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Abstract.

In this paper, a formulation and solution technique using Simulated Annealing for optimizing the
moment capacity of steel fiber reinforced concrete beams, with random orientated steel fibers, is
presented along with identification of design variables, objective function and constraints. Steel fibers
form an expensive constituent of steel fiber concrete and therefore it is important to determine ways
and means of using these fibers in a efficient way with care consistent with economy for achieving the
desired benefits. The most important factors which influence the ultimate load carrying capacity of
Fiber Reinforced Concrete (FRC) are the volume percentage of the fibers, their aspect ratios and bond
characteristics. Hence an attempt has been made to analyze the effective contribution of fibers to
bending of FRC beams. Equations are derived to predict the ultimate strength in flexure of SFRC
beams with uniformly dispersed and randomly oriented steel fibers. Predicted strengths using the
derived expressions have been compared with the experimental data. A reasonable agreement (within
the range of + 20 percent!) was evident with different types of steel fibers, aspect ratio, and material
characteristics. Computer coding has been developed based on the formmulations and the influence of
varipus parameters on the ultimate flexural strength. A computer algorithm that conducts a random
search in the space of four variables- beam width, beam depth, fiber content and aspect ratio to yield
an optimum solution for a given objective function (ultimate moment (M,)), is presented. The outlined
methods provide a simple and effective tool to assess the optimum flexural strength of steel fiber
reinforced concrete beams. Using the results obtained, the influence of various parameters on the
ultimate strength are discussed. Particular attentions are given to the construction practice as well as
the reduction of searching space. It has been shown that within a reasonable and finite number of
searches the developed algorithm is able to yield optimum solutions for the given objective function.
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1. Introduction :

In the area of Structural Engineering, the
method of optimization has been steadily
applied to various structural problems.
Distinguishable linear and non linear
optimization techniques have been successfully
developed for finding an optimum set of the
material, topology, geometry or cross-sectional
dimensions of different types of structures
subject to particular loading systems. In. the field
of linear programming and non linear
programming techniques, refined algorithms
have branched out in order to take into account
the discrete nature of structures, and fabricated
standardized structural components Although
great success has been achieved during the past
decades in structural optimization, these
techniques generally have difficulties in
avoiding local minima and results are sometimes
dependent upon the choice of the initial values
in the design space. With recent advances of
computer technology, combinatorial
optimization techniques have emerged. Genetic
algorithm (GA) and simulated annealing (SA)
are quite popular among them and they can
efficiently solve optimization problems with
. higher probability.

SA can be characterized by finding a global
minimum of an objective function by combining
gradient decent with a random process. It is also
capable of escaping local minima in addition to
added probability in converging to a local
minimum. Design variables constituting a set of
configurations can be any type — real or discrete
and consequently the searching nature of SA
does not require continuity or derivative
functions.

2. Research Significance

Several investigations have shown that the
presence of steel fibers in beams reinforced with
high strength deformed bars increases the
ultimate strength [11].To achieve efficiency in
performance and economy, optimization
techniques can be nsed. The main objective of
this study is to accommodate the usefulness of
SA in practically optimizing reinforced steel
fibrous concrete beams with due considerations
given to construction practice. Realizations of
much of the code provisions in regard to
strength requirements as well as structural
constraints have been considered.
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3. Literature Review

In spite of performing  various .
optimizational techniques for reinforced
concrete structures by various researchers, the
algorithms developed using SA for structural
optimization of fiber reinforced concrete

structural  elements are much  limited.
Optimization techniques for the element level of
reinforced concrete structures have been

presented by different researchers [2]. These
methods were based on sequential linear
programming, continuum- type optimality
criteria, and nonlinear programming such as
Powell’s algorithm. Recently, the discrete
optimization of structures has been performed
using Genetic Algorithms [14]. Very little
literature is available in the field of fiber
reinforced concrete structural  eptimization
because design methods for FRC are yet to be
fully developed, though some guidelines are
available for its applications to airfield

.pavements and some hydraulic structures [5].

This is the case with standard test procedures to
be adopted for testing and evaluation of the
performance of FRC elements. Ezeldin and Hsu
[8] optimized reinforced fibrous concrete beams
using a direct search technique. The algorithm
conducts a systematic search in the space of four
variables: beam width, beam depth, fiber
content, and aspect ratio of fibers, to yield an
optimum sclution for a given objective function.
It is therefore the main objective of this research
to develop an algorithm using SA that performs
the optimum design of reinforced fibrous
concrete beams., Unlike other optimal design
problems here, the objective function is
considered as the maximization of ultimate
moment capacity rather than the cost. The
algorithm is developed for the optimum design
using “C” language and satisfies the

~ specifications provided in the ACI code [1]. The

flow chart for the simple SA is given in Figl.

4. Flexural Analysis of Fiber-Reinforced
Concrete Beams )
The analysis is based on the following
assumptions:
1. Plane sections remain in-plane after
bending.
2. The compressive force equals the tensile
force.
3. The internal moment equals the applied
bending moment.
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It has been customary to neglect the tensile
resistance of concrete in calculating the ultimate
flexural capacity of concrete beams. Kukreja. et
al. {11] proved that fiber reinforced concrete
greatly increases the tensile capacity of concrete.
So, the coniribution of fibers must be taken into
account in the flexural analysis of beams. The
analysis presented in this paper is based on the
conventional compatibility and equilibrium
conditions used for normal reinforced concrete,
except that the effects of steel strain hardening
and contribution of the steel fibers in the tension
zone are recognized (APPENDIX A). A
Comparison of analytical results of the authors
with other researchers is shown in Table 1. The
analysis is based on the compression stress
blocks in ACI Code. The actual and assumed
stress and strain distributions at failure are
shown in Fig. 2. The maximum usable strain at
the extreme concrete compression fiber is taken
as 0.0035 mmy/mm. The tensile contribution of
the steel fibers is represented by a tensile stress
block equal to the force required to develop the
interfacial bond stress (t) between fiber and
matrix that are effective in that portion of the
beam cross section (Fig. 2). In evaluating the
tensile stress in the fiber concrete in the tension,
zone correction factors are introduced to take
account of the three-dimensional random
orientation of the fibers, the length of the fiber,
and .the bond efficiency of the fiber. In this
analysis orientation factor [13] ¢, =0.41; and

bond efficiency factor[9] o, = 1.0; are used. The
length correction factor¢, is calculated using
the equation proposed by Cox[7]

Details of evaluatingo the ultimate

strength of the fiber concrete in tension at failure
is given in APPENDIX A, Equation A3.

cu?

5. Simulated Annealing
5.1 Background

The simulated annealing algorithm was
derived from statistical mechanics.
Kirkpatric et.al [10] proposed an algorithm
which is based on the analogy between the
annealing of solids and the problem of solving
combinatorial optimization problems. Annealing
is the physical process of heating up a solid and
then cooling it down slowly until it crystallizes.
The atoms in the material have high energies at
high temperature and have more freedom to
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arrange themselves. As the temperature is
reduced the atomic energy decreases. A crystal
with regular structure is obtained at the state
where the system has minimum energy. If the
cooling is carried out very quickly, which is
known as rapid quenching, wide spread
irregularities and defects are seen in the crystal
structure. The system does not reach the
minimum energy state and ends in a poly
crystalline state, which has higher energy. At a
given temperature the probability distribution of
systern energy is determined by the Boltzmann
probability:
P(E)ae[—ﬁ‘f(ki")] 1)
where E is system energy, k is Boltzmann’s
constant, T is temperature and P(E) is the
probability that the system is in a state of energy
E.

At high temperatures, E converges to 1 for
all energy states according to Eqn{1).

It can also be seen that there exists a smail
probability that the systern might have high
energy even at low temperatures. Therefore, the
statistical distribution of energies allows the
system to escape from local minimum.

5.2 Basic Elements

In the analogy between a combinatorial
optimization problem and the annealing process,
the states of solid represent feasible solutions of
the optimization problem, the energies of the
states' correspond to the values of the objective
function computed at those solutions, the
minimum energy state corresponds to the
optimal solution to the problem and rapid
quenching can be viewed as local optimization.

The algorithm consists of a sequence of
iterations. Each iteration consists of randomly
changing the current solution to create a new
solution in the neighborhood of the current
solution. The neighborhood is defined by the
choice of the generation mechanism. Once a
new solution is created, the corresponding
change in the cost function is computed to
decide whether the newly produced solution can
be accepted as the current solution. If the change
in the cost function is negative the newly
produced solution is taken as negative,
Otherwise, it is accepted according to
Metropoli’s criterion, based on Boltzmann’s
probability.
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According to Metropoli’s criterion, if the
difference between the cost function values of
the current and the newly produced solutions is
equal to or larger than zero, a random number
(5Yin [0,1] is generated from a uniform

distribution and if:

(8) <=M @
then the newly produced solution is accepted as
the current solution. If not, the current solution
is unchanged in Equation (2), AE is the
difference between the cost function values of
the two solutions.

The flow chart for the simulated annealing
algorithm is presented in Fig. 1. In order to
implement the algorithm for a problem, there are
four principle choices that must be made. These
are:

¢ Representation of solutions

Representation of cost function

¢ Defining of the generation mechanism

for the neighbors

* Designing a cooling schedule

Solution representation and cost fusnction
definitions are as for GAs. Various generation
mechanisms could be developed that again
could be borrowed from GAs, for example
mutation and inversion.

In designing the cooling schedule for a
simulated annealing algorithm, four parameters
must be specified. These are an initial
temperature, a temperature update rule, the
number of iterations to be performed at each
temperature step, and a stopping criterion for the
search. There are several cooling schedules
presented in the literature., These employ
different temperature updating schemes. Of
these, stepwise, continuous, and non monotonic
temperature reduction schemes include very
simple cooling strategies. One example is the
geometric cooling rule. This rule updates the
temperature by the following formula

Ta=cT, i=0l.. (3

where ‘c’ is a temperature factor which is a
constant  smaller than 1 but close
to 1.

25

6. Formulation of Objective Function
6.1  Transformation of  Constrained
Optimization to Unconstrained Optimization
SA is ideally suited for unconstrained
minimization optimization problems. As the
present problem is a constrained maximization
problem, we need to make two transformations.
The first transformation transforms the original
constrained problem into an unconstrained
problem, using the ‘concept of penalty function.
A formulation based on the application of
penalty, whenever there is a violation of
specified constraints, is used in the present study
for transformation. Here, if the design variable
set violates the constraint, then a lower value of
1.0 will be assigned, and if not, a higher value of
10.0 is assigned as violation parameter. The
violation coefficient ‘i is computed as follows:

g = 2 4, “
i=1
b =axg,(x) )
if gi(x)<0 a=10; andif,
g(x)20 a=10 ®
Where
m number of constraints
a = penalty parameter and
g;(x) = constraint function.
The modified objective function is given
as:
Z,09 = Z(x)+p ™
Where ‘Z(x)’ is the objective function
subject to:

X 0 <X, <X, =12.,n (8)

The objective function for the present study
is the maximization of moment capacity of an
SFRC beam. The equation for this is derived in
APPENDIX A [Egn. [ A9]].

The second transformation is to transform
the minimization problem into a maximization
problem. The maximization of a function Z(x) is
equivalent to the minimization of the negative of
the same function. For example, the objective
function Minimize [Z{x}], is equivalent to
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Maximize [Z' (x)] = -Z_(x) )]
7. Formulation of Constraints

7.1 Strength of Fiber Reinforced Concrete in
Uni-Axial Tension

According to Cooper [6], the fracture of a
composite under tension can be classified into
two categories; single fractures and multiple
fractures. A composite fails by a single fracture
if both the componenis are fractured at the same
point along their axis, and in this case the
composite will immediately break into two
pieces. Multiple fracture occurs only if only one
of the components is fractured while the other is
intact. In this case, as the applied stress is
increased, more and more cracks will appear in
the damaged component, until finally the other
componenis is also fractured. In this case it is
physically obvious that during the interval
between the appearance of the first crack in the
weaker component and the final fracture, the
applied stress will produce a larger strain than
that produced in the perfect composite. In other
words, during this interval the composite will
behave in a partially plastic fashion. Thus, the
behavior of the composite will be similar to that
of a ductile metal, and the stress at which the
first crack appears in the weaker component can
be considered to be the yield stress of the
composite. '

Following Cooper [6], we can derive
simple criteria for the occurrence of single and
multiple fractures in  two-component
composites. Let us consider a two-component
" cylindrical composite under a tension along its
axis. We shall assume that both the components
are parallel to each other and to the axis of the
cylindrical composite. The two components will
be identified by the subscripts ‘m’ and . In
the case of fiber composite, for example, one of
the components will be the fibers and the other
will be the matrix.

Let C

o and E £ denote the volume fraction

(Co=V, IV ; C,=V,/V) and the Young’s .

modulus respectively, of the fibers and matrix.
Suppose that a longitudinal stress ‘G’
produces uniform strain ‘€’ in the composite.
So long as &£ is small, so that both the
components and, hence the composite are in
stage I or the elastic zone, up to a certain value
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of the stress, the strain will be proportional to
the stress, provided the cross sectional area
remains constant. We can write the following
equation with the help of the law of mixtures:

o=C, Ef E+C, E & {10)
Let €, denote the strain at which the
matrix fails. Assuming elastic behavior |

throughout the region 0< € < g,, the value

of ¢ at € = g, is given by:

c.=C, E &+ C,E ¢, (11)

o.=C, E & +C,o0, (12)

c.=C;0.+C, 0, (13)
Where ¢,= E &, and we have also

assumed that ‘g, ’, the failure strain of fiber

component, is larger than ‘g,’ . The siress in
fibers at the strain level, corresponding to the
matrix cracking strain, is given as ‘G .. where
O'f.=Ef g, .

o, as given by Eqn (13), is the stress in
the composite at which the matrix will fail.

Thus, the conditions for single and multiple
fractures can be written as:

Single fracture:
C, o, <0, 14
Multiple fracture:
C;, o4, > ©O, (15)
Where o, = E &g isthe stress in the

fiber at its failure strain ‘g, ’ or in other words, it
is the ultimate fracture strength of fibers.

In the case of a multiple fracture, i.e. when
Eqn. (15) 1s satisfied, the critical stress at which
the whole composite will fail is given by:

s, =C, oy . (16)
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In this case as discussed earlier, the
composite will behave like a ductile metal even
if both the components (fiber and matrix) are
brittle.

7.2 Constraints on critical volune

The tensile response of fiber~cement
composites significantly depends on the volume
fraction of the fibers used. The response of fiber
reinforced composite up to the cracking strength
of the matrix can be described using Eqn (13).
Beyond this point, assuming that the matrix does
not contribute any further, the strength of the
composite is a function of the strength and
volume fraction of the fiber (Eqn (16)). At a
fiber loading up to the critical volume, the
release of a matrix cracking load onto the fibers
causes the exhaustion of fiber strength; failure is
thus by the formation a single crack. For high
volume fractions, the fibers are able to carry
load in excess of the matrix cracking load; thus
the ultimate strength of the composite is higher
than the matrix strength, and distributed
cracking can exist. The transition from single
cracking to multiple cracking takes place above
a certain fiber volume fraction, referred to as the
critical volume fraction ‘C,_°. It has been
derived by equating Eqn (13) and (16) as given
below:

Sinco C,o,+C,0,=C;0,, a7n
C,+C, =1 (18)
(19)

C,o.+(1-C, )0, =C 0,

Where G,.G,and G, are already defined

iﬁ the previous section. Solving for ‘C s and
taking C, =C, the following equation is

obtained.
O,

o +(o-0,)

C

cr

From the above Equation we can conclude
that to ensure multiple cracking in the composite
the volume fraction of fibers incorporated in the
matrix must be greater than or equal to the

critical volume ‘C,_ .

(20
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7.3 Constraints on Aspect Ratio

To utilize the fracture strength of fibers,
there should be excellent bonding between fiber
and the matrix. If a fiber of diameter ‘4 *and
length ‘I’ is to fracture at its mid-length, the

bond strength developed over the length %

must be greater than the fracture strength, i.e.,

tndl nd? -
2 Tooq
i > ﬁ
d 27
o
Ju
A, 2 - 1)

Equation (21) states that for the fibers to

. . . l
fail by fracture, their aspect ratio (Asp' :E)
must be equal to or greater than, the critical

value given by the right- hand side.

7.4 Constraints on ultimate moment
To ensure safety, the ultimate moment must
be greater than or equal to the applied moment.

>
M,=M (22)
7.5 Constraints on tension steel
Providing excessive reinforcement in
beams can result in congestion, thereby

adversely affecting the proper placement and
compaction of concrete. Excess steel
reinforcement also results in over reinforced
sections. To provide ductile failure, the member

should be designed for A, less than 0.75 A4,
where A, = area of steel required for balanced

condition. It may be found by applying the
equilibrium and strain compatibility conditions
in APPENDIX B, Equation B3:

Asrmax = 0 75 Asb (23)
Where
A,= L2 (0.7225 .+ 0, )| —e— |- T D
o, Ep TE, d
(24}
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Where fc = Cylinder compressive strength of
concrete; &,, = Usable compressive strain in
concrete; &,= yield strain of steel reinforcing
bar; o, = yield stress of reinforcing bar;

b = width of the beam; d =
the beam;
D = overall depth of the beam and other
variables defined earlier.

A minimum area of fension reinforcing
steel is required in flexural members not only to
resist possible load effects, but also to control
cracking in concrete due to shrinkage and
temperature variations. It can be obtained by
equating the cracking moment of the section
{using the modulus of rupture of fiber concrete)
to the strength computed as a reinforced fiber
concrete section as in APPENDIX B, Equation
B3. As recommended in Ref. 8, this value is
taken as:

effective depth of

w =bd [—— 25
Ajirin [o‘y 25)

400 ]

7.6 Constraints on shear strength

Several studies have shown that steel fibers
are particularly effective in  providing
reinforcement against shear stresses in
conventionally reinforced concrete[12]. It is
evident from the test results of various authors
* that stirrups and fibers can be used effectively in
combination.

The equation proposed by Narayanan and
Darwish [12] has been used in this study to
predict the ultimate shear strength of fiber
reinforced concrete beams.

V,=e(024f'+80pd/a)+456 F N/mnt
(26)

Where
afd = effective shear span to depth ratio

¢ = 1.0when a/d2.8 ,and 2.8 (d/a)
When a/d 2.8

f. = Splitting cylinder strength of fiber
concrete

£ = Percentage of area of tensile steel to

area of concrete
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F

fiber factor (= ((é)C )} J) where

f= 05 for round fibers, 0.75 for

crimped fibers, and 1.0 for fibers with

deformed ends.
The method proposed in ACI Code [1] is
used for calculating the contribution of stirrups

(V,) to the shear capacity, to which is added the
resisting force of concrete from the added fibers
V', obtained from Equation (26):

d
Vi = A o, 7 27
d = EBffective depth of the beam
S = Spacing of stirrups
G, = Yield stress of stirrups

The constraint to check the safety of the
concrete against shear is given as:

V, <V

un

(28)

where V, is ultimate shear strength of fiber

concrete and V, is ultimate shear force applied.

7.7 Constraints on Area and Spacing of
Stirrups

The minimum and maximum stirrup area is
taken as proposed in ACI Code [1]:

Ao = —2E5 )
and ’

A = 5(Asmin) (30)
The constraint on stimup spacing is

formulated based on the assumption that the
d
stirrup spacing ‘S’ varies from > down to T

The code objective in recommending such
minimum shear reinforcement is (o prevent
sudden formation of an inclined crack in an
unreinforced (or very lightly reinforced) web,
possibly leading to an abrupt failure. Further, the
provision of nominal web reinforcement
restraing the growth of inclined shear cracks,
improves the dowel action of the longitudinal
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tension bars, introduces ductility in shear, and
provides a warning of the impending failure.

7.8 Constraint for limiting span/depth ratio

for deflection control

Excessive - deflections in beams are
generally  undesirable as they cause
psychological discomfort to the occupants of the
building, and also lead to excessive crack-widths
and subsequent loss of durability. The selection
of cross sectional sizes of flexural members is
often provided by the need to control deflections
under service loads.

In the present study to formulate the
constraint for limiting span/depth ratio for
deflection control, limits for serviceability limit
state of deflection as set out in BS 8110:Part 2
clause 3.2.1 [2], are used. It is stated in the code
that the deflection is noticeable if it exceeds
span/250. The code states that the basic span to
effective depth ratios for rectangular and flanged
beams is so determined as to limit the total
deflection to span/250. For simply supported
beams, spans up to 10 m of the basic value is
taken as 20). If the span exceeds 10 m, the basic
value is multipied by 10/span in meters.
Depending on the area and the stress of steel for
tension reinforcement, the basic value shall be
modified by multiplying with the modification
factor given by the formula in the code:

471-f,
120009+M, /bd”)

ModificationFactor=0554

(3D

Note that the amount of tension

reinforcement present is measured by the term
M /bd*

The service stress is estimated from the
equation:

SoA .. 1
fs PO AL N (32)
8As,pmv le
Where. A, is the area of tension sieel

required at mid-span to support ultimate loads,

A, . is the area of tension steel provided at

mid -span and:

moment after redistribution (33)

B, =

 moment before redistribution
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For simply supported beams £, = 1;
To satisfy the deflection limits:

(34)

Actual span < Allowable span
d B d

7.9 Constraints on design. variables
The design constraints are formulated as:
bmin f b = bmax '
(:1‘}’11'11'1'1S CfS Cfma.x
D <D <D,
A <A <A

spmin — “%sp — “lgpmax

min

where Crminmax; Doy maxg

bmin #nax;

A

P
values of variables, width(b ), Volume fraction
(C;), Overall depth (D), and aspect ratio

min spmax  TEPresents the lower, upper bound

(A, ) respectively.

8. Input Parameters (Assumed Values)
The following are the assumed values of
various parameters used in the present study.
Effective span(l.y) = 3.23 m; Live load = 10}
KEN/m ; Cube strength of concrete (f) = 20
N/mm® ; Cylinder Compressive strength of
concrete (f¢) = 0.85, (fu) = 17N/mm® ;
Interfacial bond  stress  between  fiber
and the matrix (t) = 7.0 N/mm® ;:  Shear span
(@) =084 m; o, = 415.0 N/mm? ; split tensile
strength (; ) = 0.1 fe- ; Stress value
corresponding to failure strain of matrix

(o,) = 1412 fi; E; =2x10° N/mm? The

method of calculation of stress - in fiber
corresponding to the failure strain of matrix, is
given below, .

In the pre-cracking stage, the influence of
matrix cracking in the composite is neglected. It
is assumed that the steel fiber bonds perfectly
with the concrete matrix and no slippage occurs
at the fiber—matrix interface. Since steel fibers
have a minor effect on compressive strength, the
compressive model for plain concrete as
recommended in BS 8110-1985:Pt.1 [2] is
adopted for SFR concrete. The initial tangent

modulus of concrete in compression, E_ as

given in the above recommendation is as
follows:
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: 0.5
E, = 5.5[&}

yﬂ'l (35)

Where y,, is the partial factor of safety for

the material, Here this value is assumed as 1.5
for concrete in flexure.

The strain value corresponding to the
matrix cracking stress (o, ) can be calculated as

follows:

(o)
g =22

cr

(36)

oC

Assuming a perfect bond between the
matrix and fiber and uniform strain throughout
through out the composite, the stress in fiber at

the strain level corresponding to the  matrix
cracking strainis givenas‘c L ’
where

op=E 2, 37

9. Working Procedure of the Algorithm

The simulated annealing algorithm starts
with a “high” temperature, T,. A sequence of
design vectors is then generated randomly until
equilibrium is reached; that is the average value
of ‘Z, reaches a stable value as ‘I° increases.
The best point reached is recorded as X,,,. Once
thermal equilibrium is reached, the temperature
7, is reduced and a new sequence of moves is
made and continued until a sufficiently low
. temperature is reached, at which stage no more
improvement in the objective function value can
be expected. The basic algorithm is shown as a
flow diagram in Fig. 3.

Starting from an initial vector X, the

. algorithm generates ~ successively improved
points randomly X, X,,...moving toward the

global maximum solution. If X, denotes the

current point, random moves are made along
each coordinate direction, in turn. The new
"coordinate values are uniformly distributed

around the corresponding coordinate of X ;- One
half of these intervals along the coordinates are
stored as the step vectorS,. If the point falls

outside the range given in Equation (8), a new’

30

point satisfying Equation (8) is found. A.
candidate design vector X is accepted or
rejected according to criteria known as the
Metropolis criterion. (Refer to Eqn(2) ).

The various SA parameters used in the
present study is as follows:

Starting value of Temperature (7, ) 500
_No. of iterations (miter) 100

Temperature reducing rate  (¢) 0.99

No. of variables (nvar) 4

The lower and upper bound values of the
above variables used in the present study are
given in Table 2.The parametric study results of
SA is shown in Table 3. It is seen that the final
values of the objective function improves from
the initial stage to the final one.

Fig 4 shows the performance of the
algorithm. At the initial stage, the variation of
the objective is too high. As the temperature
parameter reduces, the variation is also reduced
and convergence is achieved, At the culminating
stage, the objective function converges to a
steady and maximum value.

The objective function for optimization is,

- maximization of ultimate moment for reinforced

fiber concrete beams, subjected to bending and
shear. It can be formulated as given in
APPENDIX A, Equation A9. The program is
designed to read the required data-limiting
values of variables, and SA parameters. The
program searches for a maximum for the
objective function in the space of four variables,

namely the Volume fraction of the fiber (C, ),

the Width .of the beam (), the Depth of the
beam (D), and the Aspect ratio of the fiber

(A,,). The stirrup spacing varies from % down

d .
to 1 while the stirrup area increases from the

minimum allowed by the ACI Code[l]
(A = 5068

svmin

) up to five times this value.
st

The maximum of the objective function is
recorded if all the constraints are satisfied. If any
of the constraints is violated, the penalty for
violation is given, and the objective function is
modified. The modified objective function
incorporating the constraint violation is given in
Equation (7).
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10. Conclusions

Based on the formulation for Simulated
Annealing based optimal design of Reinforced
Concrete Beams along with iderntification of
design variables, the .objective - function and
constraints, the following conclusions are
arrived at: '

1. The developed SA successfully led the
randomly distributed initial design points in
the design space to the local optimum
design point.

2; 'The overall effect of fiber addition on
ultimate strength was studied. Predicted
strengths using the derived expressions
were compared with experimental data, [17,
4, 20]. The ultimate moment values found
using the derived expression is on the
conservative side. One possible reason for
these conservative estimates is the
uncertainty in the values of 7.
Experimental studies undertaken by many
investigators show a wide disparity of fiber
matrix interfacial bond stress value in SFR
concrete[16, 21]. The values depend on'the
response stage, concrete properties, fiber
type and other characteristics.

3. The outlined methods provide a simple and
effective tool to assess the optimum
flexural strength of .steel fiber reinforced
concrete beams with randomly distributed
steel fibers.

4. The optimum design results can well be
controlled by the designer by specifying
various design requirements.

- 5. In the present approach, the number of the
variables used in SA is considerably
reduced as the quantity of tensile
reinforcement, area of stirrups, and spacing
of stirrups are not considered as variables.
They are represented in the algorithm as
implicit variables.

6. It must be emphasized that toughness
improvement, cracking, and deflection
coniro] which are other reasons for use of
.fibers, were not considered. Future studies
should combine the optimum use of fibers
for strength and serviceability criteria.

7. The efficiency of the algorithm suggests its
immediate application to other design
optimization problems.
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APPENDIX A
DERIVATION "FOR
MOMENT CAPACITY
REINFORCED  STEEL
CONCRETE BEAMS

ULTIMATE
OF
FIBROUS

The strength of the fiber reinforced
concrete in uniaxial tension as explained in
section 7.1 is given as follows:

g

w = C, 0, (Al)

The fiber strength &, may be derived from
bonding characteristics of fibers as follows.

I
Cry = 2r [—f—J
df

in which T = interfacial bond stress between
fiber and matrix.

Since the orientation, length, and bonding
characteristics of fibers will influence the
strength of fiber—reinforced concrete, these
parameters must be incorporated 'in Eqn. A2.
Incorporating all these factors, Eqn. Al can be
rewritten as:

(A2)
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(#3

cu

[
=a, ¢ 21‘[2{-]6} (A3)

7

in which | &, , and «, are orientation factor,
length - efficiency factor, and bond efficiency
factor of fibers, respectively.

The orientation factor @,is known to be
about 0.41 for unmiformly distributed fiber-
reinforced concrete, and the bond efficiency
factore, is about 1.0 for straight fibers. The

present study exploits Cox’s [7] resulis for
length- efficiency factor as follows.

tanh (&]
_\?2)

@

@ =1- (A4)

(A5)
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d
§=25]-1 (AG)

Cr ly

in which G, = shear modulus of concrete
matrix; E,= elastic modulus of fiber; A,=

cross sectional area of fiber; S = average spacing
of fiber; r, = radius of fiber ; d, = diameter of

fiber; [, Length of fiber and C, = volume ratio

of fiber. Eqn. (A3) of fiber—reinforced
composite may now be employed to derive the
flexural capacity of concrete beams containing
steel fibers. The strain profile as shown in Fig.2
has been assumed for a cracked section in pure
bending. The concrete has reached its ultimate

compressive strain &£,,. The stress block in the

compression zone is the one commonly assumed
in ultimate strength calculations. It has been
adopted under the assumption that the behaviour
of the fiber-reinforced compression zone is

similar to that of one without fiber-
reinforcement.
Equating forces in Fig. 2.:

C= T+ Ty (AT)

Where and T, = o, bD(D kD) Hence

k, can be obtained from equilibrium

conditions:

~ o.,bD +to, A, (A8)

YT BD(0.7225 fe' + o)

in which fc. = Cylinder compressive strength of
concrete; b= Width of the beam; D = Overall
depth of the beam; C, = Volume fraction of

the fibers; and o, 2 @y &y v (l,/d,)C; =

cu ®
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Ultimate strength of composite incorporating
orientation, length and bond efficiency factor of

fibers. o, = yield strength of tensile steel; A, =
Area of tensile steel. Equating moments about

€, we obtain the theoretical moment strength as
below:

D+0.15k,D ‘
M, =oc b(D- le)l:(+—')]-+ oA, (d—0.425k D)

(A9)

APPENDIX B
DETERMINATION OF TENSION
STEEL: FOR BALANCED STRAIN
CONDITION

At thé balance conditions (Ref : Fig. 2):

(le)Bai' _ Eou

d &, &,

(B1)

From Force equilibrium:
Ao, +0,b((D-kD))=b(kD),, 0.7225f.

(B2)

From Bl and B2:

A, = ﬂ[(0.7225fr. +o,, )[
a.,

Y

gfll O-CH D
£, t¢&, d

(B3)
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Fig 1. Flow Chart of a Simple Simulated Annealing Algorithm
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Fig 2. Strain and Stress Distribution at Cross Section of SFRC Beam
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Table. 2 Limiting values of variables assumed

Lower bound values

0.005

50

0.03

100

Upper bound values

Table. 3 Optimal Results Using SA

10| 003 (1218'% %35955 53.96 (93;;?623) (gécgg) gzoég.ﬁog) (1é56.33) (13;&.2285)
20 | 003 | 528 | oy 539 | wigs | Gesm (z%g.zsi) @589 | e
30 | 03 | e | iy | 785 (13;2.425) | asan | assan | esrse | oema
40 1 (003 %218?){ 5455 18.57 ('13%2.25). (205'?;’) (2062.12()6) (2?%2.26) -(254?7'52'.5;0)
50 | (0.03) (122'% 23:5955 5396 (934,7623) (3:20.2'51) (2_%3.6073) (1é'56.23) (1354105;.2285)
60 (0.03) (122'% . 5955? 33.96 (934.7623) ((2)'2923) (203;3.%2) (1;56.33) (13;04.2285)
P00 | ol | e | B gosso) | @son | o6y | s 23107
0| OB | e | wm | B0 | qosse | @son | a6 | @sise (253233i.8§7)
90 | (0.03) 83252) E-Zé%‘;r 78.00 (1351.30) (3'50.33) (()é?sg? (2%35.;4) (2532331'%7)
100 | ©@03) | i | Gy | 80| isee | oson. | o6 | @sisy | cmron

37




