Thammasat Int. J. Sc. Tech., Vol. 16, No. 4, October - December 2011

Determination of Free Surface in
Steady-State Seepage through a Dam with
Toe Drain by the Boundary Element Method

Somchart Chantasiriwan
Faculty of Engineering, Thammasat University, Rangsit Campus, Pathum Thani 12121,
Thailand
E-mail: somchart@engr.tu.ac.th

Abstract

A numerical method is required for the determination of free surface in seepage through
a dam having an arbitrary geometry. The boundary element method has advantages over
domain-type methods such as the finite difference method and the finite element method, and is
used to solve seepage problems in this paper. Previously, an efficient algorithm has been
proposed for solving a seepage problem in a dam with tail water. This paper proposes an
algorithm to solve a seepage problem in a dam with toe drain. In such a problem, the dam is
transformed into a dam with seepage surface. The width of the dam is then determined
iteratively until the height of the seepage surface attains the preset minimum value. Numerical
tests on two test problems by the proposed algorithm reveal the agreement between numerical

and analytical solutions.
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1. Introduction

Different water levels across the width of
a permeable dam result in free-surface flow
through the dam. The steady-state free-surface
seepage problem is governed by the Laplace
equation. The difficulty of such a problem
lies in the fact that the free surface is
unknown although two boundary conditions
are specified at the free surface. Analytical
solutions are possible for dams of simple
geometry [1, 2]. In order to determine the free
surface of the seepage through a dam having
arbitrary geometry, a numerical method is
required. Although domain-type numerical
methods such as the finite difference method
[3-5] and the finite element method [6-9]
have been successfully used to solve this
problem, it is more efficient to use boundary-

porous medium, moving boundary, seepage surface

type methods such as the boundary element
method.

The boundary element method has been
used by Liggett [10], Chen [11], Leontiev
and Huacasi [12], and Rafiezadeh and
Ataie-Ashtiani [13] to solve the seepage
problem for rectangular dams with tail water.
In addition, the method of fundamental
solutions, which is another boundary-type
method, has also been used by Chaiyo et al.
[14] to solve a similar problem. Liggett [10]
has presented an efficient algorithm for
determining the free surface in this problem.
However, there is difficulty in using this
algorithm to determine the free surface of
seepage through a dam with toe drain. It is
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therefore interesting to investigate the
modification of this algorithm to extend its
applicability.

In this paper, the modification of
Liggett’s algorithm for solving the seepage
problem for dams with toe drain is proposed.
It is then shown that the modified algorithm
can provide accurate solutions for two test
problems. The following sections present the
seepage theory, the iterative algorithm for
determining the free surface of seepage through
a dam with toe drain, and a comparison of
numerical results for test problems with
analytical results in order to demonstrate the
effectiveness of the proposed algorithm.

2. Seepage Problems

It is assumed that a dam is filled with
saturated porous medium that is both isotropic
and homogeneous. Furthermore, the dam length
is sufficiently large that the two-dimensional
assumption is valid. As a result, the
governing equation of the seepage problem
is the Laplace equation:
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where ¢ is piezometric head, defined as
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Fig. 1. Rectangular dam with tail water.

Fig. 1. illustrates the seepage problem
involving a rectangular dam having an
impervious foundation and different water
levels across its width. Boundary condition
on I'; is the no-flow condition:

99
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where n is the coordinate normal to the

bound-ary. Since I’ is subjected to hydrostatic

pressure, its boundary condition is

¢ = h “4)
T; is the seepage surface, on which
o = )

The boundary condition of I'; is similar to
that of T',.

¢ = h (6)

I', is the free surface, on which both Egs. (3)
and (5) apply. Both I', and the length of the
seepage surface I'; are unknown, and must
be determined during the solution process.

Fig. 2 shows a different type of dam,
which has a toe drain instead of tail water.
Therefore, boundaries I', and I, are replaced
by I',, of which the boundary condition is

¢ =0 (N

In this problem, the free surface I'; and
the width of the toe drain I', are determined
during the solution process.

Fig. 2. Rectangular dam with toe drain.
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3. Iterative Algorithm

The boundary integral
corresponding to Eq. (1) is

equation

c(x, y)p(x, y)=[ {q)(én) %} (xy;5m) - ®

el (&n)G(x,y;&,m}dr

on

where (§, 1) are coordinates on I', and G is
the fundamental solution of the Laplace
equation:

Gx, y: E.1) = %m {(x—&)z " (y-n)ﬂ ©)

The standard procedure of transforming
Eq. (8) into the system of algebraic equations is
well-known and described in detail elsewhere
[15]. This system of equations may be written
as the following matrix equation:

A9 By =0 (10)
on

Equation (10) may be rearranged so that
known ¢ and d¢/dn are moved to the right
hand side. The resulting equation is then
solved for unknown ¢ and d¢/dn.

The seepage problem in Fig. 1 may be
solved by the iterative algorithm proposed by
Liggett [10]. Because the free surface I, is
unknown, an initial guess is needed. Assume
that coordinates of a free-boundary node on
I', are (x, y). Impose boundary conditions in
Egs. (3) - (6), respectively, on I' - I',. In
addition, let the boundary condition imposed
on I', be Eq. (1). Eq. (10) can now be solved
for ¢ on I', and Eq. (5) is then used to
update y, on I', with x; unchanged. Note that
updating the right end of I', will change the
length of the seepage surface I',. In
order to stabilize the iterative process, node
distribution on I'; should be uniform;
therefore, it is advisable to redistribute nodes
on I, after each iteration. The flow chart of
this algorithm is shown in Fig. 3.
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Fig. 3. Algorithm for solving the seepage
problem in Fig. 1 according to Liggett [10].

It may be expected that the seepage
problem in Fig. 2 can also be solved by the
above algorithm. However, an important
difference between this problem and the
seepage problem in Fig. 1 is that the width of
I', in this problem is unknown, and must be
found iteratively. It turns out that the
converged solution cannot be found in this
case. Demetracopoulos and Hadjitheodorou
[16] have proposed an alternative algorithm,
in which coordinates of a free-boundary
node are updated from (x,, y) to (Y, ¢)
with ¢, equal to the value of ¢ at (x, y,)
from the solution of Eq. (10) and

where y_is an arbitrarily chosen negative
y-coordinate. It should be noted that, with
y, = -, this algorithm is identical with
Liggett’s algorithm. This algorithm was
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successfully used to solve problems of seepage
from surface canals [16]. Unfortunately, it
is found that this algorithm cannot yield
a satisfactory solution to the see-page
problem in Fig. 2.

Instead of solving the seepage problem in
Fig. 2. directly, the seepage problem in Fig. 4
is considered. This is the problem of
seepage through a dam with seepage surface
and toe drain. This problem is similar to the
seepage problem in Fig. 2 except for the fact
that Ax’< Ax, which results in the existence
of the seepage surface I',. The flow chart of
the algorithm for solving this problem is
shown in Fig. 5. The iteration process
consists of inner iteration and outer iteration.
At the beginning of the outer iteration, the
initial guess of I and I'| is required.
During inner iteration, the width of T'" is
fixed, and Liggett’s algorithm is used to find
converged I'", and I',. The outer iteration
then continues with I'" being adjusted so that
the length of T, is equal to a preset value
h . .lIdeally, h = should be set to zero, which
will turn the seepage problem in Fig. 4 into
the seepage problem in Fig. 2. In practice,
however, there is a minimum value of h .
below which outer iteration may be unstable.
It should be noted that I, is normal to I', for the
seepage problem in Fig. 2 [17]. This means
that a smaller value of hmin requires a finer
grid spacing in order to capture the profile of
I'. near I accurately.
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Fig. 4. Rectangular dam with seepage surface
and toe drain.

The proposed algorithm shown in Fig. 5
is found to be effective and stable if the
initial guess of I' is close to I'.. In practice,
however, the initial guess of I'", may be quite
different from T' as it is usually convenient
to start the iteration process with Ax” = 0.
This may cause the iteration process to be
unstable. An effective method to remedy this
problem is use under-relaxation in updating
I'”, . In addition, instability may be caused by
starting iteration with Ax” > Ax, which may
result in y-coordinates of some nodes on I'’,
falling below zero. In order to avoid such
instability, inner iteration should be terminated
if the y-coordinate of any node on I'"; turns

out to be negative.
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Fig. 5. Algorithm for solving the seepage
problem in Fig. 4.
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4. Results and Discussion

Liggett’s algorithm shown in Fig. 3 is
used to solve the seepage problem in Fig. 1
in which A, = 1, w = 2/3, and h, = 1/6.
Initially, it is assumed that I, is the
horizontal line at y = 1. Converged solution
of I, is obtained by using 144 boundary
nodes and 72 quadratic boundary elements.
Quadratic elements are also used produce
subsequent results. The numerical solution of
I’ is shown in Fig. 6 and compared with the
analytical solution [2]. It can be seen that the
solution is quite accurate.
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Fig. 6. Comparison of solutions of free sur-
face of the seepage problem in Fig. 1 from the
boundary element method (square) and the
analytical method (solid line) [2].

The proposed algorithm shown in Fig. 5 is
used to solve the seepage problem in Fig. 4
in which 4, = 10 and w = 10. Initially, it is
assumed that I', is the horizontal line at
y =10, and Ax” = 0. Converged solutions of
I'", are obtained by using 176 and 350
boundary nodes. Figure 7 shows good
agreement between I'" of the seepage
problem in Fig. 6 determined by the proposed
algorithm and I, of the seepage problem in
Fig. 2 determined by the analytical method

[1].

Fig. 8 illustrates the seepage problem in a
trapezoidal dam with toe drain. The
analytical solution to this problem was
given by Polubarinova-Kochina [2]. Like the
seepage problem in Fig. 2, this problem can
be solved numerically by transforming the
dam in Fig. 8 into a dam with seepage
surface. Initially, it is assumed that T’ is the
horizontal line at y = 1, with a length of 2.16.
Converged solutions of the free surface are
obtained by using 150 boundary nodes and
294 boundary nodes. It can be seen from Fig.
9 that numerical solutions are very close to
the analytical solution.

10 T T T T T

Fig. 7. Comparison of solutions of free
surface of the seepage problem in Fig. 4
from the boundary element method using 176
nodes (white circle) and 350 nodes (black
circle) and free surface of the seepage problem
in Fig. 2 from the analytical method (solid
line) [1].

!
1 A&

7 1
3.16 ]

Fig. 8. Trapezoidal dam with toe drain.
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Fig. 9. Comparison of solutions of free
surface of the seepage problem in Fig. 8
from the boundary element method using
150 nodes (white circle) and 294 nodes
(black circle) and the analytical method
(solid line) [2].

5. Conclusion

A steady-state free-surface of seepage
through a homogeneous permeable dam with
tail water can be efficiently determined by using
the boundary element method and the algorithm
proposed by Liggett [10]. A problem involving
a dam with toe drain and without seepage
surface, however, requires an improvement of
Liggett’s algorithm. In this paper, an iterative
algorithm is proposed for determining
a steady-state free-surface seepage through
a dam with toe drain and seepage surface.
For a given toe drain width, Liggett’s algorithm
is used to find the corresponding seepage
surface. The toe drain width is then adjusted
iteratively until the seepage surface attains a
given small value. The free surface of such a
problem is found to be close to the free surface
of the corresponding dam with toe drain and
without seepage surface. Two test problems
are solved by the proposed algorithm to
demonstrate its effectiveness.
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