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Abstract

The simulation of slip effect for 4:1 contraction problem with rounded corner geometry
for Newtonian fluid is determined to study kinematic behaviors from streamline path, shear
stress values and vortex size by a model of Navier-Stokes equation. Two-dimensional planar
isothermal incompressible creeping flow with slip and no slip condition is considered with a
semi-implicit Taylor-Galerkin pressure-correction based on the finite element method. The
streamline-Upwind/Petrov-Galerkin and velocity gradient recovery schemes are employed to
stabilize the converged solution. The slip velocity is computed after each time step and the
modification of slip coefficient is adjusted to proper slip velocity in order to reduce the vortex
size and stress along the channel wall. Finally, the best mesh is selected to run for the final
solution and the slip condition of Phan-Thien slip rule on the channel wall is done to get the

result to be in better agreement with experiment.
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1. Introduction

The research focuses on the slip
effect of 4:1 contraction flows for Newtonian
fluids upon a semi-implicit Taylor-Galerkin
pressure-correction finite element method
(STGFEM) for two-dimensional planar
system. To investigate kinematic behaviors
of strong elongation and violent shear stress
abrupt contraction, a fluid passes a sudden
change in geometry. The slip effect is used to
study in rounded corner 4:1 contraction
domains in order to reduce the shear stress at
sharp corners.

For the experimental work, Walters
and Rawlinson [1] implemented the
apparatus of planar contraction flows for

Boger fluid. In1987, Boger [2] compared the
numerical solution and the experimental
result of circular contraction for both
Newtonian and Non-Newtonian fluids.

To avoid complex analytic solution
of viscoelastic problems, the simulation of
the mathematical model for the non-linear
partial differential equations that are derived
from conservation of mass and momentum is
set up to solve problems. The numerical
techniques are employed to calculate an
approximate solution. There are a variety of
numerical methods such as finite element
method (FEM), finite volume method (FVM)
and finite difference method (FDM). In 1999,
Phillips and Williams [3] solved a 4:1 planar
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contraction of Oldroyd-B fluids for creeping
and inertial flows by a semi-Lagrangian
FVM. After that, they [4] expanded the
coordinate system to axisymmetric flows.
Eulerian methods were used to fix the grids.
Aboubacar et al. [5, 6] stated that a cell-
vertex hybrid finite volume/element method
is appropriate for computing Oldroyd-B and
Phan-Thien/Tanner (PTT) fluids with both
rounded and sharp corner contraction flows.
Alves et al. [7] computed the creeping PTT
flow past planar abrupt contractions via FVM
and showed that Deborah numbers and
contraction ratios influence the flow
behavior. In 2001, Ngamaramvaranggul and
Webster [8] applied the FEM to solve the
Oldroyd-B problem for stick-slip flows and
they adjusted the boundary after die exit
using the free surface method for die-swell
flows. They showed that the swelling ratio
depended on a function of relaxation time.
Consequently, they [9] solved a problem of
pressure-tooling wire-coating flows with
Phan-Thien/Tanner fluid using standard FEM
including the streamline-upwind
Petrov/Galerkin  (SUPG) method that
stabilized the converged solution.

Experimental and numerical data in
studies of fluid flows through solid walls
have shown that the slip velocity appears on
solid surfaces. In addition, a number of
studies have applied various numerical
methods to estimate the slip velocity at the
walls. Silliman and Scriven [10] illustrated
the slip effect for free surfaces. Ramamurthy
[11] concentrated on the surface melt fracture
of HDPE and LLDPE results from slip in die.
Phan-Thien [12] studied the slip at solid
walls by setting the slip velocity as a function
of wall shear stress while the critical shear
stress is less than wall shear stress. In 2000,
Ngamaramvaranggul and Webster [13]
compared the solution of various slip effect
schemes for free surfaces in tube-tooling and
pressure-tooling die problems.

In this study, the slip condition is
employed in the problem of 4:1 contraction

for Newtonian fluids under the two-
dimensional planar isothermal
incompressible  flows. A semi-implicit

Taylor-Galerkin pressure-correction finite
element method separates the Navier-Stokes
equation into a system of simple linear
equations, and all solutions have been
stabilized by means of the streamline-upwind
Petrov/Galerkin and  velocity gradient
recovery techniques. The solutions for slip
and no-slip conditions are compared after the
optimum value of the slip coefficient with
rounded corner geometries is found.

2. Governing Equations

The conservations of mass and
momentum for incompressible viscoelastic
flow under non-gravity conditions are
preserved in the Navier-Stokes equations
with unit component while many other
studies have been presented in non-
dimensional systems. Thus, the
normalization of unit is proposed. As a result
of standard comparison, the derivative
equations of continuity equation (1) and
kinematic equation (2) is transformed into a
dimensionless system as

V-U=0 e

Rea(;:VT—ReU-VU—Vﬁ Q)

where U is velocity vector, T is the extra-

stress tensor T =7+21,D, 7 is the
polymeric component of 7, the deformation
t
VU +VU =
tensor rate is D = %, and P is
pressure.
The Reynolds number is denoted by
pVL . . .
Re =—— . Here, p is the density, V is the
Ho
characteristic velocity, and L is the
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characteristic length. 4y is the zero-shear
viscosity, and tig = 4 + tip where gy is the

polymeric viscosity and pois the solvent

viscosity. In order to compare our results
with those of [5,6] at the same condition, we
definded the non-dimensional parameters as

Re=0, 2L -088, and #2012
Ho Ho

3. Numerical Scheme

Non-linear differential equations are
often solved using the numerical methods
employed in this peper, namely the basic
FEM. The convected equation (2) is
computed by STGFEM that has three time
stages each of which is discretized into a
system of linear equations.

3.1 Semi-implicit Taylor-Galerkin
pressure- correction finite element method

The factional time steps and FEM
are employed to split the non-dimensional
Navier Stokes equation (2) into three stages
per time step. This convenient technique is
known as the semi-implicit Taylor-Galerkin
pressure-correction finite element method
and is shown below.

Step la:
1 1

n+— n+=
U 2-UM=vV.uy((d 2-D") )
+[v-(z+2u,D)-ReU-VU-P |"
Step 1b:
Re . = n Nt
E(U —-UM=[V-z-ReU-VU]|", 4

+[V-(2120)-VP]" +V - 41 (D" - D")
Step 2 :

v2(pmi_pny  2Regy )
At

Step 3:

2Re

A7t(ur'l+l_u*) :_(anrl_Isn) (6)

The partial differential equations (1)-(2) are
separated by FDM and FEM. The derivative
term of time is determined with the Taylor
series, and the spatial terms are considered
with the weight residual of the Galerkin
finite element method. Then the equations of
stages (3)-(6) are converted into a system of
linear equations. Finally, the steps 1 and 3 are
solved with Jacobi iterative method whilst
step 2 is approximated using the Cholesky
decomposition algorithm.

3.2 Phan-Thien slip rule

To fit the slip velocity, Phan-Thien
[12] demonstrated the concept of slip
velocity as a function of wall shear stress that
is close to an experimental solution. This
scheme is helpful to reduce shear stress for
an abrupt contraction, and consequently the
slip velocity is calculated when the wall
shear stress becomes greater than a critical
shear stress.

]
Vatip = Vinean [1 —exp(— ) ] )

where Vi, is the slip velocity, Vipean is the

lip
mean velocity of the flowrate for a no-slip
case, « is the slip coefficient, 7, is the wall

shear stress, and 7.t is the critical shear
stress.

4. Problem Specification

In industrial processes, especially for
4:1 contraction problems, there are many
obstacles when fluid passes through a part of
an abrupt contraction. Thus, the geometrical
domain of this problem for sharp corners
[14] is changed to rounded corners as shown
in Figure 1. The downstream half channel
width of planar 4:1 contraction at entry and
exit sections are 27.5L and 49L,
respectively. At the inlet entry, fluid flow is
set to be the Poiseuille flow in a channel
length that is long enough for developing a
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parabolic flow at the exit section. At the
channel wall, the slip condition is added to
compute the slip velocity that appear in real
problems.

_ 3 a2
U(y)—128(16 ) ®)
v=0 )]
ou 2
Txx = Zweﬂl[ayj (10
7y =0 (11)
ou
Ty = ﬂl@ (12)

where velocity # in x-direction depends on
the y-component, and velocity v in the y-

direction vanishes. The normal stress 7,,

depends on the shear rate Ty while the

normal stress Ty 1S zero.
(0,4 (76.5,4)
(2755 . =
(2816,2995) (T6.53)

4L

401

(27.5,0)

Fig.1. Schematic of 4:1 contraction flow for
rounded corners.

The rounded geometry is generated by
Aboubacar et al. [6,7] with a curve segment
at contraction to reduce the severe stress.
There are three different meshes labelled as
meshl, mesh2 and mesh3 for coarse,
medium, and fine meshes, respectively, as
shown in Figure 2. The mesh pattern of all
types as declared in Table 1 is generated as a
bias triangular element. The tiny elements

(hyn) are set up near rounded corners.

Table 1. Mesh characteristics of rounded
corners.

Degree
Meshes | Elements | Nodes of hrnin
freedom
mesh1l 1626 3433 18069 | 0.017
mesh2 2693 5652 29740 | 0.010
mesh3 4751 9790 51470 | 0.006
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(a) meshl

(b) mesh2

(c) mesh3

Fig.2. Rounded mesh pattern of 4:1
contraction flow.
5. Results

To find the proper mesh for
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displaying final solution, we compared
solutions for all mesh types in order to
reduce computing time. After the best mesh
was chosen, it was applied to operate in the
Newtonian problem under the no-slip and
slip conditions.

Table 2. The peak values of Newtonian
fluids on the bottom downstream wall with
noslip for rounded corner meshes.

Meshes Ty Tyy Tyy Y

meshl | 7.177 | 3.542 | 0.261 | 3.734
mesh2 | 7.447 | 3.698 | 0.265 | 3.888
mesh3 | 7.955 | 3.905 | 0.252 | 4.034

A stick or no-slip problem is studied by
collecting the stresses and the shear rate. The
highest values of the normal stress, the shear
stress and the shear rate ¥ on the bottom

downstream wall are shown in Table 2. We
found that the peak values of all of the
meshes were similar and depended on the
element sizes. The tendency of the highest
values for the stresses and the shear rate
versus the mesh acuteness in Table 2 are

similar except for the value of Ty for mesh3

which is less than that of meshl and that of
mesh2. The results of mesh2 and mesh3 are
close. The program used the computing time
to access mesh2 less than that of mesh3 as
comparison in previous work [15]. Thus,
mesh2 is chosen as a model for the final
solution.The trend of the second invariant
(Il) and the shear rate () are similar as

depicted in Figure 3. Now, the slip condition
is initiated to compute the slip velocity from
critical II to find the optimal slip coefficient
(a) by assuming the values of the slip
coefficient. Under a complete slip, we first
set @ to 1 in order to choose the critical II
then various choices of II between 2.3 and
3.6 is determined as depicted in Figure 4. We

found that the critical value of II was 2.3,
which made the peak of the shear rate grow
to 3.857, which is the lowest value when
compared with the other peak values of Il as
shown in Figure 5. Using the critical Il to
decide the optimum ¢ , the minimum shear
rate is displayed by a=0.1 as illustrated in
Figure 6. Additionally, the shear rates of «
at 0.1, 0.2, 0.4 and 1.0 widely oscillated. We
found that the values for the shear rate are
high when the second invariant value
increases along with the slip coefficient
value.
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Fig.3. Il and » along downstream wall with
no slip, Newtonian fluid.
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Fig.4. » with variation of Il at a=1.0,
Newtonian fluid.
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Fig.5. The peak of » with variation of Il at
a=1.0, Newtonian fluid.
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Fig.6. The peak of ¥ with variation of « at
11=2.3, Newtonian fluid.

The streamline contours of Newtonian fluids
for the no-slip and the slip cases at a=0.1
and 11=2.3 are shown in Figures 7(a) and
7(b), respectively. The simple observation of
the vortex around the corner contraction for
the no-slip velocity looks more acute than the
figure shown for the slip case.
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(a) No slip
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Fig.7. Streamline contour of Newtonian
fluid.

As stated above for the reason why Il =2.3 is
used to display final solution, Figure 8§
depicts the line contours under the slip
condition for a = 0.1. This behavior can be
explained as follows. Figure 8(a) displays the
horizontal velocity u, of the parabolic line
shape, which shows the maximum value at
the symmetry line and the vortex appears at
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the corner while Figure 8(b) shows the line
contour of the vertical velocity v, with the
maximum value being near the location of
the sharp corner contraction where the fluid
pass through the sudden change in geometry
from 4 unit reduce to 1 unit. Figure 8(c)
represents the line contour of pressure p that
shows the maximum value at the inlet
boundary then gradually declines along a
path of the abrupt change in geometry.

»
e
I

HOZ L

©p

Fig.8. Line contour with slip at a=0.1,
11=3.3.

6. Conclusion

For steady-state viscoelastic flows in
4:1 contraction rounded geometry through
planar isothermal Newtonian fluids, the
semi-implicit Taylor-Galerkin pressure-
correction finite element scheme is employed
to solve the nonlinear partial differential
equation for stick before the Phan-Thien slip
rule is added to calculate the velocity at the
channel wall. After critical |l was adjusted,
the slip coefficient of Newtonian fluids with
rounded corner meshes is determined to have
an optimum value of 0.1. In the case of the
right selection for the second invariant, this
proper slip coefficient reduces the peak of the
shear rate and the vortex size since the
velocity at the wall forces the fluids to follow
a smooth path and yield a more stable
outcome. In addition, the higher values for
o and |l cause stronger oscillations akin to
the phenomenon of shark skins.
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