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Abstract
Copula is a marginal-free distribution, used to identify dependence structure of a random vector.
In an application that dependence at the extreme is of interest, the Student’s t copula and the double t
copula can be employed. In two dimensions, the level of extreme dependence can be measured by tail
dependence. We define tail dependence at g quantile and compare the tail dependence between the
Student’s t copula and the double t copula at different quantiles. The effects of tail dependence at ¢
quantile are studied in the context of credit derivative pricing, where dependence at the extreme is a

crucial factor.
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1. Introduction

Copula is a marginal-free way of
describing dependence structure of a random
vector. For a continuous random vector, the
mformation that is contained in their copula plus
their marginals are equivalent to that of their
joint distribution function, as implied in
Sklar’s theorem (see [4]). In this article, we are
interested in the dependence structure at the
extreme of the Gaussian copula, the Student’s t
copula and the double t copula.

Besides a copula, many dependence
measures can be devised. The most widely used
measurement includes the (linear) correlation,
the rank correlation, etc. However, as pointed
out in Embrechts, McNeil, and Straumann [2], a
correlation and a rank correlation is only one
number and does not capture the whole
dependence structure. The authors give a lucid
example showing that a correlation does not contain
information about dependence at the extreme. In
fact, two copulas with the same correlation can
have a totally different dependent structure at the
extreme. When dependence at the extreme is of
interest, a measurement called the coefficient of
tail dependence or, in short, the tail dependence,
is more suitable. It can be shown (see [2]) that the
Gaussian copula with correlation of size less than

one has zero tail dependence, while the Student’s t
copula with nonzero correlation possesses strictly
positive tail dependence. It implies that the
Student’s t copula has a stronger dependence
structure at the extreme than does the Gaussian
copula. In the first half of this article, we take a
closer look at the tail dependence between the
two copulas. We define tail dependence at g
quantile, a relaxed version of the tail
dependence. We then observe the measurement
at various values of ¢ with respect to the
Gaussian copula, the Student’s t copula and, in
addition, the double t copula.

In recent years, copula models have
gained popularity in the financial community.
For its simplicity, the Gaussian copula
becomes a classical model for applying market
co-movement to financial derivative pricing
(Vasicek [5] and Elizalde [1]). However, there
were some inadequacies in using the Gaussian
copula to capture some dependence structures,
especially at extreme market conditions. The
main reason is that a Gaussian distribution has a
narrow tail and, as discussed earlier, the
Gaussian copula has no tail dependence. Many
turn to other alternative copula models when
they advance into the areas that the Gaussian
model is not sufficient. When the issue is about
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the tails, the Student’s t copula or, in short, the t
copula is a natural choice since it belongs to
the same elliptical distribution family as the
Gaussian copula but possesses some favorable
tail properties. The t distribution has a fatter
tail than that of the normal distribution, and the t
copula has positive tail dependence. Based on a
factor model, Hull and White [3] devised the
double t copula, and suggested computational
procedures to facilitate computation of credit
derivative prices. However, they do not discuss
the tail dependence property of the copula. In the
second half of this article, we study the effect of
tail dependence on credit derivative pricing. The
focus is on pricing an instrument called
Collateralized Debt Obligation (CDO) with the
Gaussian copula, the Student’s t copula and the
double t copula model.

This article is organized as follows. In
Section 2, the three copulas of interest are defined,
followed by the definition of tail dependence at ¢
quantile and its values with respect to the three
copulas. In Section 3, CDO structure is reviewed,
and the effects of the tail dependence at ¢ quantile
on its price are discussed. We end with conclusion
remarks in Section 4.

2. Copulas and Tail Dependence at g
Quantile
Suppose random vector x=(x,.....x,)’ has
joint distribution F. Assume F continuous
throughout. Recall that Sklar’s theorem states
that, if F has continuous marginals, F;’s, there
exists a unique C(x,, ..., x, ) such that:

F(x) = Flx, . ..ox, )= CER) ... Fx) (D)
where C is a distribution in » dimensions with
uniform [0, 1] marginals. Therefore, a copula
can be defined in at least two ways.

First, define directly C, a continuous
distribution function of » dimensions with
uniform [0, 1] marginals. Second, define a
joint distribution F, and then define C as:

Cx) = C(xj, X, ): F(F,"(x,) ,,,,, Fﬂ’l(x”)) (2)

where F;' is the quantile function (generalized
inverse) of F.. By the second method, the copula
is said to be induced by the joint distribution.
The Gaussian copula, the Student’s t copula and
the double t copula are all defined by the second
method. The Gaussian copula, denoted by C%“ is

defined as the copula induced by the following
multivariate standard normal density function

with correlation matrix 2.

[
IR S Ak (3)

When the dimension # is 2 with correlation p,
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The Student’s t copula, denoted by C', is
defined as the copula induced by the following
multivariate Student’s t distribution with v
degrees of freedom and with positive definite
correlation matrix matrix 2.

Sley)=

v
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When the dimension n is 2 with correlation p
and degrees of freedom v:
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The double t copula, denoted by C* by Hull
and White [3] is defined algorithmically as the
copula induced by the joint distribution of
X =(X,.....x,) where:

X, =aM+l-a>Z,,
for i=1,...,n (5)

where M, Z,, . . . ,Z, are n + 1 independent
Student’s t random variables with v degrees of
freedom that are scaled to have unit variance
and a, for i = 1, . .., n are distribution

parameters. Observe that the correlation of X;
and X; is equal to @,a; .

The tail dependence is defined for a pair of
random variable, i.e., it is defined in the case of
the dimension # is equal to 2. For a copula C(x,
¥) of a pair of random variable X and 7Y, its tail
dependence is defined as:
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a=lim Pl > F," () > £ (9))

g—>1
- lim =249
¢l l-g

where F; and F, are the marginal distribution
functions of X and Y , respectively. a can take
values in the interval [0, 1]. If @ = 0, roughly
speaking, X and Y are almost independent at
their extremes. On the contrary, if a > 0, X and
Y are significantly dependent at their extremes.
It can be shown that, if p <1, C%has a= 0, no
matter how high the correlation p is. It can also
be shown that C' has a > 0 when p > -1 (see
[2]). Therefore, when -1 <p < 1, the behavior
C“" and (" are totally different at the extreme.
To observe the dependence close to the
extreme, we define tail dependence at g quantile:

a, =Pl > F(g) X > F'(q))
_1-29+Cq,9)
I-q
for 0<g<l.

Denote the value of « , of the Gaussian

copula, the Student’s t copula, and the double t
dr
¢.p°

Ga
q.p°

respectively. Table 1 and Figures 1, 2 and 3

copula with correlation pby ., ,, ,anda

Ga '
show the value of a", ,a, ,

g and p. These values are obtained from
numerical integrations. Note that we use five
degrees of freedom in the Student’s t and the
double t distribution. Observe that when p is
equal to 0.1 or 0.5:

it .
and a, ,at various

a(}u < adr <ol (6)

q.p q.p g, p

(6) also holds when p= 0.9 and g < 0.93.

However, when p = 0.9 and ¢ > 0.93, we have

Ga t dt
aq.p<aq’p <aq_p.

Table 1: Tail dependence at quantile g of various copulas

0.20 0.8101 0.8168 0.8122 0.8589 0.8640 0.8618 0.8700 0.9394 0.9360
0.30 0.7175 0.7220 0.7216 0.7954 0.7985 0.7970 0.8511 0.9119 0.9045
0.40 0.6250 0.6359 0.6312 0.7319 0.7329 0.7324 0.8385 0.8843 0.8731
0.50 0.56319 0.5480 0.5399 0.6666 0.6667 0.6667 0.8257 0.8562 0.8416
0.60 0.4375 0.4538 0.4468 0.5978 0.5993 0.5986 0.8052 0.8266 0.8097
0.70 0.3409 0.3514 0.3504 0.5225 0.5297 0.5264 0.7776 0.7946 0.7771
0.80 0.2406 0.2672 0.2488 0.4357 0.4561 0.4471 0.7401 0.7582 0.7441
0.90 0.1334 0.1857 0.1380 0.3240 0.3728 0.3546 0.6828 0.7139 0.7131
0.91 0.1220 0.1774 0.1261 0.3101 0.3633 0.3441 0.6748 0.7133 0.7106
0.92 0.1104 0.1690 0.1139 0.2953 0.3536 0.3333 0.6661 0.7117 0.7084
0.93 0.0986 0.1605 0.1016 0.2796 0.3433 0.3221 0.6564 0.7092 0.7065
0.94 0.0866 0.1518 0.0890 0.2625 0.3326 0.3105 0.6456 0.7039 0.7056
0.95 0.0743 0.1428 0.0760 0.2438 0.3212 0.2984 0.6331 0.6986 0.7046
0.96 0.0616 0.1335 0.0627 0.2229 0.3089 0.2858 0.6185 0.6889 0.7053
0.97 0.0484 0.1235 0.0490 0.1987 0.2952 0.2728 0.6004 0.6735 0.7083
0.98 0.0344 0.1124 0.0347 0.1694 0.2794 0.2597 0.5765 0.6480 0.7152
0.99 0.0193 0.0992 0.0197 0.1294 0.2592 0.2486 0.56387 0.5995 0.7313
1.00 0.0000 0.0686 N/A 0.0000 0.2070 N/A 0.0000 0.4454 N/A
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Figure 1: Tail dependence at quantile g of various copulas when p= 0.1
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Figure 2: Tail dependence at quantile g of various copulas when p= 0.5
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Figure 3: Tail dependence at quantile ¢ of various copulas when p= 0.9
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3. Effects of Tail Dependence at ¢q
Quantile on CDQO Price

Credit risk constitutes a large portion of
risk in a financial institution. A Collateralized
Debt Obligation or CDO is a financial
instrument that can be used to pass on credit risk
from a financial institution to outside parties.
The structure of a CDO is described as follows.
A financial institution owns a portfolio of
defaultable instruments, say bonds. It then passes
on the credit or the default risk of the bond
portfolio to customers who want to bear risk
by issuing securities called CDOs. The securities
are divided into layers or tranches. A security in
each tranche behaves like a bond with fixed
coupon rate where the principal varies
according to the defaults in the original
portfolio. Figure 4 is simplified from that of
Hull and White [3] to show the structure of a
CDO. The first tranche in Figure 4 is labeled
“first 10% loss, rate 30%” meaning the principal
of a security in this tranche is adjusted
proportionally to 10% of the bond portfolio
principal subject to the first losses resulting from
the defaults in the bond portfolio. A CDO
customer in the first tranche receives interest of
30% of its outstanding principal during the life of
the CDO. A security in the second tranche has
principal proportional to 20% of the bond
portfolio principal subject to the losses beyond
the first 10% losses. A security in the last tranche
has principal proportional to the remaining 70%
of the principal subject to the losses beyond the
first 30%, 10% absorbed by the first tranche and
20% absorbed by the second tranche. For example,
suppose the portfolio consists of bonds from 50

names, each with value 1, constituting the bond
portfolio principal of 50. If two names default,
the first 10% of the principal is reduced by 40%,
and, hence, the principal of a security in the first
tranche is also reduced by 40%. The interest of
30% is paid on the remaining 60% of the principal.
If five names default, the principal of a first
tranche security is dissipated, and the holder
ceases to receive the interest. If 10 names default,
the principal of a second tranche security is
reduced by 50%. When the defaults reach 15
names, second tranche holders lose all of their
principal. The defaults beyond 15 names will
affect the third tranche. The structure of a CDO
can have more features, e.g. a recovery rate can
be imposed, but, in this article, we assume only
this minimal structure just described.

Observe that the first tranche has the
highest coupon rate, and the second tranche rate
is higher than that of the third tranche. The
coupon rate reflects the risk that the holders of
the securities in each tranche bear. When defaults
occurs, the holders of the first tranche securities
will be responsible, so they have more risk than
others, resulting in the highest coupon rate. To
price a CDO is to determine a coupon rate in
each tranche that is considered fair to the holders
of securities in that tranche. Our interest is to
show the effect of the tail dependence in a CDO
price in an over simplistic case, namely the case
when there exist only two names in the portfolio
of bonds. We then advance to compare the CDO
prices in a more realistic setting with respect to
the Gaussian copula, the Student’s t copula, and
the double t copula. Our study is limited to the
price of the first tranche only.

Bond
Portfolio
Consists of
Bond 1,
Bond 2,

Bond N

Financial
Institution

I* Tranche
First 10% losses,
Rate 30%

2™ Tranche
Next 20% losses,
Rate 15%

v

3™ Tranche
Residual losses,
Rate 10%

Figure 4: Tail dependence at quantile ¢ of various copulas when p=0
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As a first step, assume that there exist two
names in the bond portfolio, each contribute
50% of the portfolio value. The first tranche of
the CDO absorbs the first 100a% of the losses
with coupon rate 100 y% per year. Without loss
of generality, assume the starting time is zero
and the CDO will mature in one year. Assume
that a customer of a CDO pays a principal V
upfront. The coupons will be paid & times equally
spaced at 7,, ¢;, .., #; = 1. At maturity, the
remaining principal will be repaid to the
customer together with the last coupon. Denote
the discount rate for #, by x.

Let 7, and 7, be the times to defaults of
names | and 2, respectively.

Assumptions:
1. T,and T, be nonnegative random
variables identically distributed by
continuous distribution function G.
2. The dependence structure of 7, and
T, is defined by copula C.

Denote the discount rate for # by x. To
price a CDO is to determine coupon rate y that
makes the principal paid upfront to be equal to
the expected present value of the coupon plus
the outstanding principal at maturity. Therefore,
v 1s the rate that validates (7).

L y
V=B Yy |inb
i=l

o (M
- S [ Ll nel]

The analysis can be carried out in two
cases, when ¢ <0.5 and when ¢> 0.5.

In case a<0.5, at each payment time ¢, i =
I,..., k, the holder receive the coupon payment
only if there is no default. That means 7, and 7>
both must exceed # for the holder to be paid.
Otherwise, the loss in the portfolio will exceed
the limit @, and dissipate the principal of the first
tranche.

EV) = VP20, AT, 21,)
= VP(T, 2t AT, >1)) (8)
= VP(T, > 4| T, >0, )P(T, > 1)

The second equality follows from the
assumption that T;s are continuous. Observe

that the first term of (8) is the tail dependence at
quantile G(z,). Therefore, let ¢; be G(£;), and we
have:

E[Vl] = Vaq E(ZI) (9)
where G(r)=1-G(:). From (7), we then

obtain a formula for the rate of tranche one in
the case a<0.5 as:

1_7kaqk5(tk)

S ra,l,) 1o

y=k

On the other hand, consider when g > 0.5,
In this case, when there are no defaults, the
holder receives full payment. When only one
name defaults, the holder receives partial
payment. If both names default, the holder
receives no payment. Hence, at each ¢,

E[v,] = (@a=05WP(T, <t, AT, >1,)
+ (@a=03WP(T, <t, AT, >1t,)
+ VP(T, 21, AT, 21,)
= (a-05WP(T, <t,AT, >1,)
+ (a=05WP(T <t, AT, >1,)
+ VP(T, > 1, AT, > 1,)
= (a=05WP(T,>1)=- P(T;>1, AT, >1,)
+ (a=05WP({T>1,)- P(T,>t, AT, >1,)
+ VP(T, >t ATy > 1))
= Aa-05W(G(t,)-a,Glt)+Va,Gl1)
= 2(a=0.5WG(1,)+2(1-a) Ve, G(r,) (1)

Substitute (11) into (7), we obtain a
formula for the rate of tranche one in the case a
> (.5 as:

1-2(a-05)7,G(1,)-2(1-4a) 7,2, G(1)
Zle 2((1 - 05)7,‘6(’/)* 2(1 - a) Vi, E(ti)
(12)

yv=k

Note that (1 - @) in (12) is always nonnegative.
In both (10) and (12), with other things
fixed, the more a, , the lower y. In other words,
in this extreme case, the higher the tail
dependence at ¢ quantile, the lower the price of
a first tranche CDO. Although not realistic, this
model provides a valuable insight into the effect
of dependence at the extreme on the first tranche
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CDO prices. For bivariate times to default, high
tail dependence results in both high co-default
rate and high co-survive rate. In this case, the
effect of high co-survive rate outweighs the effect
of high co-default rate, resulting in low CDO
price. In addition, it also implies that, at p= 0.1 or
0.5, in this extreme case, the Gaussian copula
model gives a higher CDO price than that from
the Student’s t copula model, and, in turn, the
Student’s t copula model gives a higher CDO
price that that from the double t copula model. In
case p = (1.9, the Gaussian copula model gives a
higher CDO price from the other two models,
but the order of the prices between the other two
models depends on G.

We proceed to do a numerical
experiment with a more realistic case. Now
suppose there exist 50 names, each has equal
contribution to the portfolio value. Assume that
the first tranche absorbs the first 10% losses, and
the discount rate is 8%. The coupon is paid
semiannually, i.e. k = 2. The CDO matures in one
year. The time to default of every name is
identically distributed by exponential distribution
with expectation E[7]. We assume identical
correlation, p, for all pairs of names in a copula
model. The pricing is computed via Monte Carlo

Simulation technique. Table 2, 3 and 4 show the
CDO price when p=0.1, 0.5 and 0.9, respectively.
In each row, the table shows the expected time
to default of each name, the default intensity, the
average times to default in one year and the prices
from the three copula models with respect to the
intensity at the head of the row. Note that the
expected time to default is equal to one over
the default intensity. The result when p= 0.5 is
selected to draw a graph. The graph of the other
two p looks the same, but at different scale.

The CDO price from the Gaussian copula is
the highest among the three copula models.
This is consistent with the previous result that
the Gaussian copula lacks dependence at the
extreme, and, hence, it has low probability to
co-survive, resulting in high price. However, the
prices between the Student’s t and the double t
copula models are comparable. This cannot be
explained by the tail dependence alone since the
tail dependence of the Student’s t and the double
t copula models are not that close. We suspect
that there must be more effects of co-default in a
higher dimensions that we are unable to explain
by the tail dependence since the tail dependence
is defined only for two dimensions.

Table 2: Comparisons of CDO prices among the three copula models at p= 0.1

10 0.1000 7.3470 4.7497 4.7415 127.97% 89.12% 92.49%
15 0.0667 5.4659 3.2187 3.2070 79.07% 53.49% 54.56%
20 0.0500 4.4068 2.4359 2.4281 58.54% 38.45% 38.88%
25 0.0400 37113 1.9641 1.9548 46.98% 30.33% 30.45%
30 0.0333 3.2130 1.6423 1.6337 39.56% 25.24% 25.17%
35 0.0286 2.8418 1.4072 1.4058 34.51% 21.71% 21.69%
40 0.0250 2.5512 1.2328 1.2307 30.75% 19.19% 19.13%
45 0.0222 2.3191 1.0947 1.0941 27.86% 17.26% 17.20%
50 0.0200 2.1285 0.9848 0.9853 25.58% 15.77% 15.71%
55 0.0182 1.9699 0.8968 0.8956 23.71% 14.59% 14.51%
60 0.0167 1.8328 0.8223 0.8188 22.15% 13.62% 13.51%
65 0.0154 1.7155 0.7600 0.7576 20.84% 12.82% 12.72%
70 0.0143 1.6156 0.7077 0.7043 19.73% 12.15% 12.05%
75 0.0133 1.5260 0.6598 0.6581 18.76% 11.55% 11.47%
80 0.0125 1.4442 0.6206 0.6160 17.87% 11.07% 10.95%
85 0.0118 1.3749 0.5840 0.5795 17.14% 10.61% 10.51%
90 0.01M11 1.3107 0.5512 0.5480 16.46% 10.21% 10.13%
95 0.0105 1.2515 0.5236 0.5191 15.84% 9.88% 9.78%
100 0.0100 1.1977 0.4979 0.4935 15.29% 9.57% 9.48%
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Table 3: Comparisons of CDO prices among the three copula models at p= 0.5

55.87% 39.79% 43.12%
15 0.0667 5.4603 3.2106 3.2124 40.15% 28.17% 29.58%
20 0.0500 4.4093 2.4288 2.4246 32.27% 22.47% 22.93%
25 0.0400 3.7150 1.9532 1.9469 27.33% 18.98% 19.05%
30 0.0333 3.2294 1.6347 1.6262 24.04% 16.69% 16.51%
35 0.0286 2.8602 1.4026 1.4007 21.64% 15.00% 14.70%
40 0.0250 2.5722 1.2332 1.2275 19.78% 13.74% 13.34%
45 0.0222 2.3382 1.0965 1.0911 18.27% 12.74% 12.27%
50 0.0200 2.1474 0.9894 0.9846 17.07% 11.94% 11.44%
55 0.0182 1.9847 0.9020 0.8959 16.04% 11.29% 10.76%
60 0.0167 1.8462 0.8257 0.8218 15.19% 10.72% 10.17%
65 0.0154 1.7303 0.7637 0.7598 14.48% 10.25% 9.69%
70 0.0143 1.6265 0.7079 0.7067 13.83% 9.81% 9.29%
75 0.0133 1.5355 0.6602 0.6618 13.27% 9.45% 8.94%
80 0.0125 1.4550 0.6187 0.6204 12.77% 9.13% 8.63%
85 0.0118 1.3841 0.5827 0.5841 12.34% 8.85% 8.35%
90 0.0111 1.3167 0.5502 0.5513 11.94% 8.59% 8.09%
95 0.0105 1.2590 0.5215 0.5237 11.60% 8.37% 7.88%
100 0.0100 1.2054 0.4944 0.4981 11.27% 8.15% 7.69%

Table 4: Comparisons of CDO prices among the three copula models at p= 0.9

. 0 B 0 . (]

18.66% 13.35% 13.10%

0.0500 0.3278 0.2295 0.2220 15.72% 11.14% 10.78%
0.0400 0.2866 0.2011 0.1930 13.84% 9.84% 9.45%
0.0333 0.2588 0.1823 0.1748 12.56% 8.97% 8.62%
0.0286 0.2377 0.1691 0.1614 11.59% 8.36% 8.00%
0.0250 0.2215 0.1591 0.1513 10.83% 7.89% 7.52%
0.0222 0.2085 0.1511 0.1437 10.22% 7.52% 717%
0.0200 0.1976 0.1446 0.1376 9.71% 7.21% 6.88%
0.0182 0.1891 0.1390 0.1324 9.31% 6.95% 6.54%
0.0167 0.1815 0.1343 0.1284 8.95% 6.73% 6.35%
0.0154 0.1750 0.1304 0.1249 8.64% 6.45% 6.19%
0.0143 0.1696 0.1270 0.1218 8.38% 6.29% 6.04%
0.0133 0.1649 0.1243 0.1190 8.16% 6.16% 591%
0.0125 0.1605 0.1217 0.1166 7.95% 6.04% 5.79%
0.0118 0.1564 0.1193 0.1144 7.75% 5.93% 5.69%
0.0111 0.1528 0.1173 0.1125 7.58% 5.83% 5.60%
0.0105 0.1494 0.1154 0.1109 7.42% 5.74% 5.52%
100 0.0100 0.1465 0.1139 0.1093 7.28% 5.67% 5.45%
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Figure 5: CDO prices among different copula models at p= 0.5

4. Conclusion

In this article, we have done two things.
First, we study the differences of the tail dependence
among three widely used copula models, namely
the Gaussian copula, the Student’s t copula, and
the double t copula. Second, we try to explain
some phenomenon found in CDO pricing through
the light of the tail dependence. For the first task,
we define the tail dependence at quantile g and
observe that, at low and medium correlation
values, the Gaussian model has the lowest tail
dependence at each ¢, followed by the double t
and the Student’s t model, respectively. At high
value of correlation, the Gaussian model is still
the lowest of the three, but the other two models
are similar. For the second task, in an extreme
case of the CDO having two names in the
portfolio of bonds, the tail dependence helps
explain that high dependence at the extreme can
be regarded as high probability of co-default and
simultaneously high probability to co-survive. In
this extreme case, the effect of co-survival
dominates that of the co-default, and can be used
to determine the direction of the CDO price.

However, in a higher dimensional case, the
reasoning is beyond the reach of tail
dependence.
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