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Abstract

The weather in a tropical region, which mainly consists of high temperature and
humidity, is clearly different from those in cold and desert climate regions. These factors
strongly affect the cooling load demand of heating, ventilating, and air conditioning (HVAC)
systems in order to provide required thermal comfort in buildings. Thus, they should be taken
into consideration together for determining cooling load demand. Traditional approaches such
as physically based models and statistically based methods are extremely difficult to derive
and time consuming to develop. Artificial neural networks (ANNSs), which are a powerful
modeling technique with robust, fast, and nonlinear modeling advantages, can flexibly and
simply capture ambient conditions and cooling demand. In this study, the main objective is to
investigate the performance of ANNs’ predictive ability for HVAC systems. The ANNs are
applied to predict flow and temperatures of chilled water in HVAC systems of a
multifunctional building in Thailand. The obtained model can be used to effectively plan the
energy use of such systems. In addition, thermal energy storage can be properly managed,
including its capacity and size. The main features representing temperature and humidity are
ambient temperature and relative humidity of indoor and outdoor conditions. The
characteristics of cooling load demand are flow rate and temperatures of chilled water. The
obtained prediction results show that a properly designed ANN model outperforms multiple
linear regression (MLR). Moreover, they can easily be extended to predict multiple
factors(such as temperatures) with satisfactory results.

Keywords: Artificial neural networks, Building, Cooling load, Temperature and
humidity, Tropical zone

1. Introduction renewable energy has gained a wide
acceptance as an alternative solution.

World  energy demand  has Energy conservation and management are a
considerably increased over the past tangibly strategic approach to better energy
decades. Due to the concern of energy consumption and utilization. For buildings,
shortage in the near future, the use of energy efficiency in subsystems such as in
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HVAC and lighting systems is a key to
reduce the cost in building operations. In
Thailand, HVAC systems take the highest
share of energy consumption in buildings at
approximately 50-70% [1-3], which is a
direct consequence of cooling load demand.
Its energy use and utility cost can be
reduced significantly by using Thermal
Energy Storage (TES) systems [4]. TES is
as an integrated system for optimal
operation of a chiller plant to efficiently
store the thermal load and control the
distribution system. Peak load reduction
can be managed by producing chilled water
or ice during times of lower electricity rate,
at night time. However, thermal storage
systems are often found not to operate as
efficiently as estimated during its design
stage [5]. An equilibrium condition is
necessarys in which the required amount of
thermal energy storage is equal to the
available produced amount of energy
storage. Operational management and
energy use optimization are required to
overcome this problem. The pattern of
cooling load demand in buildings should be
specifically identified to increase the
efficiency of TES during the design stage
and actual operation. Therefore, a proper
predictive model pattern of cooling load
demand is necessary for the accom-
plishment of an energy conservation goal.
Based on these reasons, this research was
conducted to study a predictive model of
cooling load demand by using artificial
neural networks (ANNs). ANNs are
attractive because they can capture patterns
of input factors regardless of their statistical
distribution assumption. This assumption
must be verified to validate the results
obtained by traditional statistical methods.
Furthermore, multiple output prediction can
be simply developed by using ANNs if
outputs are correlated. This is rather
difficult and time consuming for other
methods.

Cooling load is a requirement by
HVAC systems to provide a thermal
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comfort condition for occupancy. Heat is
removed from the conditioned space to
maintain a thermal comfort condition.
Several parameters such as, outdoor air
temperature, relative  humidity, solar
radiation and wind speed are outdoor
environmental factors that affect the
amount of cooling load requirement.
Moreover, the number and activity of
occupants in buildings also influence the
amount of cooling load demand. Outdoor
temperature is a key environment factor
that has been selected as neural networks
input to accurately predict cooling load for
desert and subtropical regions in Kuwait
and Japan, respectively [6-7].

For a tropical climate, as in
Thailand, temperature and relative
humidity ratios are high and different from
those in other geographic zones. These two
factors directly affect human comfort,
resulting in increasing amounts of cooling
load demand in buildings. In this paper,
these two factors of outdoor and indoor
conditions are selected as inputs for
Cooling load prediction. Supply and Return
Chilled Water Temperatures (SCWT and
RCWT) and Chilled Water Flow (CWF) of
air conditioning system are used as outputs.
Cooling load demand could mainly be
computed by the chilled water flow and the
difference of chilled water temperatures.

2. Literature Review

ANNSs are widely used in various
areas of energy management, such as
overall thermal transfer value, cooling load,
air ventilation and thermal comfort in
buildings. Demonstrated by several articles,
ANNs have a better capability over
traditional methods, such as time series and
regression. Their advantages are non-linear
modeling capability and faster development
time.

Focusing on the predictive capa-
bilities of ANNs, Kreider and Wang [8]
studied the application of expert systems to



HVAC diagnostics in commercial buildings
by using ANNs for determining the energy
use of chillers based on hourly averaged
data collected from the system. Karatasou
et al. [9] implemented modeling and
predicting a building’s energy use with
neural networks. The statistical procedures
such as hypothesis testing, information
criteria  and cross validation  were
advantageously used in term of guidance to
improve the performance of ANN for
modeling and predicting a building’s energy
use. Kajl et al [10] proposed a fuzzy-neural
assistant as a comparable method to the
DOE-2 building analysis program for the
simplified and detail estimation methods of
a building’s energy consumption. Three
beneficial input parameters including
orientation, insulation thickness, and
transparency ratio were developed for the
prediction of building energy consumptions
by Ekici and Aksoy[11]. ANNSs prediction
for the energy consumption of passive
solar, with faster development time than the
dynamic simulation programs, has been
studied by Kalogirou and Bojic[12].
Olofsson and Andersson have also
developed ANNs to perform long-term
energy demand prediction based on short-
term measured data. The model parameters
were indoor and outdoor temperature
difference and energy for heating and
internal use [13]. Moreover, prediction of a
building’s  temperature  using neural
networks models for predictive control of
air conditioning system has been proposed
by Ruano et al. [14]. A neural network was
also applied to the thermal load prediction
case. Investigation of four predictive
methods, namely Autoregressive Integrated
Moving Average (ARIMA), Exponentially
Weighted Moving Average (EWMA),
Linear Regression (LR), and ANNSs, was
comparatively conducted for the use of
hourly thermal load prediction by
Kawashima et al. [15]. ANNs gave the
highest thermal load prediction accuracy
and clearly outperformed other methods.
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This resulted in a decrease of operating cost
without  thermal energy  shortage.
Optimizations based on neural networks
modeling have also been implemented to
the energy management field. Curtiss et al.
reported [16] ANNs could be used to
optimize the energy consumption in a
commercial scale HVAC  system.
Information from an actual system was used
for training a network to optimize the
energy consumption without sacrificing
comfort by considering all the physical
limitations of the system. On-line set-point
resets in an actual HVAC control system
were successfully performed by ANN based
energy management. A variant of ANNSs has
been applied to energy management as well
[7]. General regression neural networks
(GRNN) are a powerful instrument for
optimizing thermal energy storage in
buildings based only on the use of external
temperature. External hourly temperature
readings for a 24-hour period were used as
network inputs to predict an hourly cooling
load for the next day.

The application of ANNs was
introduced to the system identification and
the intelligent control of an air handling unit
by Albert and Wai [17]. ANN traced the
online parameters relative to the air
handling unit as an identifier and then
controlled the system. Atthajariyakul and
Leephakpreeda [18] studied a practical
approach to determine human thermal
comfort  quantitatively  via  neural
computing. The feedforward neural network
model allowed a real time determination of
a thermal comfort index, the predicted mean
vote (PMV) index. In contrast, a major
obstacle of the conventional method for
PMV calculation is its long computational
time and hence it cannot be calculated in
real time.

The literature above has confirmed
the performance of neural networks in
prediction. However, there is still no study
about the performance of neural networks in
cooling load prediction for tropical regions



by using both temperature and humidity of
indoor and outdoor conditions as inputs.
Therefore, this study is focused on the
feasibility of using ANNs for tropical
cooling load prediction.

3. Methodology

Section 3.1 and 3.2 discuss the

fundamentals of a machine learning
technique, ANNs, and widely used
traditional  method, multiple linear

regression (MLR).

3.1 Multiple outputs artificial neural
networks regression

Acrtificial Neural Networks (ANNS)
imitate the learning process of human brain.
They eliminate the need of using complex
mathematically explicit formulas, computer
models, and impractical and costly physical
models. ANNs can capture relationships
between input and output by adjusting
weights on each link while learning from
data. Their advantages are robustness,
speed, and nonlinear modeling. Further-
more, they can perform both single and
multiple output predictions. In this study, a
feedforward backpropagation neural
network was attempted to predict flow and
temperatures of chilled water of an air
conditioning system. A neural network
normally has two elementary components,
processing elements and connection
weights. A feedforward network has no
loops as opposed to a feedback type. A
classic learning algorithm, backpropagation,
was used by propagating errors backward to
train and update the weights on each link of
a neural network with training examples.
These weights capture the pattern of
multivariable functions through learning. In
other words, they were used to capture the
relationship  between temperature and
humidity of indoor and outdoor conditions,
and flow and temperatures of chilled water
of air conditioning systems. Weight
adjustment between processing nodes in
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backpropagation is carried out according to
the difference between the target and the
output values of the neural network. This
difference is measured by mean squared
error shown below [19]:

2
pk _opk)

)

where dy is the k™ desired value of the p"
data and oy is the actual output.

The weights (W) are adjusted
toward the gradient direction that produces
a smaller approximation error as follows:

W(t+1) < W(t)+ 7o(t)y(t) (2)
where 7 is a positive constant called
learning rate, & is the gradient of the
difference between the desired and actual
neuron’s responses, and Yy is the input
vector. The weight matrix adapted at time t
becomes equation (2) at the next instant.

In  regression  problems, the
following set of data {(X1, Y1), ..., (Xp, ¥p) }
c R™x R" can be approximated by using
ANNs. The x; is the vector set of
temperature and humidity of indoor and
outdoor conditions and y; is the output
vector which consists of service and return
chilled water temperatures and chilled water
flow conditions. ANNs prediction model
was first implemented with a single output
to investigate its effectiveness as compared
with a traditional method like the MLR.
Theoretically, the advantages of ANNs are
robustness, nonlinear modeling ability and
nonparametric concept. However, ANNSs
have a major disadvantage as the physical
relationship among input and output cannot
be explained. A proper architecture of
ANNSs must be chosen from the split data
sets among training and validation sets to
avoid overfit problems. In addition, care
must be taken while selecting a proper
architecture of ANNs to avoid overfit
problems. Data must be split into three sets,



training, validation, and test sets, to help
select such architecture.

3.2 Multiple linear regression

Multiple linear regression analysis
is a statistical technique which is very
useful for exploring the relationships
between two or more variables (X;, Y;). Xi

represents the independent variables which
contain a set of temperature and humidity
variables of indoor and outdoor conditions.
yi is an interesting dependent variable
consisting of the set of chilled water flow of
an air conditioning system. Chilled water
flow output was chosen for this pilot
experiment due to its variation in operation.
Normally, a chiller system is operated in
accordance with the cooling load demand
by varying the amount of chilled water flow
and fixing the value of chilled water
temperatures at some level ranges. That
means the amount of chilled water flow can
consistently reflect the characteristic of
cooling load demand.

Suppose that there are m
independent variables and p observations
(Xi1y Xi2y Xigoeeor Ximy Vi); 1 =1, 2,..., p. The
fitted regression model can be described as:

yi:Bo"'szXij =12,..p: (3
j=1

and j=1,2,...,m.

The parameters 3, and Bj, j=1,

2,..., m are called the regression
coefficients which will be determined by
the method of least squares.

The difference  between the

observation {y;} and the fitted value );i is a
A N N m N
residual, e =y, -y,. Y= BO+ZBinj
j=1

and B,and B; are the estimators of the

regression coefficients. The criterion used is
the sum of squared error:
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P A
Sr =Zei2 ZZ(Yi _yi)2 (4)

p
i=1 i=1

The quality of the models is
estimated by considering the correlation
coefficient R between the actual and
predicted outputs. It can be described as:

o PTY (I

Sy =y P pE Y- (2, )

MLR is the most widely used
regression method because it can describe
the relationship between input and output.
Moreover, it is quite fast and simple due to
the use of a closed form solution for the
determination of regression coefficients.

()

4. Results and discussions

The objective of this study is to
investigate the feasibility of using neural
networks to predict the cooling load
demand. The causal method was used for
such a task. The data collection was
performed between November 2008 and
January 2009 at the main campus of
Shinawatra University in Pathum Thani.
The input parameters are temperature and
relative humidity of indoor and outdoor
conditions. The outputs are service and
return chilled water temperatures and
chilled water flow data. Temperature and
relative humidity of indoor and outdoor
conditions were recorded by temperature
and humidity measuring devices and a
weather station at the main campus. The
Building Automation  System (BAS)
monitoring program was used to collect
data of supply and return chilled water
temperatures and chilled water flow. Those
data of chilled water temperatures are in
Celsius with the magnitudes of ones and
tens. The data of chilled water flow are in
gallons per minute (GPM) with the
magnitude of hundreds. All data were
recorded every fifteen minutes. ANNs and



MLR predictions were implemented in
MATLAB 7 with neural networks and
multiple linear regression toolboxes to
develop the cooling load demand model.

4.1 Chilled water flow (CWF) prediction

A pilot experiment for MLR’s
prediction has been implemented to
compare its predictive ability with that of
ANNSs. The prediction was performed only
with CWF as single output because, as
mentioned earlier, CWF is a major factor of
cooling load determination. The experiment
was set up by using large and small sizes of
data sets with 3520 and 200 selected data
points in order to see the characteristic of
MLR prediction on different sizes of data
sets. These selected data were randomly
divided into training and test subsets for
building and verifying the MLR predictive
model. The training and test sets contained
75% and 25% of data sets. The selected
data of ANNs were randomly divided into
three subsets for training 50%, validation
25%, and testing 25%, as demonstrated in
Figure 1.

Training Set
50%

Learning
Algorithm

Validation Set
25%

Model

Data Set
100%%

Test Set
S50

Neural Networks
ESTIMATE

Figure 1. Model selection method diagram.

Details for the procedures of ANNs
single output prediction are discussed in
section 4.2. The performance of each
technique was evaluated by using the
average R-value. Comparative accuracy
results between the average R-values of
MLR’s and ANNs’ predictions are
presented in Table 1. In comparison
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between these two regression methods,
ANNs show an excellent prediction
performance due to the high level of R-
values for both small and large size data
sets. Furthermore, when applied to a much
larger data set, ANNs produce a slight
decrease of performance, although they
have to deal with higher variation. By
increasing the data size from 200 to 3520
data sets, the R-value results drop from
0.930 to 0.908 for training set and 0.899 to
0.892 for test set. For MLR prediction, it
performs fairly well for a small size data
set. Conversely, it makes a poor prediction
for a large size of data sets. By increasing
the data size from 200 to 3520 data sets, the
R-value results decrease from 0.807 to
0.645 for training sets and 0.797 to 0.641
for test sets.

Table 1. Comparative accuracy results
between the average R-values of MLR and
ANNs for CWF.

Average R-value
- 200 data sets 3520 data sets
Predictive _ —
Model Training Test Training Test
Set Set Set Set
ANNSs 0.930 0.899 0.908 0.892
MLR 0.807 0.797 0.645 0.641

The predicted outputs by ANNs and
MLR regression are plotted against the
actual outputs as shown in Figures 2 and 3.
The predicted outputs from ANNSs
regression are quite close to the actual
outputs, whereas the predicted outputs from
MLR vary widely from the actual outputs.
These obviously illustrate the superiority of
ANNs over MLR, numerically and
graphically.
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Figure 3. MLR actual output vs predicted
output.
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In summary, the MLR technique
was outperformed by ANNs. Higher
prediction accuracy for large size and high
variation data could be expected from
ANNSs. As addressed before, there are more
than one output parameter to be used for
cooling load calculation. This prediction
requirement of multiple outputs, chilled
water flow (CWEF), return chilled water
temperature (RCWT), and service chilled
water temperature (SCWT) can easily be
handled by ANNs. Section 4.2 initially
describes single output ANNs and
subsequently  generalizes to  multiple
outputs.
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4.2 ANNs’ prediction for CWF, RCWT
and SCWT

In this section, the procedures of
ANNSs’ prediction for CWF, RCWT, and
SCWT are described for each and every
cooling load parameter and all of them
simultaneously.

Generally, input parameters of the
target function are composed of various
magnitudes. The one with higher magnitude
may dominate others with  lower
magnitudes.  Therefore,  preprocessing
should be applied to raw data before
training. Thus, the raw data were
normalized to [-1,1] for every factor:
temperature of indoor (T;), temperature of
outdoor (T,), relative humidity indoor
(RH;), and relative humidity outdoor (RH,)

In this study, 3520 data were
randomly  selected from 8832 for
developing the cooling load model. Due to
the large selected data set, the holdout
method was chosen as a validation
technique for model selection and
performance estimation of the constructed
model. The data were randomly divided into
three subsets for training, validation, and
testing subsets as illustrated in Figure 1.

Training neural networks with
training set is done to determine optimal
weights. Then, a validation set is used for
tuning the parameters and estimating the
optimal number of hidden units or a
stopping point of the training algorithm.
The testing set is used to assess the
performance of properly trained and
validated model. The procedure and
randomization eliminates bias of ANNS,
while increasing their generalization ability.

For single output prediction, ANNs
were designed with 4 inputs and 1 output.
There are three single output models for the
predictions of CWF, RCWT, and SCWT.
Each predictive model was separately
developed for each output. Temperature and
relative humidity of indoor and outdoor
conditions were used as inputs. The proper
architecture, the number of hidden layers,



the number of hidden nodes in each layer,
and the number of iterations was selected
based on generalization performance
indicators by using trial and error approach.
The combination of these ANNSs parameters
that provided the lowest training error, and
shared the same trend as validation error,
was experimentally found. The experiment
was conducted for 10 runs for each structure
from 5 to 50 nodes in the first hidden layer.
Five nodes were increased each time. The
second hidden layer was also attempted in
the same fashion. The final architectures
with minimum error are 4-25-20-1, 4-25-
15-1 and 4-25-20-1 for chilled water flow
prediction, return and service chilled water
temperature predictions, respectively, as
shown in Figures 4- 6.

<D (oo
( INPUTS ) \()lTPUT.S\
. "
Indoor . .

Temperature V

Outdoor .

Temperature V

Chilled Water

IndoorRH Flow

.
.

N
OutdoorRH & U

Input
layer

25nodes 20nodes 1 output node
First hidden layer Second hidden layer Output layer

Figure 4. Final architecture, 4-25-20-1, of
ANNs for CWF prediction.
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Temperature -
Outdoor ’
Temperature a4
Return Chilled
Indoor RH A " > Water
v & Temperature
L .
.
.
Outdoor RH V ‘.
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Figure 5. Final architecture, 4-25-15-1, of
ANNs for RCWT prediction.

First hidden layer  Second hidden layer  Output layer
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Figure 6. Final architecture, 4-25-20-1, of
ANNs for SCWT prediction.

20 nodes 1 output node
Second hidden layer  Output layer

For multiple outputs prediction, a
neural network was created with 4 inputs
and 3 outputs. These four inputs and three
outputs were the same as those in the
previous single output case but they would
be used together to develop a prediction
model. The selection for the best
architecture was also the same. The final
architecture with minimum error is 4-30-15-
3 as shown in Figure 7.

s - '\\\‘ Multi-Layer Perceptrons Vs 7\\
( n\?lrrs/ ( OUTPUTS )
N ) 7
Indoor . o .
Temperature
Outd Chilled Water
utdoor N . \ . Flow
Temperature V V
Return Chilled
IndoorRH  * H ‘ Water
U V Temperature
o .
.
. P > Supply Chilled
. Water
' Temperature
OutdoorRH & V '
Input 30nodes 15nodes 3 output nodes

layer First hidden layer  Second hidden layer  Output layer

Figure 7. Final architecture, 4-30-15-3, of
ANNs for multiple outputs prediction.

The activation functions used were
the hyperbolic tangent sigmoid transfer
functions or “tansig” for all hidden nodes.
Because it is differentiable and covers the
bipolar continuous range (-1,1), it is
commonly used in  backpropagation
networks. The linear transfer function or
“purelin” was used for the output node(s) in



the last layer since the network output(s)
could take on any value. The speed-up
optimizer, Levenberg and Marquardt
backpropagation, was used to train neural
networks by minimizing mean squared
error.

Five measures of accuracy were
chosen to evaluate the performance of
ANNs. They are coefficient correlation (R),
the Mean Squared Error (MSE), the Root
Mean Squared Error (RMSE), the Mean
Absolute Error (MAE), and the Mean Bias
Error (MBE).

R-value can be determined by using
linear regression analysis between the
predicted outputs and the desired
corresponding targets. MSE and RMSE are
commonly used to evaluate models based
on two reasons. Firstly, they penalize large
forecasting errors proportionately. Most
users of forecasts prefer a model that
produces consistently moderate errors to
one that produces some small errors and
some very large errors. Secondly, the mean
squared error can be used to estimate the
variance of the random error component.
MSE and RMSE can be described as:

Zp‘,(Yi _§i)2

MSE = 1= (6)

p

and

RMSE = (7

where Y. is the predicted value, y; the
measured value.
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MAE is an average of the absolute
errors. It is one of the most popular and
simplest for measuring the forecast errors.
This measure provides a better intuitive feel
for how much error is likely to occur when
using a forecast from the model. Its measure

IS:
P

2.|Yi — i
MAE == 1 8
p

MBE provides information on the
long term performance of the correlations
by allowing a comparison of the actual
deviation between actual and predicted
outputs term by term. The ideal value of
MBE is zero which implies a lack of bias. A
positive result or low bias indicates the
condition that predicted outputs are
consistently lower than the actual outputs.
Whereas, a negative result or high bias
demonstrates the condition that predicted
outputs are consistently higher than the

actual outputs. MBE can be described as:

12 A
MBE ZBZ()’i ) (9)

From 10 replications of the best
architectures of the single and multiple
outputs, the results from each measures of
accuracy are presented in Tables 2-6. After
Training, the validation set was grouped
with the training set to determine the
performance of the developed predictive
model for training. The actual assessment
was also done with the unseen test set.



Table 2. Accuracy of average R-values.
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Average R-value

Training Set

Test Set

Output No.

ANNs 1

2

Output No.

3 1 2 3

Final

Predictive A chitecture

Models CWF

RCWT

SCWT CWF RCWT SCWT

Single
Output
(CWF)

[4-25-20-1]  0.908

- 0.892 - -

Single
Output
(RCWT)

[4-25-15-1] -

0.901

0.879 -

Single
Output
(SCWT)

[4-25-20-1] -

0.762 - - 0.724

Multiple

Outputs 0.904

[4-30-15-3]

0.876

0.726 0.890 0.860 0.704

Table 2 demonstrates the compara-
tive accuracy results between average R-
values of ANNSs predictive models. The
average R-values of training and test sets of
all models are in the range of 0.70- 0.91
which can reflect the high performance of
neural networks in cooling load prediction.
The average R-values of training sets of all
models are slightly higher than the average
R-values of test sets of all models by about
2-3%. In comparison between ANNSs
predictive models for single and multiple
outputs, ANNs predictive models for single
output perform a better prediction as they
produce the higher results of R-values. For
a training set, the average R-value of each
single output prediction is slightly greater
than the average R-value of multiple
outputs prediction, 0.908 and 0.904 for
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CWEF, 0.901 and 0.876 for RCWT and
0.762 and 0.726 for SCWT. For a test set,
the average R-value of each single output
prediction is slightly higher than the
average R-value of multiple outputs
prediction with 0.892 and 0.890 for CWF,
0.879 and 0.860 for RCWT and 0.724 and
0.704 for SCWT. Notably, the average R-
values of the training and test sets of SCWT
are markedly lower than the average R-
values of the other two outputs.

The slight differences between
average R-values of training and unseen test
sets show that ANNs can predict key
parameters of cooling load with high
generalization. With large size and high
variation of data tested, ANNs are quite
robust for cooling load prediction.
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Table 3. Accuracy of average MSE values.

Average MSE

Training Set Test Set

Output No. Output No.

ANNSs . 1 2 3 1 2 3
Final

Predictive

Models Architecture CWF RCWT SCWT CWF RCWT SCWT

Single
Output [4-25-20-1]  1720.247 - - 1993.042 - -
(CWF)

Single
Output [4-25-15-1] - 0.281 - - 0.345 -
(RCWT)

Single
Output [4-25-20-1] - - 0.319 - - 0.365
(SCWT)

Multiple

[4-30-15-3] 1787.338 0.348 0.361 2004.598 0.393 0.384
Outputs

Table 4. Accuracy of average RMSE values.

Average RMSE

Training Set Test Set

Output No. Output No.

ANNSs . 1 2 3 1 2 3
Final

Predictive

Models Architecture CWF RCWT  SCWT CWF RCWT  SCWT

Single
Output [4-25-20-1] 41.476 - - 44.643 - -
(CWEF)

Single
Output [4-25-15-1] - 0.530 - - 0.587 -
(RCWT)

Single
Output [4-25-20-1] - - 0.565 - - 0.604
(SCWT)

Multiple

Outputs [4-30-15-3] 42277  0.590 0.601 44.773 0.627 0.620
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Table 5. Accuracy of average MAE values.
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Average MAE

Training Set

Test Set

Output No.

ANNs 1 2

Output No.
3 1 2 3

Final

Predictive A - chitecture

Models CWF

RCWT

SCWT CWF RCWT SCWT

Single
Output
(CWF)

[4-25-20-1]  26.494 -

- 28.653 - -

Single
Output
(RCWT)

[4-25-15-1] - 0.361

0.391 -

Single
Output
(SCWT)

[4-25-20-1] - -

0.374 - - 0.396

Multiple

Outputs 27.634

[4-30-15-3] 0.405

0.408 29.346 0.425 0.416

The accuracy results of the average
MSE, RMSE and MAE values of ANNSs
predictive models are depicted in Tables 3,
4 and 5, respectively. The average MSE
and RMSE values of all ANNs predictive
models demonstrate a similar tendency to

Table 6. Accuracy of average MBE values.

the average MAE values of all ANNSs
predictive models. Results of training sets
for all outputs in every model are slightly
better than those of unseen test sets for all
outputs.

Average MBE

Training Set

Test Set

Output No.

ANNSs 1 2

Output No.
3 1 2 3

Predictive Final
Models Architecture CWF

RCWT

SCWT CWF RCWT  SCWT

Single
Output
(CWF)

[4-25-20-1]  0.398 -

- -1.271 - -

Single
Output
(RCWT)

[4-25-15-1] -

-0.00027

0.0036 -

Single
Output
(SCWT)

[4-25-20-1] - -

-0.0021 - - 0.0049

Multiple

Outputs [430-15-3]

0.470

-0.0025

0.0026  -1.690 -0.0065  0.0060
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Table 6 demonstrates the compara-
tive accuracy results by using average MBE
of ANNSs predictive models. The average
MBE results indicate a good performance of
ANNS’ predictions as they are entirely close
to zero. All results of average MBE are
between -0.0025 and 1.69. The results of
average MBE for training sets of both types
of outputs are slightly better than those of
the unseen test sets for all corresponding
outputs. Results of average MBE of CWF
are slightly higher than the results of
average MBE of RCWT and SCWT due to
the differences in magnitude between CWF
and RCWT and SCWT.

In summary, accuracy evaluations
of all measures are consistent as the average
results of training set and are superior to
those of test set. This illustrates the distinct
strengths of ANNSs with high robustness and
good generalization capabilities.

Comparing  ANNs  predictive
models for single and multiple outputs,
better results of all measures, R, MSE,
RMSE, MAE and MBE, imply better
performance in prediction. The less error in
ANNs’ prediction could be expected from
single output predictive model when
compared with multiple outputs model.

All three separated single output
models slightly outperform the multiple
outputs model due to the less complicated
calculation required during input-output
mappings of ANNs. However, the
development time of the former was much
large than that of the latter. The times it
took to develop each single output model
and the combined outputs model were about
the same but three different outputs models
were needed for the former and only one
model was enough for the latter.
Consequently, the selections of ANNs’ best
architectures including training, validation,
and testing processes need to be
implemented separately three times. The
models accuracy is not much different, but
the development time becomes more
critical. Therefore, ANNs’ multiple outputs
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prediction is more appropriate to be applied
for practical work in this study

5. Conclusions

This work demonstrated that ANNs
can be effectively applied to predict cooling
load demand. As a result from a pilot
experiment, ANNs have outperformed MLR
in prediction. In comparison of ANNs and
MLR, ANNs have superior performance in
prediction as they could handle huge
different sizes of data sets with high
accuracy, about 0.9 for R-values. MLR
showed fair performance in prediction for
small data sets and quite poor predictive
performance for large data sets, about 0.8
and 0.65 for R-values, respectively.

ANNs show excellent performance
in prediction of flow and temperatures of
chilled water of air conditioning system by
using ambient temperatures and humidity
rates of indoor and outdoor conditions with
both large and small sizes of data sets. Good
generalization of ANNSs for unseen test set
can be obtained. ANNs also show
robustness in prediction with large and high
variation data sets for all measures. Clearly,
ANNs can be applied to capture implicit
relationships between input and output
factors for cooling load demand
calculations. The results from ANNSs single
output prediction are more accurate than

those from ANNs multiple outputs
prediction with a slight difference.
Development time of ANNs multiple

outputs prediction is much less as opposed
to the combined development time of all
three separated single output models. As a
result, ANNs’ multiple outputs prediction
can be further applied to real-time energy
planning. They can effectively be utilized
for optimization and management of energy
use in HVAC systems. In addition, thermal
energy storage can suitably be properly
managed, including its capacity and size, by
using this intelligent technique.
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