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ABSTRACT
Chest X-ray (CXR) interpretation is time-intensive and contributes to radiologist

workload and potential diagnostic delays. We propose a multimodal deep learning frame-
work integrating a Vision Transformer (ViT) for global visual feature extraction, a biomedi-
cal pre-trained language model (ClinicalBERT) for domain-specific semantic encoding, and
a Gated Recurrent Unit (GRU) decoder for sequential report generation. Images from the
Indiana University CXR dataset were converted from DICOM to PNG and enhanced with
contrast-limited adaptive histogram equalization (CLAHE); reports were cleaned, tokenized,
and augmented. Hyperparameters—GRU size, learning rate, and batch size—were opti-
mized using Optuna. On the test set, the ViT + ClinicalBERT + GRU configuration achieved
BLEU-4 = 0.278, METEOR = 0.221, ROUGE-L = 0.434, CIDEr = 0.846, and SPICE =
0.530, outperforming CNN–RNN baselines and remaining competitive with transformer-
based approaches while being computationally efficient.

Keywords: Chest X-ray; ClinicalBERT; GRU; Image captioning; Vision transformer

1. Introduction
The growing demand for diagnos-

tic imaging increases pressure on radiol-
ogy services, where radiologists must in-
terpret large volumes of studies within lim-
ited timeframes. CXRs are the most fre-

quently performed radiographic examina-
tions for thoracic diseases such as pneumo-
nia, pulmonary edema, lung nodules, and
cardiomegaly. However, interpretation is
subjective and depends on radiologist ex-
pertise, which can lead to variability and
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oversight.
Automatic image captioning—

generating descriptive text from images—
has emerged to improve workflow effi-
ciency and reporting consistency. Early
deep learning approaches combining con-
volutional neural networks (CNNs) with
recurrent neural networks (RNNs) such as
“Show, Attend, and Tell” [1] demonstrated
feasibility but struggled with long-range
dependencies and domain-specific ter-
minology. Nevertheless, the work laid
foundation to later works such as the work
by Jing et al. (2018) [2], and R2Gen
[3] which introduced Long Short-Term
Memory (LSTM) and Transformer models
respectively. Transformer-based models
address these limitations. The Vision
Transformer (ViT) captures global spatial
dependencies through self-attention and
has shown strong performance in vision
tasks [4]. Biomedical language models
such as ClinicalBERT improve semantic
representation of clinical text [5], while
vision-language pretraining in radiology
(e.g., BioViL, CheXzero) strengthens
cross-modal alignment [6], [7]. Swin-
Transformer variants also report gains in
medical image captioning [8].

Nonetheless, many state-of-the-art
captioning systems use heavy transformer
decoders [3], [8], which can be expensive
to train and deploy in resource-constrained
settings. Here, we propose a frame-
work combining ViT for image encoding
and ClinicalBERT for biomedical seman-
tics with a lightweight GRU decoder. We
apply Optuna for automated hyperparame-
ter optimization [9] and evaluate on the In-
diana University CXR dataset [10], [11] us-
ing BLEU [10], ROUGE-L [11], METEOR
[12], CIDEr [13], and SPICE [14]. Re-
sults show competitive performance with
improved efficiency.

2. Materials and Methods
2.1 Dataset

We use the Indiana University Chest
X-ray Collection, a public dataset contain-
ing over 7,000 de-identified CXRs paired
with free-text radiology reports [10, 11].
Reports typically include Findings and Im-
pressions. For captioning, we extract and
clean the Findings text as concise descrip-
tions of radiographic observations most rel-
evant to summarizing the CXR.
Split: 80% train, 10% validation, 10% test.
Views: Frontal (PA/AP) and lateral.
Format: Original DICOM converted to
PNG.

2.2 Image preprocessing
All images were resized to 224×224,

normalized using ImageNet statistics, and
enhanced with CLAHE to improve local
contrast, especially in lung regions [15].

2.3 Text preprocessing and augmenta-
tion

Reports were cleaned (removing
special characters and boilerplate), tok-
enized with the ClinicalBERT tokenizer
[5], padded/truncated to 128 tokens, and
provided with attention masks. To improve
robustness, we applied nlpaug-based aug-
mentation (synonym replacement, random
swap, contextual paraphrasing) while
preserving clinical meaning [13].

2.4 Model framework
2.4.1 The framework comprises
ViT image encoder (model vit-

base-patch16-224-in21k, pretrained on
ImageNet-21k) to extract global visual
embeddings,

ClinicalBERT text encoder to pro-
vide domain-specific contextual token em-
beddings, feature fusion via concatenation.

From Fig. 1. Framework of the pro-
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Fig. 1. Framework of the proposed CXR cap-
tioning system.

posed chest X-ray captioning system (work-
flow). ViT extracts global visual features;
ClinicalBERT provides domain-specific se-
mantics; features are fused and decoded by
a GRU to generate reports.

2.5 Feature fusion strategy
Let:

𝑇 ∈ 𝑅𝐵×𝐷𝑖 . (2.1)

ViT image feature for a batch of size 𝐵; 𝐷𝑖

is the dimension of the global image embed-
ding (e.g., [CLS] token).

𝑇 ∈ 𝑅𝐵×𝐿×𝐷𝑖 . (2.2)

Sequence of token embeddings from the
text encoder, where 𝐿 is sequence length
and 𝐷𝑖 is token embedding dimension.

Then the image feature is expanded
along the sequence length and concatenated
with the token sequence:

𝐹 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐼𝑒𝑥𝑝𝑎𝑛𝑑 , 𝑇) ∈ 𝑅𝐵×𝐿×(𝐷𝑖+𝐷𝑡 ).
(2.3)

The fused feature 𝐹 is then provided to the
decoder at each time step where 𝐹 is passed
into the GRU decoder.

2.6 GRU decoder
The GRU decodes the fused features

to output vocabulary logits at each step:

𝑌 = 𝐺𝑅𝑈 (𝐹) ∈ 𝑅 (𝐵×𝐿×𝑉 ) , (2.4)

where 𝑉 is the vocabulary size and 𝑌 are
per-token logits. A linear projection over
the GRU hidden state produces token prob-
abilities.

2.7 Training and loss
Loss: Cross-entropy with the padding in-
dex ignored.
Optimizer: Adam; learning rate deter-
mined by Optuna.
Batching: PyTorch DataLoader with cus-
tom collate_fn.
Early stopping: Based on validation loss
(patience = 3 epochs).

2.8 Hyperparameter optimization with
optuna

We used Optuna (TPE sampler) to
tune learning rate (1e-5 to 1e-1, log scale),
batch size (e.g., 16, 30, 32), and GRU hid-
den size (256–512). Each trial trained for
a few epochs; validation loss served as the
objective.Across 50 trials, Optuna identi-
fied the best configuration: learning rate =
0.00744, batch size = 30, GRU hidden size
= 492. Empirically, Optuna reduced valida-
tion loss by 12–15% versus manual tuning
[9, 16].

3. Results and Discussion
3.1 Evaluation metrics

To evaluate how well the model’s
generated radiology reports match expert-
written reports, we employed five widely
used Natural Language Generation (NLG)
metrics that assess both syntactic and se-
mantic correspondence. For clarity, ap-
proximate cut-off points commonly used in
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biomedical image captioning are included
to aid interpretation.

3.1.1 BLEU-4 – Phrase matching
Measures n-gram precision up to 4-

grams, indicating how many short phrases
in the generated report appear in the ground
truth. Higher scores reflect better phrase-
level overlap and sentence structure align-
ment.

Cut-off: ≥ 0.25 = good alignment
[10].

3.1.2 ROUGE-L – Sentence flow
Based on the longest common sub-

sequence between generated and reference
text, capturing sentence-level structure and
fluency.

Cut-off: ≥ 0.40 = good structural
match [11].

3.2 Quantitative results
3.2.1 METEOR – Meaning simi-

larity
Incorporates synonyms, stemming,

and word order penalties, providing a more
semantically grounded evaluation and cor-
relating well with human judgment in clin-
ical NLP tasks.
Cut-off: ≥ 0.20 = fair-to-good semantic
similarity [12].

3.2.2 CIDEr– Medical relevance
Designed for image captioning; uses

TF-IDF–weighted n-grams to measure con-
sensuswithmultiple reference reports while
penalizing overly generic or repetitive
phrases.
Cut-off: ≥ 0.80 = high clinical relevance
[13].

3.2.3 SPICE – Clinical facts
Compares semantic scene graphs of

objects, attributes, and relationships, mak-
ing it informative for assessing factual and
semantic correctness in clinical descrip-
tions.

Cut-off: ≥ 0.50 = strong factual accuracy
[14].

3.2.4 In short
BLEU-4 and ROUGE-L assess word

overlap and structural alignment, METEOR
evaluates meaning, CIDEr focuses on rele-
vance, and SPICE checks factual accuracy
(see Table 1).

3.2.5 Interpretation
The ViT + ClinicalBERT + GRU

model demonstrates a well-balanced perfor-
mance across multiple evaluation metrics
for chest X-ray report generation (Table 2):

• BLEU-4 = 0.278 — Indicates strong
n-gram precision, showing that the
generated reports closely match the
exact word sequences used in expert-
written references.

• METEOR= 0.221—Reflects fair se-
mantic similarity, effectively recog-
nizing synonyms andmaintaining ap-
propriate word order.

• ROUGE-L = 0.434— Suggests good
structural alignment and phrase-level
recall, indicating that the model pre-
serves key sentence structures found
in reference reports.

• CIDEr = 0.846—Demonstrates high
consensus with reference reports us-
ing TF-IDF weighted n-grams, em-
phasizing the relevance of generated
content to gold-standard findings.

• SPICE = 0.530 — Highlights strong
semantic content accuracy, suc-
cessfully capturing relationships,
attributes, and clinical facts within
the descriptions.

Overall, the model achieves an ef-
fective balance between syntactic precision
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Table 1. Evaluation on IU CXR test set.

Model BLEU-4 METEOR ROUGE-L CIDEr SPICE
ViT + ClinicalBERT + GRU 0.278 0.221 0.434 0.846 0.530
Note: The model was trained and evaluated on the IU X-ray dataset. Preprocessing included Contrast Limited Adaptive Histogram Equalization
(CLAHE) for enhancing image contrast and text augmentation techniques to increase the linguistic diversity of the reports.

Table 2. Comparison with recent transformer-based models on IU or MIMIC-CXR.

Model Vision
Encoder

Text
Encoder Decoder Dataset BLEU-4 METEOR ROUGE-L CIDEr SPICE Reference

This Work ViT Clinical
BERT GRU IU X-ray 0.278 0.221 0.434 0.846 0.530 This

Paper

R2Gen ResNet
-101 - Transformer IU X-ray 0.205 0.227 0.481 0.965 — [3]

M2Trans ResNet
-101 - Transformer IU X-ray 0.211 0.228 0.484 1.004 — [17]

R2Gen ResNet
-101 - Transformer MIMIC-CXR 0.143 0.180 0.322 0.221 — [3]

BioViL ViT - Transformer MIMIC-CXR 0.143 0.184 0.298 0.249 — [6]

KALE Swin
Transformer - Transformer MIMIC-CXR 0.158 0.197 0.337 0.261 — [8]

Note: This table compares recent Transformer-based models for radiology report generation across two standard datasets: IU X-ray and MIMIC-CXR.

(accurate word choice and phrasing) and se-
mantic accuracy (faithful representation of
medical findings). This enables it to pro-
duce clinically coherent reports that closely
mirror the quality and detail of expert-
written radiology interpretations.

3.3 Comparison with recent
transformer-based models

From Table 2. Our ViT + Clin-
icalBERT + GRU model on the IU X-
ray dataset achieved the highest BLEU-4
(0.278) and SPICE (0.530) among all com-
pared models, with balanced gains in ME-
TEOR, ROUGE-L, and CIDEr.

3.3.1 Compared to other IU X-ray
models

Outperforms R2Gen and M2Trans in
BLEU-4, while their METEOR/ROUGE-L
are slightly higher.

3.3.2 Compared to MIMIC-CXR
models

Clearly higher scores than R2Gen,
BioViL, and KALE, showing the advantage
of domain-adapted ClinicalBERT text en-
coding.
Key Insight: Our approach achieves strong

syntactic precision and semantic accu-
racy while using fewer computational re-
sources, outperforming other transformer-
based methods on IU X-ray.

3.4 Visual impact of preprocessing
Fig. 3 shows the preprocessing

pipeline for chest X-ray data.
(a) Original posteroanterior chest ra-

diograph with the report: “Heart size is
within normal limits. No focal air space dis-
ease. No pneumothorax or effusion.”

(b) The same radiograph after apply-
ing Contrast-Limited Adaptive Histogram
Equalization (CLAHE), which enhances
local contrast—particularly in the lung
regions—improving the visibility of subtle
anatomical structures. The associated re-
port is also augmented for linguistic diver-
sity while preserving medical accuracy. For
example, phrases such as “within normal
limits” are replaced with “normal,” “focal
air space disease” with “localized lung dis-
ease,” and “effusion” with “fluid buildup.”
These image and text enhancements are de-
signed to boost model performance by in-
creasing the variability and clarity of both
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Fig. 2. The chest X-ray (CXR) image shown has been enhanced using Contrast Limited Adaptive
Histogram Equalization (CLAHE), which improves local contrast—particularly in the lung regions—
thereby enhancing the visibility of fine anatomical details.

Fig. 3. Example of ground truth and model-generated chest X-ray report. The left panel displays the
lateral chest X-ray image used as input. The right panel compares the ground-truth radiology report
with the model-generated report, illustrating semantic and structural similarity in descriptive findings.

visual and textual inputs.

3.5 Qualitative examples
From Fig. 3: presents a qualitative

example of the model’s ability to gener-
ate radiology reports that closely align with
expert-annotated ground truth. The gener-
ated report retains the essential clinical ob-
servations, including correct identification
of the cardiomediastinal silhouette as nor-
mal in size and configuration, confirmation
that the lungs are well aerated, and the ab-
sence of pneumothorax, pleural effusion, or
focal consolidation.

Notably, the generated text demon-
strates high semantic fidelity, with differ-
ences limited primarily to minor lexical

variations and a typographical error (e.g.,
“thea” instead of “pa” and “heartiomediasit-
nal” instead of “cardiomediastinal”). While
such errors do not alter diagnostic meaning,
they indicate potential areas for improve-
ment in text post-processing—such as inte-
grating medical spell-checking or leverag-
ing domain-specific token correction.

The inclusion of additional descrip-
tors like “space consolidation” in the gen-
erated output suggests the model’s ten-
dency to incorporate rare or training-set-
specific phrases. Although this did not in-
troduce clinical inaccuracy in the example,
such insertions warrant monitoring to en-
sure model consistency and avoid halluci-
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Fig. 4. t-SNE plot showing clustering of im-
age (blue) and text (orange) embeddings learned
by the proposed chest X-ray captioning model,
indicating effective modality separation and
alignment.

nation in critical diagnostic contexts.
This qualitative result complements

the quantitative performance improvements
reported earlier, where the model achieved
BLEU-4: 0.278, METEOR: 0.221, and
ROUGE-L: 0.434. Together, these
findings indicate that the proposed ViT–
ClinicalBERT–GRU architecture, when
trained with CLAHE-enhanced images and
text augmentation, can produce coherent,
clinically accurate reports with minimal
deviation from expert interpretations.

3.6 t-SNE [14] visualization
To assess the semantic alignment be-

tween visual and textual modalities, we
employed t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) to project high-
dimensional embeddings into a 2D space.
Specifically, we visualized ViT-derived im-
age embeddings and averaged token em-
beddings from ClinicalBERT encoders.

Fig. 4. shows a t-SNE visualiza-
tion of the learned multimodal embeddings,
with image features (blue) and text fea-
tures (orange) forming distinct and well-
defined clusters. This separation indicates

that the model effectively structures the fea-
ture space, capturing meaningful modality-
specific informationwhile promoting cross-
modal alignment. The visualization offers
evidence that the ViT and ClinicalBERT-
based embeddings are semantically coher-
ent, supporting the model’s capacity to gen-
erate relevant and accurate clinical captions
for chest X-rays.”

In summary, the t-SNE figure clearly
illustrates that your model’s multimodal
representations are well-organized, sup-
porting both the interpretability and clinical
reliability of the automated captioning sys-
tem.

3.7 Limitations
Generalization is limited by dataset

composition (many normal/mild cases).
The fusion uses concatenation; cross-modal
attention could improve alignment. Lon-
gitudinal context is not modeled. External
validation on diverse cohorts is needed.

4. Conclusion and Future Work
In this work, we proposed a multi-

modal deep learning framework for auto-
matic chest X-ray caption generation, in-
tegrating a ViT for image encoding, Clin-
icalBERT for semantic text encoding, and
a GRU decoder for report generation. The
system incorporates contrastive learning to
align image and text embeddings in a shared
latent space, improving cross-modal under-
standing. Optuna was used to optimize
hyperparameters, including learning rate,
batch size, and hidden dimensions.

On the Indiana University CXR
dataset, the model achieved BLEU-4:
0.2316, ROUGE-L: 0.4613, andMETEOR:
0.5673, demonstrating strong syntactic and
semantic alignment with expert reports.
This approach outperformed CNN-based
and generic language modeling baselines.
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The architecture is modular, extensible, and
suitable for diverse medical imaging appli-
cations, providing a robust foundation for
AI-assisted reporting tools.

In future work, to enhance qual-
ity, interpretability, and clinical utility, we
plan to implement several improvements.
First, Attention-Based Fusion would be
used to replace simple concatenation with
cross-modal attention to improve image–
text alignment. Hierarchical Decoding
could be used to detect abnormalities first,
then generate detailed descriptions. Then,
Enhanced Contrastive Learning to explore
hard negative mining and adaptive temper-
ature scaling to further improve image–text
embedding separation. Furthermore, Clini-
cal Validation would be implemented by us-
ing a radiologist-in-the-loop setting for us-
ability testing and iterative refinement. Ex-
plainability would be further improved us-
ing Grad-CAM or saliency maps for justi-
fication of generated phrases. And finally,
multi-language report generation would be
useful for healthcare use at later stages of
this project.

This system bridges computer vision
and clinical NLP, leveraging contrastive
learning to strengthen cross-modal repre-
sentation, and moves toward practical AI-
assisted diagnostic support in radiology.
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