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Abstract

Two types of noises can exist in an electrical circuit: external noise and internal noise. The
effects of both types of noises in electrical circuits are ignored when using a deterministic differential
equation for their modeling. The deterministic model of the circuit is replaced by a stochastic model by
adding a noise term in both the potential source (external noise) and the resistance (internal noise).
Stochastic models are more appropriate to describe for instance the outcome of repeated experiments.
The noise added in the potential source is assumed to be a white noise and that added in the resistance
is assumgd to be a correlated process. A first-order ordinary differential equation and its stochastic
analogues is used for the DC response analysis of an RC circuit. The first-order differential equation,
which describes the concentration of charge in an the capacitor, is solved explicitly in both the
deterministic and stochastic case. This method gives an explicit relation expressing the sensitivity of
the performance with respect to input parameters and their tolerances so it can be used for design
optimization. Numerical simulations in MATLAB are obtained using the Euler-Maruyama method.

Keywords: RC electrical circuit, ordinary differential equation, stochastic differential equation,
Brownian motion process, Euler-Maruyama method.

1. Introduction the input and internal parameters in the
Two types of noises can exist in an deterministic model by random processes.
electrical circuit: external noise and internal Random differential equations of this type can
noise. External noise denotes fluctuations in an be interpreted as ,stochastic differential
otherwise deterministic system to which external equations, following Ito’s basic work in the
forces are applied. An example that has wide early 1940s [4][5]. Solutions of such equations
applications in engineering consists of adding a represent Markov diffusion processes, the
noise term to the right side of a deterministic prototype of which is the Brownian motion
equation. Langevin formulated the first such process alternatively called the Wiener process
model in 1908 to describe the velocity of a [6]-[9].
particle moving in a random force field. A well The literature mainly distinguishes between
known example of internal noise in an electrical sampling and non-sampling methods for the
circuit is thermal noise, caused by the purpose of stochastic analysis. Sampling is done
discreteness of electric charges {1][2]. Many with the Monte Carlo method [10] [I1].
other types of internal noise in electrical circuits Stochastic information on circuits without
are: shot noise, low frequency noise, burst noise sampling is obtained with Hermite-Polynomial
etc. {3]. Obviously, at a finite temperature, there chaos [12]. Our method falls in the later
is no dissipative electrical circuit without category.
thermal noise. In this paper, the ordinary differential
The effects of both types of noises in equation and its stochastic analogous, which
electrical circuits are ignored when using a describes the concentration of charge in the
deterministic differential equation for their capacitor of a RC circuit, is solved explicitly for
modeling. Random effects due to both external both the deterministic and stochastic cases. This
and internal noise can be included by replacing method is based on results from the theory of

stochastic differential equations (SDE) [5]. The

40



Thammasat Int. J. Sc. Tech., Vol. 13, No. 2, April-June 2008

method is general in the following sense. Any
electrical circuit which consists of resistor,
inductor and capacitor can be modeled by an
ordinary differential equation in which the
parameters of the differential operators are
functions of circuit elements. The deterministic
ordinary differential equation can be converted
into a stochastic differential equation by adding
noise to the input potential source and to the
circuit elements. The noise added in the
potential source is assumed to be a white noise
and that added in the parameters is assumed to
be a correlated process because these parameters
change very slowly with time and hence must be
modeled as a correlated process (Appendix A).
The resulting SDE is solved by using a non-
Monte Carlo method. MATLAB simulations are
used to verify analytical results.

In the next section, the stochastic calculus
theory is reviewed. Sections 3 and 4 describe the
modeling of an RC circuit using an ordinary
differential equation (ODE) and an SDE,
respectively, and their analytical solution is also
presented. In Section 5, the Euler-Maruyama
scheme is reviewed for the numerical solution of
SDE. Finally, the analytical results obtained in
Sections 3 & 4 are verified with MATLAB
simulations in Section 6 followed by the
conclusions in Section 7.

2. Stochastic Differential Equation and
Stochastic Calculus
Consider a SDE;
dX(t) = £(X(@),t)dt + G(X(2),1)dB(t) (1)
where fis an 1 —vector valued function, G is
an nxm matrix valued function, B(z) is an
m — dimensional Brownian motion process or
Wiener process, and the solution X(#) is an
n—vector process. By a solution X(f) of the
stochastic differential equation (1), is meant a
process X(¢), for all £, in some interval [tO,T ]

must satisfy the integral equation:

X(1) = X(1,) + jf(s, X(s))ds

To

. )
+ [Gls, X(5)dB(s)

Ly
where X(7,) is a specified initial value, the first

integral in (2) is an ordinary integral, and the
second integral in (2) is the stochastic integral.
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Stochastic  integrals and  differential
equations were introduced by Ito [4] and are
being widely used and, hence, are called the Ito
integral. Stratonovich [13] proposed another
representation for stochastic integrals and
differential equations under rather restrictive
conditions, which has a number of advantages in
computational techniques. Using this
representation, we can work with stochastic
integrals in the same way as with the ordinary
integrals of smooth functions, such as
integration by parts and changing of variables.
The Ito integral, however, has a mathematical
expectation which can be written more
concisely. Simple formulas for the transition
from one integral to the other allow at all times
for the selection of the representation which is
most convenient for any particular purpose. In
this section, we only explicitly summarize the
difference and the conversion between Ito and
Stratonovich  integrals. More  rigorously
mathematical treatments of this issue are given
in {14]-[16].

A. Stochastic Integrals
Let t, <t, <---<t, =T be a partition of
the interval [tO,T] and 0, = max(t[ —tH).

Definition 1: The Ito integral

T
IG(S, X(5))dB(s) is defined as the limit in the
fo

quadratic mean (gqm)

Y, (1) = [G(s, X(s))dB(s)

def qm-lim n

=8, >0> G(X, ,t, )B, -B, ) O
i=1

If the integrand G is jointly measurable and

r

JE(G(s,X(5)) [F)ds <0 4)

[

then the limit in (3) exists [14][15]. If G
satisfies, instead of (4), the weaker condition

T

j;G(s,X(s)) P ds <oo, almostsurely (5)
fy

the stochastic integral in (3) is defined as the
limit in probability.

Definition 2: The Stratonovich integral is
defined by :
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Ys(0) = [G(s, X(5))dB(s)

+X
= 6 - OZG[‘z—tL,ti—l ](Bti - Btpl )
i=1
(6)

In addition to the conditions on the
existence of the Ito integral, it is required for the
existence of the Stratonovich integral in (6) that
the G(X(¢),¢) function be continuous in ¢ and
have continuous partial derivatives with respect
to X, [13]-[16].

Under the existence of (6), Stratonovich
[13] provided the connection between these two
stochastic integrals by :

Y;(0) =Y, (1)

+IZZ

t{/lkl

(7)

o (X ,s) G, (X,,s)ds

where the n—vector (G, ), is the jth column

G, =(0G, jox,). To

Xk
clearly illustrate these integration concepts, the
simple example in [13] using a one-dimensional

of mxm matrix

T
stochastic integral J: w(s)dw,, is considered.
0

Example 1: By using (3), we have [9]:
T
i) = [wis)dw, = (wi —w)/2-(T~1,)/2

lo
(8)
By using (6), we have [9]:

T
¥, (0 = [ws)dw, =(wi —w])/2
Iy
which can be also obtained by a direct
integration by parts just as for ordinary integrals.
Since stochastic integrals can be computed
in two distinct ways, there are two different
solutions, Ito and Stratonovich solutions to (2),
and hence to (1). However these two different
solutions can be converted into each other by
using simple formulas [13] of :

X, (1) =X, () + [[(X, (7)) -
G, (X,(0),0),G,(X,(0),nlr
+(8) [ G(X, (), 7)dB,

®

(10)

or

1 m n
5 Z j=1 Zk:

1
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X (T)=X,(t,) + r [f(X.(0),0)+ %Z; >
(G, (X,(1).0)),G(X,(2),7) |dr

r an
+N [ G(X,(x),7)dB,
where the last integrals of right side of (10) and
(11) are Stratonovich and Ito integrals,
respectively. From (10) and (11) the
Staratonovich differential equation:
1 " n
dX, = f__zz(ka)ijj dt + GdB,
2953
12)

corresponds to the Ito differential equation
dX, =fdt + GdB, (13)

where 27:1 ZZ=1(Gn) ;G is the so-called

correction term.

B. Interpretation

The paradox of obtaining two different
stochastic processes as solutions to the same
stochastic differential equation arises from the
pathological nature of white noise. Since all
sample functions of a Wiener process are
nowhere differentiable and of unbounded
variation, and hence, are not smooth, we can not
interpret the Ito integral as an ordinary
Riemann-Stieltjes  integral. Therefore, Ito
calculus does not conform to the rules of
ordinary calculus, which can be easily seen in
example 1. The correction term is due to the fact

that dB, is always independent of B, , and dB;

is approximately dt .

In contrast to the above Ito description, in
(1) the white noise driving term is considered as
an approximation of a very wide band but
smooth colored process. The differential
equation can be solved exactly for each sample
function of the smooth process using classical
calculus. As driving noise approaches white, the
solved process does converge to the solution in
the Stratonovich sense. Thus, the rule of
ordinary calculus can be applied to a
Stratonovich equation. However, if the noise in
SDE is not state multiplicative, i.e., G in (1) is
independent of states, and only a nonrandom
function of time ¢, the correction term
disappears, which can be seen from (10)-(13).
That is, Ito interpretation and Stratonovich
interpretation coincides.
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The process defined by the Ito integral in (3)
is a Martingale, ie., the conditional

expectation E[Y, | Y,,7 < s <t] =Y, while the
Stratonovich integral Y, (¢) is not. This property

provides the expectation computation advantage
for an lto equation, which is very convenient for
theoretic moment stability analysis. Moreover,
because of more restrictive conditions on the
existence of Stratonovich integrals, an Ito
equation is suited for more general applications
than a Stratonovich equation.

3. Deterministic Modeling of an RC
Circuit
Let O(¢) be the charge on the capacitor and
V (t) be the potential source applied to the input
of a RC circuit. Using Kirchoff’s second law,

V)= ](t)R+Qé) (14)
and since 1(f)=dQ()/dt,

equation holds:

the following

RO'(H)+C'Q() =V (1) (15)
or
Q')+ (RO)'QW) =RV (1) (16)

If ¥V (¢) is a piecewise continuous function,

the solution of the first order linear differential
equation (16) is:

Q1) =Q(0) eXP[— ——)

1 ]exp( ))V(s)ds

R
where Q(0) is the initial charge stored in

a7

+
0

the capacitor.

4. Stochastic Modeling of RC Circuit
The resistance and potential source may not
be deterministic but of the form :

R*
and
V'(t) =V (t)+ noise"

= R+ 'noise''= R + aw(t)

(18)
=V (1)+ BN, (1) (19)

where w(t) is a zero mean, exponentially

correlated stationary process, and N,(¢) is a

white noise process of mean zero and variance
one,and «, f are nonnegative constants,
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Fig. 1 Brownian motion process B, (f)
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Fig. 2 Brownian motion process B, (f)

known as the intensity of noise. Their
magnitudes determine the deviation of the
stochastic case from the deterministic one. The
correlated process w(r), sometimes called

colored noise, can be generated by a linear
stochastic differential equation forced by white
noise, which is given as:

aw(t) = —pw(t)dt + opdB, (1) (20)
where B,(t) is a Brownian motion process with
p,0 >0 are fixed

~ N(0,0°p/2)

independent of B,(f). As we explained in

section 2, (20) is the same in the Ito and
Stratonovich sense (since the coefficient of

dB,(t) is nonrandom), and can be manipulated

unit variance parameter,

constants and 1S

by formal rules as if B,(f) were continuously

differentiable. Therefore equation (20) can be
rewritten as:
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dw(t)
dt

where N, (¢)is a zero mean, white Gaussian
noise with E[N,(#)N,(7)]=56(t—7). The
function of w(t)

For large wvalues of

@h

=—pw(1) + opN, (1)

correlation
isR, (r)=0" ge‘”‘” .

p,w(t) is a wide-band process that
approximates white noise. Substituting (18) and
(19) in (15), we get :

(R+aw(t))0'(1) + C'Q(t) =V (t) + BN, (t)

(22)

or
o . 00 V@)

dt C(R+ow(t)) R+aw(t) 23)
L _NAD

R+ ow(¢)
or

___ 90
400 = C(R + am(1)) o
LON.X0)

R+ aw(t) R+ ow(t)
where dB,(t)=N,(t)dtand B,(t) is the
Brownian motion process, independent of

B, (¢#). Writing equations (20) and (24) in
matrix-vector form, we obtain :

dX(t) = A()X(t)dt + Z(t)dt + K(£)dB(t)

(25)
where
w(t)
X 26
0= (Q( )j e
- p(1) 0
A(t) = I (27)
C (R + aw(t))
Z(t) = V(t) (28)
R+ aw(t)
K(?) = (29)
R+ aw(t)
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B (1)
B(r) = (30)
B, (1)
The analytical solution of (25) is a random
process.

X(1) = exp(AL{X(0)

! 31
+ jexp(—As)[Z(s)ds +K(s)dB(s)]} G

0
If E[X(0)X'(0)]<w, the expectation
E[X(#)]=M(¢) is the solution of the ordinary
differential equation:
d—l\;t(ﬁ = AM(¢) + E[Z(1)] (32)
Taking the expectation of (31), we get:
E[X(1)] = E[X(0)]exp(A?)

(33)

+ IJ.exp(A(t —SWE[Z(s)]ds

for every ¢ > 0. If the random variable X(0) is

constant then the expectation of the stochastic
solution is equal to the deterministic solution of
the circuit. The function M(¢) = E[X(?)] is
independent of the fluctuational part of the SDE.

5. Numerical Solutions of SDEs

The Euler-Maruyama numerical method is
used for the simulation of X(¢) [5]. The Euler-
Maruyama scheme is based on numerical
methods for ordinary differential equations.

Let the stochastic process X,,t, <¢t<T
be the solution of the scalar SDE with M
Brownian motion processes,

M
dX, :f(X,,t)dt-ngf(X“t)dBt/

J=1

(34)

with an initial value X, = X . Let us consider

an equidistant discretization of the time interval

t, =t,+nh,where h=(T -t,)/n=t,, —t,
ey

= Idt and the corresponding discretization of

1,

the

"

Brownian motion process

il
AB] =B/ —-B/ = [dB!. To be able to
7

apply any stochastic numerical scheme, first one
has to generate, for all j, the random

increments of the Brownian motion process B’
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as independent Gaussian random variables with
mean E[AB/]=0 and E[(AB/)’]=h.

The Euler-Maruyama scheme for this SDE has
the form:

M
XVI+| - Xﬂ +f(Xn’ln)h+zg/ (X”,t”)ABh/

J=1

(33)

For measuring the accuracy of a numerical
solution to an SDE, we use the strong order of
convergence. A stochastic numerical scheme
converges with strong order y, if there exist real
constants K >0 and & > 0 [5], so that:
E[| X; - X, |]<Kh" he(0,5) (36)
where the numerical solution is denoted by X ﬁ .
The Euler-Maruyama scheme converges with

strong ordgr ¥ = %

2.5 e
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Fig. 3 The deterministic solution and sample
path of the stochastic solution with

stochastic resistance and stochastic
potential  source (noise intensity
a=1p=1)
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Fig. 4 The deterministic solution and sample
path of the stochastic solution with
stochastic resistance (noise intensity

a=1).
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Fig. 5 The deterministic solution and sample
path of the stochastic solution with
stochastic  potential source  (noise
intensity #=1).

6. Simulation Results

The Brownian motion processes that we
use for the simulation of the stochastic solution
are shown in Fig. | and Fig. 2. Assume
R=10Q, C=0.1F, V(@)=V =20V, and
X(0) = 0 .The results of the stochastic solution
of the circuit with both stochastic resistance and
stochastic potential source (o =1,8=1) is
shown in Fig. 3. A random behavior which
depends on the intensity of noise is observed in
Fig. 3. If the resistance is modeled as a
superposition of mean value plus a zero mean
correlated process, then an impact on the DC
response is observed in Fig. 4. A random
behavior is observed in Fig. 5, if the potential
source is modeled as a superposition of mean
value plus a noise, where the noise is modeled
as a white Gaussian noise.

7. Conclusion

We have seen that deterministic models are
always accompanied by stochastic ones, which
arise whenever we plug in random variables.
These stochastic models are more appropriate to
describe, for instance, the outcome of repeated
experiments. This paper shows an application of
the Ito stochastic calculus to the problem of
modeling a series RC electrical circuit, including
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both analytical and numerical solutions. The
stochastic model is obtained from the
deterministic model by adding noise in both the
potential source and the resistance. The noise
added in the potential source is assumed to be a
white noise and that added in the resistance is
assumed to be a correlated process. The
resulting SDE is solved using a non-Monte
Carlo method. A monte Carlo method does not
give explicit relation an expressing the
sensitivity of the performance with respect to
input parameters and their tolerances. So, our
method can be used for design optimization.

Appendix
A. Generalization of the Method

Consider a linear circuit that is built out of
resistors, capacitors and inductors. v(¢) is the
input process and x(¢) the output process. x(7)
satisfies the differential equation :

n =l
d xft) ‘a, d ’.Ixft) fota, dx(t)
dt dt dt 37)
+a,x(t) = v(1)
The parameters a,,d,, -+, d, are functions
of the circuit elements. These parameters

become random variables if they are influenced
by random parameters such as surrounding
temperature. These parameters, with the random

variations can be written as :
a =a, +a,wilt) (38)
where w,(t)s are zero mean exponentially

correlated processes and «,s are nonnegative

constants known as the intensity of noise. Their
magnitude determines the deviation of the

stochastic case from the deterministic one. The
correlated process w,(f), sometimes called

colored noise, can be generated by a linear SDE
forced by white noise [9].
dw(t)y=—-pw ()dt +o,pdB (1) 1<i<n
39
where B, (#) is a Brownian motion process

with unit variance parameter, p,,o, =0 are
fixed constants and w,(0) ~ N(O,O',Zp,. /2) is

independent of B (). As we explained in

section 2, (39) is the same in the lto and
Stratonovich sense (since the coefficient of
dB.(t) is nonrandom). and can be manipulated
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by formal rules as if B,(f) were continuously

differentiable. Therefore equation (39) can be
rewritten as:

aw (1) _
Cdr

where N, () is a zero mean, white Gaussian
noise with E[N,(t)N (r)]=06(t—7). The
of w; (1)

—-pw.(t)+o,p,N (1) (40)

function

isR, (7)= 0" %e

correlation

=PIt

. For large values of

is a wide-band process that

;s W(t)

approximates white noise. Let X(¢) be the state

vector, which is defined as :

X() =[w (1) wy(0)w, (0 % (0x, (O

(41)

If the potential source is modeled as a

superposition of mean value plus a white noise,

then this state vector satisfies the following

SDEs :

dw, (t) = —p,w,(t)dt + o, p,dB, (1)

dw’ll (t) = _pn w’ll (t)dt + O-II pH dBll (t)
dx, (1) = x,(H)dt
dx, (1) = x,(t)dt

dx, (1) =x, (t)dt

dx, (1) = ~(a}x, (1) + dix, , (6)+ -+ ax, () e
+v(t)dt + PdB(t)
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