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ABSTRACT
Optical coherence tomography angiography (OCTA) is a powerful imaging technique

for non- invasively visualizing retinal blood flow at high resolution. Accurate vessel seg-
mentation from OCTA images is essential for diagnosing and monitoring retinal diseases.
However, segmentation remains challenging due to the complexity of the vessel network,
including sharp turns, varying vessel widths, and frequent junctions. Additionally, denois-
ing OCTA images without losing fine vessel structures further complicates the process. This
study proposes an enhanced graph traversal method for OCTA vessel segmentation. Incorpo-
rating angular-threshold-based pruning and improved junction handling to address common
challenges with a comprehensive preprocessing pipeline to denoise the OCTA image while
preserving vessel integrity. It also gives a comparative analysis against a baseline graph
traversal technique, which extracts all vessel paths without pruning or junction refinement.
This research aims to enhance the accuracy of extraction of longest biologically realistic con-
tinuous vessel segments from an OCTA image. To evaluate our method, we use a dataset of
five OCTA images each comprising of approximately 175 vessel segments and 60 longest
vessel strains. Evaluation metrics include false positive rates and qualitative visual com-
parisons. Visual analysis demonstrates that our pruning technique significantly improves
segmentation quality, producing smoother, continuous and biologically valid vessels while
reducing spurious branches. Our results yield an F1 score of 0.8488, showing a marked im-
provement over the baseline model.
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1. Introduction
Optical Coherence Tomography An-

giography (OCTA) is an advanced non-
invasive imaging technique that allows for
high-resolution visualization of the mi-
crovasculature within biological tissues,
particularly in the retina. Unlike conven-
tional imaging modalities, such as fluores-
cein angiography, OCTA does not require
the injection of contrast dyes, making it a
safer and more convenient option for diag-
nosing and monitoring retinal diseases. By
capturing volumetric scans, OCTA enables
detailed assessment of vascular structures
within different retinal layers, providing a
comprehensive view of blood flow dynam-
ics.

A critical step in analyzing OCTA
images is retinal vessel segmentation,
which facilitates quantitative assessment
of vascular features such as vessel density,
tortuosity, and bifurcation patterns. How-
ever, accurate and robust segmentation
remains a significant challenge due to
several inherent complexities in the OCTA
images. First, the retinal vessel exhibits
structural complexity, characterized by
vessels of varying diameters, sharp angular
turns, and frequent branching or junction
points. These features make it difficult to
extract continuous and biologically realistic
vessel paths. Second, OCTA images often
suffer from speckle noise [1], projection
artifacts and uneven illumination, which
can obscure fine vessel structures or in-
troduce false positives. Effective vessel
segmentation must therefore balance noise
suppression with structure preservation,
especially for finer vessels.

Numerous vessel segmentation tech-
niques have been proposed in recent years.
Classical image processing techniques pri-
marily rely on edge detection, threshold-
ing, and morphological operations to delin-

eate vessels. Frangis’ Vesselness filter [2],
based on multiscale analysis of the Hessian
matrix, remains a popular choice for en-
hancing tubular structures. It performs well
for vessels of various sizes but requires ro-
bust postprocessing to yield a clean vessel
segmentation. More recent approaches also
include deep learning methods [3, 4] which
learn directly from labeled data. Although
these methods have shown impressive ac-
curacy, they typically require large, anno-
tated datasets and may struggle to general-
ize across devices or imaging conditions.

While a significant body of research
has focused on segmentation of the vessel
network, relatively little attention has been
given to the extraction of continuous, bi-
ologically valid longest vessel paths from
the segmented network. This information
is crucial for applications such as tortuosity
analysis which is vital for early detection of
various retinal diseases. Furthermore, re-
construction of such paths accurately, re-
quires careful handling of junction points,
angular continuity and noise-induced dis-
continuities – often overlooked in standard
segmentation pipelines.

In this work we bridge that gap by
introducing an enhanced graph traversal
framework with an effective preprocessing
pipeline which preserves finer vessel seg-
ments while removing noise effectively. It
also segments the vessels and reconstructs
longest, biologically meaningful vessel tra-
jectories within the network. By incorpo-
rating angular-threshold-based pruning and
robust junction handling into a tailored
graph construction process, our method pri-
oritizes anatomical realism and connectiv-
ity. This leads to smoother, more continu-
ous vessel paths.
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2. Methodology
Fig. 1 depicts procedures used in the

methodology. The detail of each step is pro-
vided in the next sub sections.

Fig. 1. Overall Framework of the proposed
method.

2.1 Global preprocessing
Since colors were not essential for

this work, the first step was to convert
the images to grayscale. Afterwards, ar-
tifacts appearing as short horizontal and
vertical lines during scanning, as well as
text providing image information at the bot-
tom right of the images, were removed
to prevent accidental detection as vessels.
We then performed Min-Max normaliza-
tion, scaling the pixel intensities to a range
of 0 to 255.

We enhanced clarity of the vessel
edges by using the unsharp mask described
by the work of Kim and Kim [5]. The pro-
cess is as follows. For each point (𝑥, 𝑦) in
each channel, we applied the Gaussian blur

algorithm, which is mathematically defined
in Eq (2.1).

𝐺 (𝑥, 𝑦, 𝜎) = 1

2𝜋𝜎2
𝑒

−(𝑥2+𝑦2 )
2𝜎2 , (2.1)

where 𝜎 is the blur kernel. In our stud-
ies, we used 𝜎 = 0.4. The enhanced im-
age 𝐼𝑚𝑔𝑒𝑛ℎ is achieved from the input im-
age 𝐼𝑚𝑔 and the image after Gaussian blur-
ring 𝐼𝑚𝑔𝐺𝐵 with a sigma value of 1, as de-
scribed in Eq. (2.2).

𝐼𝑚𝑔𝑒𝑛ℎ = 𝐼𝑚𝑔 + 2 × (𝐼𝑚𝑔 − 𝐼𝑚𝑔𝐺𝐵).
(2.2)

Next, we applied Contrast Lim-
ited Adaptive Histogram Equalization
(CLAHE) filters with a clip limit of 1 and
tile grid size of (8,8) for localized changes
in contrast, to further enhance the contrast
between the vessels and the background.

2.2 Vessel network segmentation
This step involves vessel separation

into channels, vessel clarity enhancement
for each channel, and the recombination of
channels.

2.2.1 Image separation by vessel
sizes

The enhanced image was split into
three channels: small (S), medium (M) and
large (L). These sizes were distinguished by
usingHessian-based Frangi Vessel Filter [2]
to each channel to detect the vessel struc-
tures and suppress non-vessel areas. For
each channel, we used the ranges [1, 3], [4,
6], and [6, 10] for the S, M, and L channels,
respectively.

2.2.2 Vessel clarity enhancement
for each channel

We improved the contrast of each
channel by reapplying CLAHE with clip
limits of 4.0, 2.0, and 0.1 on the tile grid
sizes of 4×4, 16×16, and 8×8 and filtered
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out small objects of sizes 25, 50, and 70
pixels for the S, M, and L channels, respec-
tively.

2.2.3 Constructing vessel networks
from separate channels

We combined the cleaned prepro-
cessed vessel networks from the three chan-
nels by pixelwise adding normalized vessel
images from the channels together. We then
binarized the images using Otsu’s Thresh-
olding method [6], and removed small ob-
jects of size smaller than 150 pixels. Then,
we applied morphological closing and di-
lation [7] operations using kernel sizes of
3 and 2, respectively to fill the gaps be-
tween the continuous vessels that might
have been introduced during the prepro-
cessing. The images illustrating these pro-
cesses are shown in Fig. 2.

Fig. 2. Preprocessing pipeline.

2.3 Longest vessel path segmentation
The procedures in this step are de-

picted in Fig. 3, and details are summarized
in the following subsections.

Fig. 3. Processes in the longest vessel path seg-
mentation.

2.3.1 Skeletonization
In the analysis of vessel network

topology, skeletonization serves to simplify
the structural complexity while preserving
the essential topological features of the net-
work. In this study, a thinning algorithm
[8] is applied to the preprocessed image to
reduce the vessel structures to their center-
lines, helping the identification of critical
points required for further analysis.

2.3.2 Identifying bifurcation and
end points

Bifurcation points and end points are
key topological features that play a crucial
role in constructing a neighborhood graph
for traversal. To identify these points, the
neighboring degree (nbd) of each point on
the skeleton is computed. A nbd of a point
p is defined as the number of adjacent ves-
sel pixels in a nine-point grid centered at p.
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A point is classified as a bifurcation if it ex-
ceeds two, and as an end point if its nbd is
equal to one.

2.3.3 Constructing neighborhood
graph

Bifurcation and end points are used
as nodes for the neighborhood graph (NBG)
to form a vessel network. The depth-first-
search algorithm [9] is used to construct an
NBG. The pseudo algorithm makeNBG de-
picts the processes.

Input: A skeleton image SK
Algorithm makeNBG(SK)
NBG is set to an empty graph
for each node s in SK

subgraph = DFS(s, SK)
NBG = merge(NBG, subgraph)

end
Output: NBG

The algorithm requires the following
functions detailed below.

DFS(s, SK) takes the node s and the
skeleton image as inputs, it returns a graph,
which is a subgraph of SK, obtained from
the depth-first-search algorithm starting at
node s. merge(G1, G2): takes two graphs
G1 and G2 as inputs and returns the union
of the two graphs.

2.3.4 Pruning short leaf vessel seg-
ments

Leaf vessel segments (LVS) are seg-
ments with one end point and one bifurca-
tion point. Short LVS typically contribute
minimally to the resulting vessel paths and
add unnecessary complexity to the analysis.
Therefore, we pruned LVS with lengths be-
low a specified threshold. In this work, the
size threshold was set to 25 pixels.

2.3.5 Straight vessel path detection
In this study, the non-branching ves-

sel paths (NBVP) are of our interest. The

NBVP is defined as a sequence of continu-
ous vessel segments of which the angle be-
tween two adjacent segments is more than
135 degrees. We specifically consider only
paths longer than 50 pixels to reduce con-
sidered cases and improve running time.
The fixed degree and path length was cho-
sen based on our observation.

In addition, if a pair of NBVPs have
a pixel difference of less than 8 pixels, they
are considered the same NBVP, and the one
with the shorter pixel will be kept. Fig. 4
depicts examples of NBVP and non-NBVP
cases.

Fig. 4. Illustration of NBVP and non-NBVP
cases.

It is important to note that the vessels
are usually curvy and wavy, so we cannot
compute the angle directly from them. In-
stead, an angle between two adjacent vessel
segments 𝐴 and 𝐵 is defined at their com-
mon point in Eq. (2.3).

Let 𝑐 be a common point of 𝐴 and 𝐵,
𝑎 be a point on 𝐴 that is the 10th nearest to 𝑐,
and 𝑏 be a point on 𝐵 that is the 10th near-
est to 𝑐. The notations −→𝑐𝑎 and

−→
𝑐𝑏 denotes

vectors from 𝑐 to 𝑎 and 𝑐 to 𝑏, respectively.

𝑎𝑛𝑔𝑙𝑒(𝐴, 𝐵) = cos−1
( −→𝑐𝑎
∥−→𝑐𝑎∥

·
−→
𝑐𝑏

∥−→𝑐𝑏∥

)
.

(2.3)

It is worth noting that the fixed dis-
tance of 10 nearest to the common point was
selected empirically.

82



N. Tatiyakaroonwong et al. | Science & Technology Asia | Vol.30 No.3 July - September 2025

The algorithm findNBVP depicts
how the vessel segments get added to a
path NBVP starting at node x. It excludes
already-visited vessel segments. In addi-
tion, it ensures that the last added vessel
segment is not too short to be included in
the path to save some computational costs.
Segments are considered too short if their
length is smaller than 8 pixels. We apply
this algorithm to all nodes in NBG. This
step is shown in the algorithm findNBVPs.

Input:
A neighborhood graph NBG
A set of vessel segments SS

Algorithm findNBVPS(NBG, SS)
NBVPS is set to an empty set
for each node s in NBG

paths = findNBVP(NBG, SS, s)
NBVPs = NBVP

∪
paths

end
Output: NBVPs

Algorithm findNBVPS requires a re-
cursive algorithm findNBVP defined be-
low.

Input:
NBG is a neighborhood graph
SS is a set of vessel segments
x is a starting node

Algorithm findNBVP(NBG, SS, x)
P is initialized to set of path segments con-
taining node x
temp =
for each pair of p∈P and s∈SS

if isValid(p, s) == true
= append(p, s)

endif
temp = temp

∪
end for
if temp is not empty

P = P
∪
temp

findNBVP(NBG, SS, x)
Output: P

Remark: U is the set union operator.
The algorithm requires the following func-
tions detailed below. isValid(p, s): input a
path p and a vessel segment s. It returns
true if s has more than 8 pixels and 𝑝 and 𝑠
have a point in common, and the angle be-
tween the last segment of 𝑝 and the segment
𝑠 is greater than 135 degrees, or else return
false. append(p, s): append the vessel seg-
ment s to the path p.

2.3.6 Longest vessel paths extrac-
tion

The valid vessel path set obtained
from the previous section comprises all pos-
sible combinations of valid vessel paths.
We then iterate through the valid vessel path
set and remove any path that is a continu-
ous subsequence of another path within the
set. This process results in a set of longest
unique valid vessel paths.

3. Experiments
3.1 Tested images

869 segments of vessels collected
from five OCTA images provided by Tham-
masat University Hospital were used in this
study. The original images were fovea-
centered with dimension 12 by 12 mm.
Each image was cropped to square patch of
dimension 512 by 512 pixels. For ground
truth, experts manually labelled the longest
non-branching vessel paths.

3.2 Evaluation schemes
To quantitatively assess the perfor-

mance of our vessel extraction methods,
we employed three commonly used eval-
uation metrics: precision, recall and F1-
score. These metrics are particularly well-
suited for tasks involving sparse structures
such as retinal vessel segmentation, where
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the goal is to accurately identify continuous
vessel paths within a large background re-
gion. The ground truth image, which fea-
tures the longest continuous non-branching
vessels labeled by humans, was compared
to the algorithm-generated images across all
endpoints. The evaluation was performed
on a pixel-by-pixel basis.

These metrics are provided in Eqs.
(3.1)-(3.3).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, (3.1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, (3.2)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
.

(3.3)

where 𝑡𝑝 stands for true positive and 𝑓𝑝 for
false positive, 𝑓𝑛 stands for false negative
true positive and 𝑡𝑛 stands for true negative.

4. Results and Discussion
To evaluate the effectiveness of our

proposed graph-based method, we con-
ducted experiments on a set of five fovea-
centered images as detailed in Section 3.1.
The performance of our model was com-
pared to amodified depth-first search (mod-
ified DFS) algorithm, which compares all
vessel paths from one starting point with-
out backtracking to finding the longest pos-
sible path. Fig. 5 compares the results from
the two methods at a selected endpoint, in-
dicated by a yellow circle.

We intentionally include only one
endpoint in this illustration to maintain clar-
ity and avoid cluttering the solutions. As
shown in Fig. 5(c), the DFS-based method
selects the longest vessel path, regardless of
branches. In contrast, the proposed method
focuses solely on straight or nearly straight
vessels in the path, so it yielded the excel-
lent results.

Fig. 5. Comparison of the baseline model
and our method on the longest continuous non-
branching vessel strains from one selected end-
point.

Table 1 presents precision, recall, F1-
measure of the modified DFS and the pro-
posed method.

Table 1. Performance comparison of our pro-
posed method vs. the modified DFS method in
percentage (%). The highest value in each eval-
uation is bold.

Method Precision Recall F1-Score
Modified DFS 22.62 66.70 32.74
Proposed 85.76 84.03 84.88

As shown in Table 1, the pro-
posed method significantly outperformed
the baseline across all evaluation metrics,
particularly in precision. The most notable
improvement in precision is attributed to
our advanced algorithm design, which uti-
lizes angles to exclude vessels that branch
off from the main path. In contrast, the
modified DFS is hindered by the inclusion
of irrelevant branch paths, leading to lower
precision and, consequently, a reduced F1-
score. The inaccuracy arises from incor-
rectly selected vessel segments, as the an-
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gle was calculated based on representative
points from two vessels. A very curvy ves-
sel can lead the algorithm to make decisions
about including or excluding it from the
path that differs from what is appropriate.
Another cause of the imperfect result is the
angle threshold of 135 degrees. Some ves-
sel angles slightly smaller than this thresh-
old may be excluded rather than included.

5. Conclusion
In this study, we presented a ro-

bust graph-based method for extracting the
longest continuous non-branching vessel
segments from OCTA images. Our ap-
proach integrates a comprehensive prepro-
cessing pipeline with angular threshold-
based pruning and junction-aware graph
traversal to address key challenges in retinal
vessel segmentation – namely the presence
of noise, frequent bifurcations, and com-
plex vessel geometries.

Unlike conventional segmentation
pipelines that focus primarily on binary
vessel maps or pixel-wise classification,
our method emphasizes the continuity and
anatomical plausibility of the extracted ves-
sel paths. By carefully handling bifurcation
points and imposing angular constraints, we
were able to significantly reduce spurious
branches and preserve biologically realistic
vessel trajectories.

We also comparatively analyzed our
method against a baseline graph traversal
algorithm, which confirmed the superior-
ity of our method to the conventional ap-
proaches, in producing more realistic vessel
segments – achieving an F1 score of 0.8488
compared to 0.3274 achieved by the base-
line method.

Our method shows strong potential
for downstream clinical applications such
as tortuosity analysis further leading to
early diagnosis of various retinal-related

diseases. Future work may include enhanc-
ing the pre-processing pipeline, particularly
in preserving faint or low-contrast vessels
that are occasionally missed, leading to dis-
continuities. Additionally, refining the ves-
sel pruning algorithm using more advanced
policies could further improve accuracy and
robustness.
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