict membership levels and

accommodating ambiguity in time series
data. Focusing on cities that belong to clus-
ters with both the highest and most variable
pollutant levels can prevent or reduce neg-
ative impacts on public health.
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Fig. 1. Average PM2.5 pollutants from 33 cities in Indonesia

Fig. 2. Distribution of PM2.5 from 33 cities in Indonesia.

3.1 Distribution of cities based on clus-
ter

Table 2 presents the distribution of
the 33 cities in Indonesia based on cluster-
ing results using the integration of DTW
and each fuzzy clustering method. Through
the application of DTW matrix, FCM
method clusters 9 cities as cluster 1, 20
cities as cluster 2, and 4 cities as cluster 3.
FPCM method clusters 10 cities as cluster
1, 17 cities as cluster 2, and 6 cities as clus-
ter 3. Then, the PFCM method groups 4

cities as cluster 1, 3 cities as cluster 2, and
26 cities as cluster 3. Furthermore, the FGK
method groups 9 cities as cluster 1, 19 cities
as cluster 2, and 5 cities as cluster 3. Mean-
while, the FCS method groups 14 cities as
cluster 1, 6 cities as cluster 2, and 13 cities
as cluster 3.

3.2 Evaluation of cluster results
The selection of the best clustering

method is based on maximizing PCI and
MPCI while minimizing PEI and XBI. Ta-
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ble 3 indicates that DTW+FCS is the most
effective for clustering cities in Indonesia
based on time-series PM2.5 pollutant data
among the five tested methods. The FCS
method achieves the highest PCI and MPCI
values, 0.798 and 0.697, respectively. A
maximum PCI and MPCI value in fuzzy
clustering indicates well-defined and com-
pact clusters withminimal overlap, suggest-
ing that the chosen clustering structure ef-
fectively partitions the data. Higher val-
ues imply that data points have strongmem-
bership to specific clusters, reducing fuzzi-
ness and enhancing interpretability, making
it the optimal choice for this study. The
DTW+FCS method also achieves the low-
est PEI and XBI values, 0.357 and 0.197,
respectively, indicating well-separated and
compact clusters. The minimal PI value
suggests a lower degree of fuzziness, while
the low XBI value reflects high intra-
cluster similarity and clear cluster distinc-
tion, further confirming the effectiveness of
DTW+FCS in producing optimal clustering
results.

The superior performance of the FCS
method, when integrated with DTW, can
be attributed to its unique clustering mech-
anism. Unlike point-based algorithms like
FCM that identify spherical clusters based
on prototype centers, FCS identifies clus-
ters based on hyperspherical shells, making
it adept at detecting contours and bound-
aries in the data [45,46]. When analyz-
ing time-series data processed by DTW, the
resulting distance matrix reflects complex,
shape-based similarities between pollution
patterns that may not form simple spheri-
cal groups. The FCS algorithm’s ability to
define clusters by a prototype shell defined
by its center and radius allows it to cap-
ture these more complex, non-spherical re-
lationships more effectively. Therefore, the
combination of DTW’s robust time-series

similarity measurement and FCS’s flexible,
shell-based clustering geometry provides a
more accurate and nuanced classification
of cities with similar PM2.5 temporal dy-
namics, which explains its higher validation
scores in our study.

3.3 Distribution of DTW+FCS cluster
result

The results of normality testing
with a 5% significance level using the
Kolmogorov-Smirnov test showed that
each cluster formed from DTW+FCS did
not follow a normal distribution (𝑝-value
<0.000). Therefore, the Kruskal-Wallis test
based on the median was applied to see the
difference in statistical distribution.

Fig. 3. illustrates the distribution of
PM2.5 concentrations across three clusters
identified using the DTW+FCS method.
The Kruskal-Wallis test (𝜒2=4,621.62, 𝑝-
value < 0.000) indicates a statistically sig-
nificant difference in PM2.5 levels among
the clusters, further confirmed by the Dunn
pairwise test, which shows significant dif-
ferences between all pairs with 𝑝-value <
0.000. Cluster 1, with a median PM2.5 of
4 𝜇g/m3, represents areas with moderate
pollution levels, likely indicating relatively
clean air conditions. Cluster 2, with a me-
dian PM2.5 of 33 𝜇g/m3, signifies highly
polluted regions, possibly urban or indus-
trial zones with higher pollution exposure.
Meanwhile, Cluster 3, with a median PM2.5
of 1.00 𝜇g/m3, represents areas with very
low pollution levels, potentially rural or less
industrialized regions. The location of each
city based on its cluster can be seen in Fig.
4.

Cluster 2 exhibits the widest variabil-
ity in PM2.5 values, suggesting a diverse
pollution range within this group. In con-
trast, Cluster 3 has the lowest PM2.5 concen-
trations with minimal variation, indicating
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Table 2. Distribution of 33 cities in Indonesia based on cluster results.

No Cities DTW+FCM DTW+FPCM DTW+PFCM DTW+FGK DTW+FCS
1 Ambon 2 2 3 3 3
2 Banda Aceh 2 2 2 1 1
3 Bandar Lampung 1 1 3 2 1
4 Bandung 3 3 1 1 2
5 Banjarmasin 1 1 3 1 3
6 Bengkulu 2 1 3 3 3
7 Denpasar 2 2 3 2 3
8 Gorontalo 2 2 3 2 3
9 Jakarta 3 3 3 3 2
10 Jambi 2 1 3 2 3
11 Jayapura 2 2 3 1 3
12 Kendari 2 2 3 2 1
13 Kupang 2 2 3 1 3
14 Makassar 2 2 3 2 1
15 Manado 2 2 2 2 1
16 Mataram 2 2 3 2 1
17 Medan 1 3 1 2 2
18 Padang 2 1 3 2 3
19 Palangka Raya 1 1 3 1 1
20 Palembang 1 1 3 1 1
21 Palu 2 2 3 2 1
22 Pangkalpinang 2 2 3 2 3
23 Pekanbaru 1 1 3 2 1
24 Pontianak 1 1 3 1 1
25 Samarinda 2 2 3 2 3
26 Semarang 1 3 3 2 2
27 Serang 3 3 1 2 2
28 Sorong 2 2 3 3 3
29 Surabaya 3 3 1 1 2
30 Tanjung Pinang 2 2 3 3 3
31 Tarakan 2 2 2 2 1
32 Ternate 2 2 3 2 1
33 Yogyakarta 1 1 3 2 1

Table 3. Cluster evaluation results of PM2.5
Pollutant data.

No Methods Cluster Validity Indices
PCI MPCI PEI XBI

1 DTW+FCM 0.789 0.684 0.392 0.238
2 DTW+FPCM 0.790 0.685 0.390 0.239
3 DTW+PFCM 0.655 0.482 0.580 2.025
4 DTW+FGK 0.439 0.158 0.925 1.036
5 DTW+FCS 0.798 0.697 0.357 0.197

consistently clean air quality. The signif-
icant differences between clusters confirm
that the DTW+FCS clustering method ef-

fectively distinguishes regions based on air
pollution levels, making it a valuable tool
for air quality monitoring and targeted en-
vironmental policy-making.

Furthermore, the spatial distribu-
tion of PM2.5 pollution across Indonesia,
classified using the DTW+FCS clustering
method, provides a comprehensive insight
into regional air quality variations. By clus-
tering cities into three distinct clusters, the
analysis highlights significant disparities in
pollution levels influenced by factors such
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Fig. 3. Comparison cluster-based distribution of PM2.5 using DTW+FCS method.

Fig. 4. Map of PM2.5 pollutant clusters in Indonesia using DTW+FCS..

as urbanization, industrial activities, and
geographical characteristics. The clustering
results reveal a clear pattern where densely
populated and industrialized regions exhibit
the highest pollution levels, whereas less
urbanized and ecologically preserved areas
maintain better air quality.

Cluster 2 (High PM2.5 Pollution) is a
major urban and Industrial Hotspot. Cluster
2, marked in orange, represents the high-
est PM2.5 concentrations and is predomi-
nantly located in Java and parts of Suma-

tra. This cluster includes Bandung, Jakarta,
Medan, Semarang, Serang, and Surabaya,
which are known for their dense population,
heavy traffic emissions, and industrial ac-
tivities. The high concentration of PM2.5
in these areas can be attributed to several
sources, including vehicle emissions, coal-
fired power plants, and industrial waste.

The analysis results of this study
are in line with several previous studies
[42], which stated that large cities such as
Jakarta, Medan, and Surabaya, which are
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industrial centers or have high population
levels, contribute significantly to pollution.
Fossil fuel combustion, including house-
hold heating and industrial activities, con-
tributes significantly to high PM2.5 concen-
trations in urban areas [2].

The severe air quality in these cities
poses significant health risks, increasing
the prevalence of respiratory diseases, car-
diovascular issues, and reduced life ex-
pectancy. Immediate and stringent air pol-
lution control measures, including vehicle
emission regulations, industrial pollution
monitoring, and reforestation programs, are
necessary to mitigate the environmental im-
pact in these regions [43].

Cluster 1 (Moderate PM2.5 Pollution)
is a transitional region with emerging air
quality concerns. Cluster 1, marked in
green, represents moderate PM2.5 pollu-
tion levels and includes cities distributed
across Sumatra, Kalimantan, Sulawesi, and
parts of Java such as Banda Aceh, Ban-
dar Lampung, Kendari, Makassar, Manado,
Mataram, Palangka Raya, Palembang, Palu,
Pekanbaru, Pontianak, Tarakan, Ternate,
dan Yogyakarta. These regions experience
pollution levels that are neither as severe as
Cluster 2 nor as clean as Cluster 3, indicat-
ing transitional zones where a mix of natu-
ral and anthropogenic factors influences air
quality. The presence of mining, palm oil
plantations, forest fires, and industrial ex-
pansion in Sumatra and Kalimantan con-
tributes to fluctuating pollution levels. Ad-
ditionally, cities such as Banda Aceh, Yo-
gyakarta and East Kalimantan suggest that
urbanization gradually impacts air quality.
This is supported by the study of [44] who
attributed the increase in PM2.5 pollutants in
Palangka Raya to forest fires.

Meanwhile, a study by [45, 46] found
that land clearing and forest fires are one
of the causes of the spread of PM2.5 pollu-

tants in Pekanbaru, and a study by Kemala
et al. [47] found that population growth
and increased transportation contributed to
PM2.5 pollutant pollution [48]. If proactive
air quality management strategies are not
implemented, these areas risk transitioning
into high-pollution zones (Cluster 2) over
time. Therefore, early intervention policies,
such as sustainable urban planning, indus-
trial emission controls, and stricter environ-
mental regulations, are crucial to prevent
further deterioration.

Cluster 3 (Low PM2.5 Pollution) is
Indonesia’s least polluted and ecologically
preserved area. Cluster 3, marked in
purple, consists of cities with the lowest
PM2.5 concentrations, mainly found in east-
ern Indonesia, including Papua, Sulawesi,
and parts of Kalimantan. This cluster
includes Ambon, Banjarmasin, Bengkulu,
Denpasar, Gorontalo, Jambi, Jayapura, Ku-
pang, Padang, Pangkalpinang, Samarinda,
Sorong dan Tanjung Pinang. These areas
are characterized by low population den-
sity, minimal industrialization, and abun-
dant natural forests, contributing to bet-
ter air quality [49]. The lack of heavy
traffic and large-scale industrial emissions
helps maintain relatively pristine atmo-
spheric conditions [50].

In recent assessments of air pollu-
tion, cities in eastern Indonesia, particularly
in regions such as Papua, Sulawesi, and
parts of Kalimantan, have been recognized
as exhibiting some of the lowest PM2.5 con-
centrations. This notable air quality can
be attributed to several factors, including
the abundance of natural vegetation, which
helps to filter pollutants, and lower levels of
industrialization compared to urban areas in
other regions.

Cities such as Ambon and Jayapura
stand out in this context. Extensive forest
cover plays a critical role in maintaining air
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quality, as forests are known to absorb pol-
lutants and produce oxygen. These cities
generally experience less vehicular and in-
dustrial pollution, leading to lower PM2.5
levels. Previous research has highlighted
the correlation between urbanization and air
quality, indicating that regions with lim-
ited urban expansion and industrial activi-
ties tend to have cleaner air [51, 52].

Moreover, the geographic and mete-
orological conditions unique to eastern In-
donesia, including strong winds and hu-
midity levels, contribute to the dispersion
and dilution of air pollutants that may arise
from natural and anthropogenic sources
[53]. This combination of natural environ-
mental factors and limited human impact
ensures that cities in this region enjoy a rel-
atively clean atmosphere, reinforcing their
status as locations with some of the lowest
PM2.5 concentrations globally.

However, while these areas enjoy
clean air, future infrastructure development
and economic expansion could threaten
their air quality. To ensure sustainable
development, environmental conservation
policies, green urban initiatives, and air pol-
lution monitoring systems should be proac-
tively implemented to maintain these re-
gions’ air quality. The clustering results re-
veal distinct regional pollution trends, high-
lighting disparities between western and
eastern Indonesia.

Java, Sumatra, and parts of Kaliman-
tan exhibit significantly higher pollution
levels than Sulawesi, Papua, and eastern
Kalimantan, which remain relatively unpol-
luted. The primary factors contributing to
these differences include population den-
sity, industrial activity, and deforestation.
Java, as the economic and industrial hub
of Indonesia, experiences severe air pollu-
tion due to high energy consumption, traffic
congestion, and manufacturing industries.

Sumatra and Kalimantan, while less urban-
ized, face seasonal air quality degradation
from agricultural burning, mining, and log-
ging activities. In contrast, Papua and east-
ern Indonesia benefit from low industrial-
ization and extensive forest coverage, act-
ing as a natural buffer against air pollution
[54].

Another critical observation is
the geographical clustering of pollution
sources. Coastal and inland cities in
Java and Sumatra are disproportionately
affected by dense transportation networks,
port activities, and industrial zones. On
the other hand, mountainous and forested
regions in Sulawesi and Papua maintain
cleaner air due to minimal human-induced
pollution. These variations emphasize the
need for region-specific air quality man-
agement strategies, ensuring each region
receives tailored environmental policies
based on its pollution profile.

Regarding implications for environ-
mental policy and air quality management,
this clustering analysis provides valuable
insights for environmental policymakers to
design targeted pollution control strategies.
The categorization into three clusters allows
for prioritized air quality interventions, en-
suring that high-risk regions receive urgent
mitigation measures, while cleaner areas
are safeguarded against future degradation
[55].

Immediate air pollution control mea-
sures must be implemented to address the
severe pollution in Cluster 2 regions. One
of themost critical steps is enforcing stricter
vehicle emission standards and enhanc-
ing public transportation systems to reduce
traffic-related pollution, a major contribu-
tor in densely populated cities. Addition-
ally, industrial emission regulations should
be strengthened, particularly inmanufactur-
ing hubs across Java and Sumatra, to limit
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the release of harmful pollutants. Another
key intervention is the implementation of
peatland fire prevention programs, which
are essential for mitigating seasonal haze
that severely impacts air quality in western
Indonesia. These strategies are crucial in re-
ducing PM2.5 levels and improving public
health in highly polluted areas.

For Cluster 1 regions, where pollu-
tion levels are moderate but rising, sus-
tainable development planning is essential
to prevent further environmental degrada-
tion. Encouraging eco-friendly industrial
expansion is necessary to ensure economic
growth does not lead to higher pollution
levels. In addition, green urban planning
should be strengthened to integrate sustain-
able transportation, green spaces, and smart
city initiatives, which can help control air
pollution in rapidly growing cities. An-
other critical aspect is promoting alterna-
tive energy sources, such as solar and wind
power, to reduce reliance on coal-based in-
dustries, which are significant contributors
to air pollution. These measures will help
maintain environmental quality while sup-
porting economic progress in these transi-
tional regions.

In Cluster 3 regions, where air qual-
ity remains relatively clean, proactive envi-
ronmental conservation strategies should be
implemented to preserve the existing natu-
ral balance. Establishing air quality mon-
itoring systems is vital for detecting early
signs of pollution increases, allowing for
preventive actions before conditions deteri-
orate. Additionally, sustainable infrastruc-
ture planning must be prioritized to ensure
that future economic development does not
come at the cost of environmental degra-
dation. A crucial component of this strat-
egy is the enforcement of forest conserva-
tion policies, which help maintain natural
air purification processes and protect bio-

diversity. These regions can sustain their
clean air status by implementing these mea-
sures while promoting responsible develop-
ment.

For future research, several exten-
sions could build upon our findings to pro-
vide a more comprehensive understanding
of air pollution in Indonesia. A primary di-
rection would be to conduct source appor-
tionment studies within the high-pollution
clusters identified by our analysis. This
would help pinpoint the specific origins of
PM2.5, such as vehicular emissions, indus-
trial activities, or biomass burning, allow-
ing for more targeted and effective mitiga-
tion policies [61,62]. Additionally, incor-
porating spatial analysis could reveal pat-
terns of transboundary pollution and the
spatial dependency of PM2.5 levels between
adjacent regions, offering a more holistic
view of air pollution dynamics across the
archipelago [63,64]. Finally, linking our
pollution clusters to public health data could
quantify the specific health burdens, such
as respiratory and cardiovascular morbid-
ity, associated with different levels of PM2.5
exposure in Indonesia. Such an analysis
would strengthen the case for urgent policy
intervention by highlighting the direct hu-
man cost of air pollution.

This study has several limitations.
Firstly, it covers only 33 out of 38 provin-
cial capitals in Indonesia, which may limit
the representation of the country’s diverse
geographic distribution. The reason is be-
cause the other five cities are newly estab-
lished provincial capitals, resulting in the
unavailability of data from the sources used
in this study. Given that Indonesia is a vast
archipelagic nation with significant envi-
ronmental variations, the findings may not
fully capture the conditions in smaller cities
or remote areas that were not included in the
sample. Additionally, the study relies on
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data from a single year, which is insufficient
for identifying long-term trends or varia-
tions in PM2.5 pollution, so it does not ac-
count for the effects of seasonal variations
and long-term climate changes on PM2.5
levels, which could influence the overall
findings and interpretations.

4. Conclusion
This study presents a comprehensive

evaluation and comparison of five fuzzy
clustering methods: FCM, FPCM, PFCM,
FGK, and FCS integrated with Dynamic
TimeWarping (DTW) for classifying PM2.5
time series data from 33 capital cities in
Indonesia. The key findings reveal that
the integration of DTW with Fuzzy C-
Shells (DTW+FCS) emerged as the opti-
mal method for clustering Indonesian cities
based on PM2.5 pollution levels. This ap-
proach demonstrated superior performance
in cluster compactness and separation, as
evidenced by the highest PCI and MPCI
values and the lowest PEI and XBI values
among the tested methods. The cluster-
ing analysis identified three distinct groups
of cities: high pollution (Cluster 2), mod-
erate pollution (Cluster 1), and low pollu-
tion (Cluster 3). The clusters formed con-
firm that there are statistically significant
differences between clusters based on the
results of different tests. Major urban and
industrial centres, primarily located in Java
and parts of Sumatra, were classified in the
high pollution cluster, highlighting the sig-
nificant environmental challenges faced by
these regions. Conversely, cities in eastern
Indonesia, particularly in Papua, Sulawesi,
and parts of Kalimantan, exhibited the low-
est PM2.5 concentrations, emphasizing the
role of lower population density, mini-
mal industrialization, and abundant natural
forests in maintaining better air quality. The
findings align with the study’s objectives

by successfully identifying the most effec-
tive clustering method for PM2.5 data and
providing a comprehensive spatial distribu-
tion of air pollution across Indonesia. The
findings underscore the critical need for tar-
geted interventions in high-pollution areas
and proactive measures to preserve air qual-
ity in less polluted regions, ultimately sup-
porting the development of more effective
strategies for improving public health and
environmental sustainability across the In-
donesian archipelago.
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