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Abstract 
The weather in a tropical region, which mainly consists of high temperature and 

humidity, is clearly different from those in cold and desert climate regions. These factors 

strongly affect the cooling load demand of heating, ventilating, and air conditioning (HVAC) 

systems in order to provide required thermal comfort in buildings. Thus, they should be taken 

into consideration together for determining cooling load demand. Traditional approaches such 

as physically based models and statistically based methods are extremely difficult to derive 

and time consuming to develop. Artificial neural networks (ANNs), which are a powerful 

modeling technique with robust, fast, and nonlinear modeling advantages, can flexibly and 

simply capture ambient conditions and cooling demand. In this study, the main objective is to 

investigate the performance of ANNs’ predictive ability for HVAC systems. The ANNs are 

applied to predict flow and temperatures of chilled water in HVAC systems of a 

multifunctional building in Thailand. The obtained model can be used to effectively plan the 

energy use of such systems. In addition, thermal energy storage can be properly managed, 

including its capacity and size. The main features representing temperature and humidity are 

ambient temperature and relative humidity of indoor and outdoor conditions. The 

characteristics of cooling load demand are flow rate and temperatures of chilled water. The 

obtained prediction results show that a properly designed ANN model outperforms multiple 

linear regression (MLR). Moreover, they can easily be extended to predict multiple 

factors(such as temperatures) with satisfactory results.  
 

Keywords: Artificial neural networks, Building, Cooling load, Temperature and 

humidity, Tropical zone 

 
1. Introduction 

 
World energy demand has 

considerably increased over the past 

decades. Due to the concern of energy 

shortage in the near future, the use of 

renewable energy has gained a wide 

acceptance as an alternative solution. 

Energy conservation and management are a 

tangibly strategic approach to better energy 

consumption and utilization. For buildings, 

energy efficiency in subsystems such as in 



Thammasat Int. J. Sc. Tech., Vol. 15,  No. 2, April-June 2010 

 29 

HVAC and lighting systems is a key to 

reduce the cost in building operations. In 

Thailand, HVAC systems take the highest 

share of energy consumption in buildings at 

approximately 50-70% [1-3], which is a 

direct consequence of cooling load demand. 

Its energy use and utility cost can be 

reduced significantly by using Thermal 

Energy Storage (TES) systems [4]. TES is 

as an integrated system for optimal 

operation of a chiller plant to efficiently 

store the thermal load and control the 

distribution system. Peak load reduction 

can be managed by producing chilled water 

or ice during times of lower electricity rate, 

at night time. However, thermal storage 

systems are often found not to operate as 

efficiently as estimated during its design 

stage [5]. An equilibrium condition is 

necessarys in which the required amount of 

thermal energy storage is equal to the 

available produced amount of energy 

storage. Operational management and 

energy use optimization are required to 

overcome this problem. The pattern of 

cooling load demand in buildings should be 

specifically identified to increase the 

efficiency of TES during the design stage 

and actual operation.  Therefore, a proper 

predictive model pattern of cooling load 

demand is necessary for the accom-

plishment of an energy conservation goal.   

Based on these reasons, this research was 

conducted to study a predictive model of 

cooling load demand by using artificial 

neural networks (ANNs). ANNs are 

attractive because they can capture patterns 

of input factors regardless of their statistical 

distribution assumption. This assumption 

must be verified to validate the results 

obtained by traditional statistical methods. 

Furthermore, multiple output prediction can 

be simply developed by using ANNs if 

outputs are correlated. This is rather 

difficult and time consuming for other 

methods. 

Cooling load is a requirement by 

HVAC systems to provide a thermal 

comfort condition for occupancy. Heat is 

removed from the conditioned space to 

maintain a thermal comfort condition. 

Several parameters such as, outdoor air 

temperature, relative humidity, solar 

radiation and wind speed are outdoor 

environmental factors that affect the 

amount of cooling load requirement.  

Moreover, the number and activity of 

occupants in buildings also influence the 

amount of cooling load demand. Outdoor 

temperature is a key environment factor 

that has been selected as neural networks 

input to accurately predict cooling load for 

desert and subtropical regions in Kuwait 

and Japan, respectively [6-7].  

For a tropical climate, as in 

Thailand, temperature and relative 

humidity ratios are high and different from 

those in other geographic zones. These two 

factors directly affect human comfort, 

resulting in increasing amounts of cooling 

load demand in buildings. In this paper, 

these two factors of outdoor and indoor 

conditions are selected as inputs for 

Cooling load prediction. Supply and Return 

Chilled Water Temperatures (SCWT and 

RCWT) and Chilled Water Flow (CWF) of 

air conditioning system are used as outputs. 

Cooling load demand could mainly be 

computed by the chilled water flow and the 

difference of chilled water temperatures. 

 

2. Literature Review 
 

ANNs are widely used in various 

areas of energy management, such as 

overall thermal transfer value, cooling load, 

air ventilation and thermal comfort in 

buildings.  Demonstrated by several articles, 

ANNs have a better capability over 

traditional methods, such as time series and 

regression. Their advantages are non-linear 

modeling capability and faster development 

time.  

Focusing on the predictive capa-

bilities of ANNs, Kreider and Wang [8] 

studied the application of expert systems to 
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HVAC diagnostics in commercial buildings 

by using ANNs for determining the energy 

use of chillers based on hourly averaged 

data collected from the system.  Karatasou 

et al. [9] implemented modeling and 

predicting a building’s energy use with 

neural networks. The statistical procedures 

such as hypothesis testing, information 

criteria and cross validation were 

advantageously used in term of guidance to 

improve the performance of ANN for 

modeling and predicting a building’s energy 

use. Kajl et al [10] proposed a fuzzy-neural 

assistant as a comparable method to the 

DOE-2 building analysis program for the 

simplified and detail estimation methods of 

a building’s energy consumption. Three 

beneficial input parameters including 

orientation, insulation thickness, and 

transparency ratio were developed for the 

prediction of building energy consumptions 

by Ekici and Aksoy[11]. ANNs prediction 

for the energy consumption of  passive 

solar, with faster development time than the 

dynamic simulation programs, has been 

studied by Kalogirou and Bojic[12]. 

Olofsson and Andersson have also 

developed ANNs to perform long-term 

energy demand prediction based on short-

term measured data. The model parameters 

were indoor and outdoor temperature 

difference and energy for heating and 

internal use [13]. Moreover, prediction of a 

building’s temperature using neural 

networks models for predictive control of 

air conditioning system has been proposed 

by Ruano et al. [14]. A neural network was 

also applied to the thermal load prediction 

case. Investigation of four predictive 

methods, namely Autoregressive Integrated 

Moving Average (ARIMA), Exponentially 

Weighted Moving Average (EWMA), 

Linear Regression (LR), and ANNs, was 

comparatively conducted for the use of 

hourly thermal load prediction by 

Kawashima et al. [15]. ANNs gave the 

highest thermal load prediction accuracy 

and clearly outperformed other methods. 

This resulted in a decrease of operating cost 

without thermal energy shortage. 

Optimizations based on neural networks 

modeling have also been implemented to 

the energy management field. Curtiss et al. 

reported [16] ANNs could be used to 

optimize the energy consumption in a 

commercial scale HVAC system. 

Information from an actual system was used 

for training a network to optimize the 

energy consumption without sacrificing 

comfort by considering all the physical 

limitations of the system. On-line set-point 

resets in an actual HVAC control system 

were successfully performed by ANN based 

energy management. A variant of ANNs has 

been applied to energy management as well 

[7]. General regression neural networks 

(GRNN) are a powerful instrument for 

optimizing thermal energy storage in 

buildings based only on the use of external 

temperature. External hourly temperature 

readings for a 24-hour period were used as 

network inputs to predict an hourly cooling 

load for the next day.  

The application of ANNs was 

introduced to the system identification and 

the intelligent control of an air handling unit 

by Albert and Wai [17]. ANN traced the 

online parameters relative to the air 

handling unit as an identifier and then 

controlled the system. Atthajariyakul and 

Leephakpreeda [18] studied a practical 

approach to determine human thermal 

comfort quantitatively via neural 

computing. The feedforward neural network 

model allowed a real time determination of 

a thermal comfort index, the predicted mean 

vote (PMV) index. In contrast, a major 

obstacle of the conventional method for 

PMV calculation is its long computational 

time and hence it cannot be calculated in 

real time.   

The literature above has confirmed 

the performance of neural networks in 

prediction. However, there is still no study 

about the performance of neural networks in 

cooling load prediction for tropical regions 
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by using both temperature and humidity of 

indoor and outdoor conditions as inputs. 

Therefore, this study is focused on the 

feasibility of using ANNs for tropical 

cooling load prediction. 

 

3. Methodology 

 

Section 3.1 and 3.2 discuss the 

fundamentals of a machine learning 

technique, ANNs, and widely used 

traditional method, multiple linear 

regression (MLR). 

 

3.1 Multiple outputs artificial neural   

networks regression  

Artificial Neural Networks (ANNs) 

imitate the learning process of human brain. 

They eliminate the need of using complex 

mathematically explicit formulas, computer 

models, and impractical and costly physical 

models. ANNs can capture relationships 

between input and output by adjusting 

weights on each link while learning from 

data. Their advantages are robustness, 

speed, and nonlinear modeling. Further-

more, they can perform both single and 

multiple output predictions. In this study, a 

feedforward backpropagation neural 

network was attempted to predict flow and 

temperatures of chilled water of an air 

conditioning system. A neural network 

normally has two elementary components, 

processing elements and connection 

weights. A feedforward network has no 

loops as opposed to a feedback type. A 

classic learning algorithm, backpropagation, 

was used by propagating errors backward to 

train and update the weights on each link of 

a neural network with training examples. 

These weights capture the pattern of 

multivariable functions through learning. In 

other words, they were used to capture the 

relationship between temperature and 

humidity of indoor and outdoor conditions, 

and flow and temperatures of chilled water 

of air conditioning systems. Weight 

adjustment between processing nodes in 

backpropagation is carried out according to 

the difference between the target and the 

output values of the neural network. This 

difference is measured by mean squared 

error shown below [19]: 
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data and opk  is the actual output. 

The weights (W) are adjusted 

toward the gradient direction that produces 

a smaller approximation error as follows: 

 

   (t)(t)(t)1)(t yWW δη             (2) 

 

where 𝜂 is a positive constant called 

learning rate, 𝛿 is the gradient of the 

difference between the desired and actual 

neuron’s responses, and y is the input 

vector. The weight matrix adapted at time t 

becomes equation (2) at the next instant.                                                                                                                      

In regression problems, the 

following set of data {(x1, y1), …, (xp, yp) } 

⊂  ℜm 
× ℜn

 can be approximated by using 

ANNs. The xi is the vector set of 

temperature and humidity of indoor and 

outdoor conditions and yj is the output 

vector which consists of service and return 

chilled water temperatures and chilled water 

flow conditions. ANNs prediction model 

was first implemented with a single output 

to investigate its effectiveness as compared 

with a traditional method like the MLR. 

Theoretically, the advantages of ANNs are 

robustness, nonlinear modeling ability and 

nonparametric concept. However, ANNs 

have a major disadvantage as the physical 

relationship among input and output cannot 

be explained. A proper architecture of 

ANNs must be chosen from the split data 

sets among training and validation sets to 

avoid overfit problems. In addition, care 

must be taken while selecting a proper 

architecture of ANNs to avoid overfit 

problems. Data must be split into three sets, 
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training, validation, and test sets, to help 

select such architecture.   

 

3.2 Multiple linear regression  

Multiple linear regression analysis 

is a statistical technique which is very 

useful for exploring the relationships 

between two or more variables ( ii y,x ). xi 

represents the independent variables which 

contain a set of temperature and humidity 

variables of indoor and outdoor conditions. 

yi is an interesting dependent variable 

consisting of the set of chilled water flow of 

an air conditioning system. Chilled water 

flow output was chosen for this pilot 

experiment due to its variation in operation. 

Normally, a chiller system is operated in 

accordance with the cooling load demand 

by varying the amount of chilled water flow 

and fixing the value of chilled water 

temperatures at some level ranges. That 

means the amount of chilled water flow can 

consistently reflect the characteristic of 

cooling load demand.  

Suppose that there are m 

independent variables and p observations 

(xi1, xi2, xi3,…, xim, yi); i = 1, 2,…, p. The 

fitted regression model can be described as:   
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 and   j = 1, 2, …, m.    

 

The parameters 0  and j ,  j = 1, 

2,…, m are called the regression 

coefficients which will be determined by 

the method of least squares. 
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regression coefficients. The criterion used is 

the sum of squared error: 

2

11

2
)(





  i

p

i
i

p

i
ir yyeS                     (4) 

 

The quality of the models is 

estimated by considering the correlation 

coefficient R between the actual and 

predicted outputs. It can be described as: 
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MLR is the most widely used 

regression method because it can describe 

the relationship between input and output. 

Moreover, it is quite fast and simple due to 

the use of a closed form solution for the 

determination of regression coefficients. 

 

4. Results and discussions 
 

The objective of this study is to 

investigate the feasibility of using neural 

networks to predict the cooling load 

demand. The causal method was used for 

such a task. The data collection was 

performed between November 2008 and 

January 2009 at the main campus of 

Shinawatra University in Pathum Thani. 

The input parameters are temperature and 

relative humidity of indoor and outdoor 

conditions. The outputs are service and 

return chilled water temperatures and 

chilled water flow data. Temperature and 

relative humidity of indoor and outdoor 

conditions were recorded by temperature 

and humidity measuring devices and a 

weather station at the main campus. The 

Building Automation System (BAS) 

monitoring program was used to collect 

data of supply and return chilled water 

temperatures and chilled water flow. Those 

data of chilled water temperatures are in 

Celsius with the magnitudes of ones and 

tens. The data of chilled water flow are in 

gallons per minute (GPM) with the 

magnitude of hundreds. All data were 

recorded every fifteen minutes. ANNs and 
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MLR predictions were implemented in 

MATLAB 7 with neural networks and 

multiple linear regression toolboxes to 

develop the cooling load demand model. 

 

4.1 Chilled water flow (CWF) prediction 

A pilot experiment for MLR’s 

prediction has been implemented to 

compare its predictive ability with that of 

ANNs. The prediction was performed only 

with CWF as single output because, as 

mentioned earlier, CWF is a major factor of 

cooling load determination. The experiment 

was set up by using large and small sizes of 

data sets with 3520 and 200 selected data 

points in order to see the characteristic of 

MLR prediction on different sizes of data 

sets. These selected data were randomly 

divided into training and test subsets for 

building and verifying the MLR predictive 

model.  The training and test sets contained 

75% and 25% of data sets.  The selected 

data of ANNs were randomly divided into 

three subsets for training 50%, validation 

25%, and testing 25%, as demonstrated in 

Figure 1. 

Figure 1. Model selection method diagram. 

 

Details for the procedures of ANNs 

single output prediction are discussed in 

section 4.2. The performance of each 

technique was evaluated by using the 

average R-value. Comparative accuracy 

results between the average R-values of 

MLR’s and ANNs’ predictions are 

presented in Table 1. In comparison 

between these two regression methods, 

ANNs show an excellent prediction 

performance due to the high level of R-

values for both small and large size data 

sets. Furthermore, when applied to a much 

larger data set, ANNs produce a slight 

decrease of performance, although they 

have to deal with higher variation.  By 

increasing the data size from 200 to 3520 

data sets, the R-value results drop from 

0.930 to 0.908 for training set and 0.899 to 

0.892 for test set.  For MLR prediction, it 

performs fairly well for a small size data 

set. Conversely, it makes a poor prediction 

for a large size of data sets. By increasing 

the data size from 200 to 3520 data sets, the 

R-value results decrease from 0.807 to 

0.645 for training sets and 0.797 to 0.641 

for test sets.  

 

 

Table 1. Comparative accuracy results 

between the average R-values of MLR and 

ANNs for CWF. 

 Average R-value 

Predictive 

Model 

200 data sets 3520 data sets 

Training 

Set 

Test 

Set 

Training 

Set 

Test 

Set 

ANNs 0.930 0.899 0.908 0.892 

MLR 0.807 0.797 0.645 0.641 

 

The predicted outputs by ANNs and 

MLR regression are plotted against the 

actual outputs as shown in Figures 2 and 3.   

The predicted outputs from ANNs 

regression are quite close to the actual 

outputs, whereas the predicted outputs from 

MLR vary widely from the actual outputs. 

These obviously illustrate the superiority of 

ANNs over MLR, numerically and 

graphically. 
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Figure 2.  ANNs actual output vs predicted 

output. 
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Figure 3. MLR actual output vs predicted 

output. 

 

In summary, the MLR technique 

was outperformed by ANNs. Higher 

prediction accuracy for large size and high 

variation data could be expected from 

ANNs. As addressed before, there are more 

than one output parameter to be used for 

cooling load calculation. This prediction 

requirement of multiple outputs, chilled 

water flow (CWF), return chilled water 

temperature (RCWT), and service chilled 

water temperature (SCWT) can easily be 

handled by ANNs. Section 4.2 initially 

describes single output ANNs and 

subsequently generalizes to multiple 

outputs. 

 

4.2 ANNs’ prediction for CWF, RCWT 

and SCWT 

In this section, the procedures of 

ANNs’ prediction for CWF, RCWT, and 

SCWT are described for each and every 

cooling load parameter and all of them 

simultaneously. 

Generally, input parameters of the 

target function are composed of various 

magnitudes. The one with higher magnitude 

may dominate others with lower 

magnitudes. Therefore, preprocessing 

should be applied to raw data before 

training. Thus, the raw data were 

normalized to [-1,1] for every factor: 

temperature of indoor (Ti), temperature of 

outdoor (To), relative humidity indoor 

(RHi), and relative humidity outdoor (RHo) 

In this study, 3520 data were 

randomly selected from 8832 for 

developing the cooling load model. Due to 

the large selected data set, the holdout 

method was chosen as a validation 

technique for model selection and 

performance estimation of the constructed 

model. The data were randomly divided into 

three subsets for training, validation, and 

testing subsets as illustrated in Figure 1.  

Training neural networks with 

training set is done to determine optimal 

weights. Then, a validation set is used for 

tuning the parameters and estimating the 

optimal number of hidden units or a 

stopping point of the training algorithm. 

The testing set is used to assess the 

performance of properly trained and 

validated model. The procedure and 

randomization eliminates bias of ANNs, 

while increasing their generalization ability.  

For single output prediction, ANNs 

were designed with 4 inputs and 1 output. 

There are three single output models for the 

predictions of CWF, RCWT, and SCWT. 

Each predictive model was separately 

developed for each output. Temperature and 

relative humidity of indoor and outdoor 

conditions were used as inputs. The proper 

architecture, the number of hidden layers, 
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the number of hidden nodes in each layer, 

and the number of iterations was selected 

based on generalization performance 

indicators by using trial and error approach. 

The combination of these ANNs parameters 

that provided the lowest training error, and 

shared the same trend as validation error, 

was experimentally found. The experiment 

was conducted for 10 runs for each structure 

from 5 to 50 nodes in the first hidden layer. 

Five nodes were increased each time. The 

second hidden layer was also attempted in 

the same fashion. The final architectures 

with minimum error are 4-25-20-1, 4-25-

15-1 and 4-25-20-1 for chilled water flow 

prediction, return and service chilled water 

temperature predictions, respectively, as 

shown in Figures 4- 6.  

 

 
Figure 4. Final architecture, 4-25-20-1, of 

ANNs for CWF prediction. 

 

 
Figure 5. Final architecture, 4-25-15-1, of 

ANNs for RCWT prediction. 

 

 
Figure 6. Final architecture, 4-25-20-1, of 

ANNs for SCWT prediction. 

 

For multiple outputs prediction, a 

neural network was created with 4 inputs 

and 3 outputs. These four inputs and three 

outputs were the same as those in the 

previous single output case but they would 

be used together to develop a prediction 

model. The selection for the best 

architecture was also the same. The final 

architecture with minimum error is 4-30-15-

3 as shown in Figure 7.  

 

 
 

Figure 7. Final architecture, 4-30-15-3, of 

ANNs for multiple outputs prediction. 

 

The activation functions used were 

the hyperbolic tangent sigmoid transfer 

functions or “tansig” for all hidden nodes.  

Because it is differentiable and covers the 

bipolar continuous range (-1,1), it is 

commonly used in backpropagation 

networks. The linear transfer function or 

“purelin” was used for the output node(s) in 
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the last layer since the network output(s) 

could take on any value. The speed-up 

optimizer, Levenberg and Marquardt 

backpropagation, was used to train neural 

networks by minimizing mean squared 

error. 

Five measures of accuracy were 

chosen to evaluate the performance of 

ANNs. They are coefficient correlation (R), 

the Mean Squared Error (MSE), the Root 

Mean Squared Error (RMSE), the Mean 

Absolute Error (MAE), and the Mean Bias 

Error (MBE).  

R-value can be determined by using 

linear regression analysis between the 

predicted outputs and the desired 

corresponding targets. MSE and RMSE are 

commonly used to evaluate models based 

on two reasons. Firstly, they penalize large 

forecasting errors proportionately. Most 

users of forecasts prefer a model that 

produces consistently moderate errors to 

one that produces some small errors and 

some very large errors. Secondly, the mean 

squared error can be used to estimate the 

variance of the random error component. 

MSE and RMSE can be described as: 
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is the predicted value,  yi the 

measured value. 

MAE is an average of the absolute 

errors. It is one of the most popular and 

simplest for measuring the forecast errors. 

This measure provides a better intuitive feel 

for how much error is likely to occur when 

using a forecast from the model. Its measure 

is: 
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 MBE provides information on the 

long term performance of the correlations 

by allowing a comparison of the actual 

deviation between actual and predicted 

outputs term by term. The ideal value of 

MBE is zero which implies a lack of bias. A 

positive result or low bias indicates the 

condition that predicted outputs are 

consistently lower than the actual outputs. 

Whereas, a negative result or high bias 

demonstrates the condition that predicted 

outputs are consistently higher than the 

actual outputs. MBE can be described as: 
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From 10 replications of the best 

architectures of the single and multiple 

outputs, the results from each measures of 

accuracy are presented in Tables 2-6. After 

Training, the validation set was grouped 

with the training set to determine the 

performance of the developed predictive 

model for training. The actual assessment 

was also done with the unseen test set.  
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Table 2. Accuracy of average R-values. 

  Average R-value 

  Training Set Test Set 

  Output No. Output No. 

ANNs 

Predictive 

Models 

Final 

Architecture 

1 2 3 1 2 3 

CWF RCWT SCWT CWF RCWT SCWT 

Single 

Output 

(CWF) 

[4-25-20-1] 0.908 - - 0.892 - - 

Single 

Output 

(RCWT) 

[4-25-15-1] - 0.901 - - 0.879 - 

Single 

Output 

(SCWT) 

[4-25-20-1] - - 0.762 - - 0.724 

Multiple 

Outputs 
[4-30-15-3] 0.904 0.876 0.726 0.890 0.860 0.704 

 

Table 2 demonstrates the compara-

tive accuracy results between average R-

values of ANNs predictive models. The 

average R-values of training and test sets of 

all models are in the range of 0.70- 0.91 

which can reflect the high performance of 

neural networks in cooling load prediction. 

The average R-values of training sets of all 

models are slightly higher than the average 

R-values of test sets of all models by about 

2-3%. In comparison between ANNs 

predictive models for single and multiple 

outputs, ANNs predictive models for single 

output perform a better prediction as they 

produce the higher results of R-values. For 

a training set, the average R-value of each 

single output prediction is slightly greater 

than the average R-value of multiple 

outputs prediction, 0.908 and 0.904 for 

CWF, 0.901 and 0.876 for RCWT and 

0.762 and 0.726 for SCWT. For a test set, 

the average R-value of each single output 

prediction is slightly higher than the 

average R-value of multiple outputs 

prediction with 0.892 and 0.890 for CWF, 

0.879 and 0.860 for RCWT and 0.724 and 

0.704 for SCWT. Notably, the average R-

values of the training and test sets of SCWT 

are markedly lower than the average R-

values of the other two outputs.  

The slight differences between 

average R-values of training and unseen test 

sets show that ANNs can predict key 

parameters of cooling load with high 

generalization. With large size and high 

variation of data tested, ANNs are quite 

robust for cooling load prediction. 
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Table 3. Accuracy of average MSE values. 

  Average MSE 

  Training Set Test Set 

  Output No. Output No. 

ANNs 

Predictive 

Models 

Final 

Architecture 

1 2 3 1 2 3 

CWF RCWT SCWT CWF RCWT SCWT 

Single 

Output 

(CWF) 

[4-25-20-1] 1720.247 - - 1993.042 - - 

Single 

Output 

(RCWT) 

[4-25-15-1] - 0.281 - - 0.345 - 

Single 

Output 

(SCWT) 

[4-25-20-1] - - 0.319 - - 0.365 

Multiple 

Outputs 
[4-30-15-3] 1787.338 0.348 0.361 2004.598 0.393 0.384 

 

Table 4. Accuracy of average RMSE values. 

  Average RMSE 

  Training Set Test Set 

  Output No. Output No. 

ANNs 

Predictive 

Models 

Final 

Architecture 

1 2 3 1 2 3 

CWF RCWT SCWT CWF RCWT SCWT 

Single 

Output 

(CWF) 

[4-25-20-1] 41.476 - - 44.643 - - 

Single 

Output 

(RCWT) 

[4-25-15-1] - 0.530 - - 0.587 - 

Single 

Output 

(SCWT) 

[4-25-20-1] - - 0.565 - - 0.604 

Multiple 

Outputs 
[4-30-15-3] 42.277 0.590 0.601 44.773 0.627 0.620 
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Table 5. Accuracy of average MAE values. 

  Average MAE 

  Training Set Test Set 

  Output No. Output No. 

ANNs 

Predictive 

Models 

Final 

Architecture 

1 2 3 1 2 3 

CWF RCWT SCWT CWF RCWT SCWT 

Single 

Output 

(CWF) 

[4-25-20-1] 26.494 - - 28.653 - - 

Single 

Output 

(RCWT) 

[4-25-15-1] - 0.361 - - 0.391 - 

Single 

Output 

(SCWT) 

[4-25-20-1] - - 0.374 - - 0.396 

Multiple 

Outputs 
[4-30-15-3] 27.634 0.405 0.408 29.346 0.425 0.416 

 

The accuracy results of the average 

MSE, RMSE and MAE values of ANNs 

predictive models are depicted in Tables 3, 

4 and 5, respectively.  The average MSE 

and RMSE values of all ANNs predictive 

models demonstrate a similar tendency to 

the average MAE values of all ANNs 

predictive models. Results of training sets 

for all outputs in every model are slightly 

better than those of unseen test sets for all 

outputs. 

 

Table 6. Accuracy of average MBE values. 

  Average MBE 

  Training Set Test Set 

  Output No. Output No. 

ANNs 

Predictive 

Models 

Final 

Architecture 

1 2 3 1 2 3 

CWF RCWT SCWT CWF RCWT SCWT 

Single 

Output 

(CWF) 

[4-25-20-1] 0.398 -    -    -1.271        -  - 

Single 

Output 

(RCWT) 

[4-25-15-1] -  -0.00027 -         -    0.0036  - 

Single 

Output 

(SCWT) 

[4-25-20-1] - -   -0.0021         - -  0.0049 

Multiple 

Outputs 
[4-30-15-3] 0.470 -0.0025  0.0026     -1.690   -0.0065  0.0060 
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Table 6 demonstrates the compara-

tive accuracy results by using average MBE 

of ANNs predictive models. The average 

MBE results indicate a good performance of 

ANNs’ predictions as they are entirely close 

to zero. All results of average MBE are 

between -0.0025 and 1.69. The results of 

average MBE for training sets of both types 

of outputs are slightly better than those of 

the unseen test sets for all corresponding 

outputs. Results of average MBE of CWF 

are slightly higher than the results of 

average MBE of RCWT and SCWT due to 

the differences in magnitude between CWF 

and RCWT and SCWT. 

In summary, accuracy evaluations 

of all measures are consistent as the average 

results of training set and are superior to 

those of test set. This illustrates the distinct 

strengths of ANNs with high robustness and 

good generalization capabilities.  

Comparing ANNs predictive 

models for single and multiple outputs, 

better results of all measures, R, MSE, 

RMSE, MAE and MBE, imply better 

performance in prediction. The less error in 

ANNs’ prediction could be expected from 

single output predictive model when 

compared with multiple outputs model.  

All three separated single output 

models slightly outperform the multiple 

outputs model due to the less complicated 

calculation required during input-output 

mappings of ANNs. However, the 

development time of the former was much 

large than that of the latter. The times it 

took to develop each single output model 

and the combined outputs model were about 

the same but three different outputs models 

were needed for the former and only one 

model was enough for the latter. 

Consequently, the selections of ANNs’ best 

architectures including training, validation, 

and testing processes need to be 

implemented separately three times. The 

models accuracy is not much different, but 

the development time becomes more 

critical. Therefore, ANNs’ multiple outputs 

prediction is more appropriate to be applied 

for practical work in this study 

 

5. Conclusions 
 

This work demonstrated that ANNs 

can be effectively applied to predict cooling 

load demand. As a result from a pilot 

experiment, ANNs have outperformed MLR 

in prediction. In comparison of ANNs and 

MLR, ANNs have superior performance in 

prediction as they could handle huge 

different sizes of data sets with high 

accuracy, about 0.9 for R-values. MLR 

showed fair performance in prediction for 

small data sets and quite poor predictive 

performance for large data sets, about 0.8 

and 0.65 for R-values, respectively.   

ANNs show excellent performance 

in prediction of flow and temperatures of 

chilled water of air conditioning system by 

using ambient temperatures and humidity 

rates of indoor and outdoor conditions with 

both large and small sizes of data sets. Good 

generalization of ANNs for unseen test set 

can be obtained. ANNs also show 

robustness in prediction with large and high 

variation data sets for all measures. Clearly, 

ANNs can be applied to capture implicit 

relationships between input and output 

factors for cooling load demand 

calculations. The results from ANNs single 

output prediction are more accurate than 

those from ANNs multiple outputs 

prediction with a slight difference. 

Development time of ANNs multiple 

outputs prediction is much less as opposed 

to the combined development time of all 

three separated single output models. As a 

result, ANNs’ multiple outputs prediction 

can be further applied to real-time energy 

planning. They can effectively be utilized 

for optimization and management of energy 

use in HVAC systems. In addition, thermal 

energy storage can suitably be properly 

managed, including its capacity and size, by 

using this intelligent technique. 
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