
Thammasat Int. J. Sc. Tech., Vol. 16, No. 4, October - December 2011

1

Determination of Free Surface in 
 
Steady-State Seepage through a Dam with 

Toe Drain by the Boundary Element Method


Somchart Chantasiriwan 
 
Faculty of Engineering, Thammasat University, Rangsit Campus, Pathum Thani 12121, 

Thailand
 
E-mail: somchart@engr.tu.ac.th


	 Abstract 

	 A numerical method is required for the determination of free surface in seepage through 
a dam having an arbitrary geometry. The boundary element method has advantages over 
domain-type methods such as the finite difference method and the finite element method, and is 
used to solve seepage problems in this paper. Previously, an efficient algorithm has been 
proposed for solving a seepage problem in a dam with tail water. This paper proposes an 
algorithm to solve a seepage problem in a dam with toe drain. In such a problem, the dam is 
transformed into a dam with seepage surface. The width of the dam is then determined 
iteratively until the height of the seepage surface attains the preset minimum value. Numerical 
tests on two test problems by the proposed algorithm reveal the agreement between numerical 
and analytical solutions.
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1. 	 Introduction


	 Different water levels across the width of 
a permeable dam result in free-surface flow 
through the dam. The steady-state free-surface 
seepage problem is governed by the Laplace 
equation. The difficulty of such a problem 
lies in the fact that the free surface is 
unknown although two boundary conditions 
are specified at the free surface. Analytical 
 
solutions are possible for dams of simple 
 
geometry [1, 2]. In order to determine the free 
surface of the seepage through a dam having 
arbitrary geometry, a numerical method is 
required. Although domain-type numerical 
methods such as the finite difference method 
[3-5] and the finite element method [6-9] 
have been successfully used to solve this 
problem, it is more efficient to use boundary-

type methods such as the boundary element 
method. 


	 The boundary element method has been 
used by Liggett [10], Chen [11], Leontiev
 
and Huacasi [12], and Rafiezadeh and 
 
Ataie-Ashtiani [13] to solve the seepage 
problem for rectangular dams with tail water.
 
In addition, the method of fundamental 
 
solutions, which is another boundary-type 
method, has also been used by Chaiyo et al. 
[14] to solve a similar problem. Liggett [10] 
has presented an efficient algorithm for
 
determining the free surface in this problem.
 
However, there is difficulty in using this
 
algorithm to determine the free surface of 
seepage through a dam with toe drain. It is 
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			   +	  =	 0	 (1)


where φ is piezometric head, defined as


			   φ 	 =	  y	 (2)


therefore interesting to investigate the 
 
modification of this algorithm to extend its 
applicability.


	 In this paper, the modification of 
Liggett’s algorithm for solving the seepage 
problem for dams with toe drain is proposed. 
It is then shown that the modified algorithm 
can provide accurate solutions for two test
 
problems. The following sections present the 
seepage theory, the iterative algorithm for 
determining the free surface of seepage through 
a dam with toe drain, and a comparison of 
numerical results for test problems with 
analytical results in order to demonstrate the 
effectiveness of the proposed algorithm. 





2. 	 Seepage Problems


	 It is assumed that a dam is filled with 
saturated porous medium that is both isotropic 
and homogeneous. Furthermore, the dam length 
is sufficiently large that the two-dimensional
 
assumption is valid. As a result, the 
governing equation of the seepage problem 
is the Laplace equation:


	 Fig. 1. illustrates the seepage problem
 
involving a rectangular dam having an 
 
impervious foundation and different water 
levels across its width. Boundary condition 
on Γ1 is the no-flow condition:


			   =	 0		  (3)


where n is the coordinate normal to the 
bound-ary. Since Γ2 is subjected to hydrostatic 
pressure, its boundary condition is


		  φ	 =	 h1	 	 (4)


Γ3 is the seepage surface, on which


		  φ	 =	 y		  (5)


The boundary condition of Γ4 is similar to 
that of Γ2.


		  φ	 =	 h2		  (6)


Γf is the free surface, on which both Eqs. (3) 
and (5) apply. Both Γf and the length of the 
seepage surface Γ3 are unknown, and must 
be determined during the solution process.


	 Fig. 2 shows a different type of dam, 
which has a toe drain instead of tail water. 
Therefore, boundaries Γ3 and Γ4 are replaced 
by Γt, of which the boundary condition is


		  φ	 =	 0		  (7)


	 In this problem, the free surface Γf and 
the width of the toe drain Γt are determined 
during the solution process.
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Fig. 1. Rectangular dam with tail water.
 Fig. 2. Rectangular dam with toe drain.
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3. 	 Iterative Algorithm 


	 The boundary integral equation 
corresponding to Eq. (1) is	



						      (8)


 


where (ξ, η) are coordinates on Γ, and G is 
the fundamental solution of the Laplace 
 
equation:


 
						      (9)


 
	 The standard procedure of transforming 
Eq. (8) into the system of algebraic equations is 
well-known and described in detail elsewhere 
[15]. This system of equations may be written 
as the following matrix equation:

						
       
						      (10)


 
Equation (10) may be rearranged so that 
known φ and ∂φ/∂n are moved to the right 
hand side. The resulting equation is then 
solved for unknown φ and ∂φ/∂n.

	 The seepage problem in Fig. 1 may be 
solved by the iterative algorithm proposed by 
Liggett [10]. Because the free surface Γf is
 
unknown, an initial guess is needed. Assume 
that coordinates of a free-boundary node on 
Γf are (xi, yi). Impose boundary conditions in 
Eqs. (3) - (6), respectively, on Γ1 - Γ4. In
 
addition, let the boundary condition imposed 
on Γf be Eq. (1). Eq. (10) can now be solved 
for φ on Γf, and Eq. (5) is then used to 
update yi on Γf with xi unchanged. Note that 
updating the right end of Γf will change the 
length of the seepage surface Γ3.            In 
order to stabilize the iterative process, node 
distribution on Γ3 should be uniform; 
therefore, it is advisable to redistribute nodes 
on Γ3 after each iteration. The flow chart of 
this algorithm is shown in Fig. 3. 


Fig. 3. Algorithm for solving the seepage 
problem in Fig. 1 according to Liggett [10].


∂G
∂n

∂φ
∂n

c(x, y)φ(x, y)= ſ  φ(ξ,η)        (x,y;ξ,η) -

 (ξ,η)G(x,y;ξ,η)  dΓ

G(x, y; ξ, η) =        1n   (x-ξ)2 + (y-η)21
2π

		  A   	   -Bφ = 0∂φ
∂n

	 It may be expected that the seepage 
problem in Fig. 2 can also be solved by the 
above algorithm. However, an important 
difference between this problem and the 
seepage problem in Fig. 1 is that the width of 
Γf in this problem is unknown, and must be 
found iteratively. It turns out that the 
converged solution cannot be found in this 
case. Demetracopoulos and Hadjitheodorou 
[16] have proposed an alternative algorithm, 
in which coordinates of a free-boundary 
node are updated from (xi, yi) to (ψi, φi)   
with φi equal to the value of φ at (xi, yi)   
from the solution of Eq. (10) and

			   			
    
						      (11)



 
	 where ys is an arbitrarily chosen negative      
y-coordinate. It should be noted that, with                  
ys = -∞, this algorithm is identical with 
Liggett’s algorithm. This algorithm was 

ψі   =   xi
φi - ys
yi - ys
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successfully used to solve problems of seepage 
from surface canals [16]. Unfortunately, it    
is found that this algorithm cannot yield        
a satisfactory solution to the see-page 
problem in Fig. 2. 


	 Instead of solving the seepage problem in 
Fig. 2. directly, the seepage problem in Fig. 4 
is considered. This is the problem of 
 
seepage through a dam with seepage surface 
and toe drain. This problem is similar to the 
seepage problem in Fig. 2 except for the fact 
that Δx́< Δx, which results in the existence 
of the seepage surface Γ3. The flow chart of 
the algorithm for solving this problem is 
shown in Fig. 5. The iteration process 
consists of inner iteration and outer iteration. 
At the beginning of the outer iteration, the 
initial guess of  Γ́t  and Γf is required. 
During inner   iteration, the width of  Γ́f  is 
fixed, and Liggett’s algorithm is used to find 
converged Γ́f  and Γ3. The outer iteration 
then continues with Γ́t being adjusted so that 
the length of Γ3 is equal to a preset value 
hmin. Ideally, hmin should be set to zero, which 
will turn the seepage problem in Fig. 4 into 
the seepage problem in Fig. 2. In practice, 
however, there is a minimum value of hmin, 
below which outer iteration may be unstable. 
It should be noted that Γf is normal to Γt for the 
seepage problem in Fig. 2 [17]. This means 
that a smaller value of hmin requires a finer 
grid spacing in order to capture the profile of 
Γf near Γt accurately. 


	 The proposed algorithm shown in Fig. 5 
 
is found to be effective and stable if the
 
initial guess of Γ́t is close to Γt. In practice, 
 
however, the initial guess of Γ́t may be quite 
different from Γt as it is usually convenient 
to start the iteration process with Δx́ = 0. 
This may cause the iteration process to be
 
unstable. An effective method to remedy this 
problem is use under-relaxation in updating 
Γ́t . In addition, instability may be caused by
 
starting iteration with Δx́ > Δx, which may 
result in y-coordinates of some nodes on Γ́f  
falling below zero. In order to avoid such 
 
instability, inner iteration should be terminated 
if the y-coordinate of any node on Γ́f  turns 
out to be negative.


Fig. 4. Rectangular dam with seepage surface 
 
and toe drain.


Fig. 5. Algorithm for solving the seepage 
problem in Fig. 4.
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Fig. 8 illustrates the seepage problem in a 
trapezoidal dam with toe drain. The 
analytical solution to this problem was   
given by Polubarinova-Kochina [2]. Like the 
seepage problem in Fig. 2, this problem can 
be solved numerically by transforming the 
dam in Fig. 8 into a dam with seepage 
surface. Initially, it is assumed that Γf is the 
horizontal line at y = 1, with a length of 2.16. 
Converged solutions of the free surface are 
obtained by using 150 boundary nodes and 
294 boundary nodes. It can be seen from Fig. 
9 that numerical solutions are very close to 
the analytical solution. 


Fig. 6. Comparison of solutions of free sur-
face of the seepage problem in Fig. 1 from the 
boundary element method (square) and the 
analytical method (solid line) [2].

Fig. 7.	 Comparison of solutions of free 
 
surface of the seepage problem in Fig. 4 
from the boundary element method using 176 
nodes (white circle) and 350 nodes (black 
circle) and free surface of the seepage problem 
in Fig. 2 from the analytical method (solid 
line) [1].


Fig. 8. Trapezoidal dam with toe drain.


4. 	 Results and Discussion


	 Liggett’s algorithm shown in Fig. 3 is 
used to solve the seepage problem in Fig. 1 
in which h1 = 1, w = 2/3, and h2 = 1/6. 
Initially, it is assumed that Γf is the 
horizontal line at y = 1. Converged solution 
of Γf is obtained by using 144 boundary 
nodes and 72 quadratic boundary elements. 
Quadratic elements are also used produce 
subsequent results. The numerical solution of 
Γf is shown in Fig. 6 and compared with the 
analytical solution [2]. It can be seen that the 
solution is quite accurate.


	 The proposed algorithm shown in Fig. 5 is 
used to solve the seepage problem in Fig. 4
 
in which h1 = 10 and w = 10. Initially, it is 
 
assumed that Γf is the horizontal line at 
 
y = 10, and Δx́ = 0. Converged solutions of 
Γ́f are obtained by using 176 and 350 
boundary nodes. Figure 7 shows good 
agreement between Γ́f of the seepage 
problem in Fig. 6 determined by the proposed 
algorithm and Γf of the seepage problem in 
Fig. 2 determined by the analytical method 
[1]. 
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5.	  Conclusion


	 A steady-state free-surface of seepage 
through a homogeneous permeable dam with 
tail water can be efficiently determined by using 
the boundary element method and the algorithm 
proposed by Liggett [10]. A problem involving 
a dam with toe drain and without seepage 
surface, however, requires an improvement of 
Liggett’s algorithm. In this paper, an iterative 
algorithm is proposed for determining           
a steady-state free-surface seepage through    
a dam with toe drain and seepage surface. 
For a given toe drain width, Liggett’s algorithm 
is used to find the corresponding seepage 
surface. The toe drain width is then adjusted 
iteratively until the seepage surface attains a 
given small value. The free surface of such a 
problem is found to be close to the free surface 
of the corresponding dam with toe drain and 
without seepage surface. Two test problems 
are solved by the proposed algorithm to 
demonstrate its effectiveness.
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