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Abstract

The scheduling classified as an NP-completed problem is challenging for many researchers. This
paper is concerned with a flowshop scheduling problem with uncertain processing time. The model
consists of a set of machines (multiple machines) and a set ofjobs in a flowshop plant. The uncertain
processing times can be represented by a discrete probability distribution. The objective is to hnd a job

sequence such that the expected makespan is minimized. The existing lower bound requires large
computational time. This paper proposes various lower bounds based on machine and job considerations.
The experiments are conducted and compared with Barasubramanian and Grossman's algorithm. The
results found that on average, the branch and bound using various lower bounds, used more branching
nodes than the reference one, but required less computational time.

Keywords: Flowshop, Uncertain Processing Times, Branch and Bound.

1. Introduction
Scheduling is important in the production

planning stage of manufacfuring. It aims to help
production planners and production managers to
construct a time table of related tasks. A good
scheduling helps manufacturers in reducing
production time and cost. The Flowshop ,
problem concems the sequencing of a given
number of jobs through a series of machines in
exactly the same order on all machines, with the
aim to satisfli a set of constraints and optimize a
certain objective. The most studied objectives are
frequently defined as makespan, meaning the
completion time of the last job on the last
machine. A large number of deterministic
scheduling algorithms have been proposed in the
last five decades !]. Several objective functions
for flowshop scheduling are considered, such as
flowshop problems with separable setup time,
which could be either sequence independent[2]

or sequence dependentf3], a non-preemptive
multiprocessor flowshop problemf4], a minimum
weight combination ofjob flowtime and schedule
makespan problem[5], a flowshop problem with
minimum holding costs of inventory [6], and a
hybrid two-stage flowshop with a batch
processor in stage I and single processor in stage
2 Ul. In reality, the environment can be
uncertain in a number of factors such as
processing times and cost. As a result, a number
of papers in recent years have addressed
scheduling in the face of unceftainties under
different parameters [8]. A solution to the
flowshop scheduling problem arranges the order
in which jobs are processed on each machine. In
basic, there are many possible schedules and a
conlmon objective is to select the one that
minimizes the completion time of a set of jobs.

However, in the case of uncertain processing time,
the solutions generated could not use the ordinary
deterministic models.
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For the flowshop given uncertain processtng
time, the objective is to find a jobs sequencing
that minimizes the expected makespan.
Barasubramanian and Grossmann considered the
uncertainties in processing time using discrete
probability distributions. The discrete probability
distribution leads to a combinatorial explosion of
the involved state space. They proposed a novel
and rigorous branch and bound procedure for
selecting the sequence with minimum expected
makespan. However, calculation of the lower
bound of unscheduled jobs in the branch and
bound process requires permutation for the
optimal value. This problem issue is needed to be
addressed extensively. Then, the previous lower
bound will be modified for a better efficiency.

The paper is begun with introducing the
problem statement, the review of the lower bound
of Balasubramanian and Grossman's algorithm.
Then, the various lower bounds based on
machines and jobs considerations are proposed.
The last section deals with evaluation of the
related algorithms and experimental
comparisons.

2. Problem Statement
2.1 Flowshop with probabilistic processing
time

In the flowshop environment, a set of n jobs

must be scheduled on a set of lz machines, where
each job has the same routing of machines. More
recent works present a sufficient condition on the
processing time distributions that stochastically
minimize the expected makespan in the case of a
two-machine and a three-machine flowshop with
unlimited intermediate storage, respectively.
Given jobs, j: 1,.., N, that are to be produced in
a flowshop plant with i:1,..,1u1 machines. Each
of these jobs requires processing in all of the M
machines and follows the same sequence of
processing. All the machines have one processing
unit each. The processing time of job 7 on

machine I is a random variable, 7,,i. A discrete

probability density function to describe the
uncertainty in the processing times is shown in
Figure l.
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Figure l. Duration uncertainty [3]

Figure l shows the discrete probability

function, where Cr denotes the probability of a
particular realization, k, tr denote duration of a
particular realization k, and the number of

realizations is lKl : 3. A scenario is a

combination of the realizations of all random
variables. If there are four mutually independent

random var iables and each wi tn lK l  :  3  possib le

values, then, the total number of scenarios is 3a .

2.2 Objective function

The problem is to determine a schedule from
all possible permutations of the jobs for the
flowshop plant with minimized expected
makespan. The expected makespan is the average
of the sum of all products of probability and
complet ion t ime in each scenar io.

2.3 Branch and Bound

The feasible set of solutions of the flowshop
with probability processing time problem can be
represented by a set of ly'/ sequence orders. An
optimal solution can be obtained by the
straightforward complete enumeration method
and selecting the one with minimum objective
value. However, a complete enumeration is
hardly practical because the number of cases to
be considered is usually enorrnous. A branch and

bound method consists of general characteristics,
branching rules, lower bounding rules, and
search strategies. Balasubramanian and
Grossmann [9] proposed a branch and bound
method with a disaggregation algorithm. They
disaggregate all the uncertainties associated with
the tasks that are involved in the processing of
scheduled jobs. They generate all possible
scheduled jobs beginning and evaluate their
expected makespans, using mean values for the
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processing times of the remaining jobs, and select
the minimum value to get the lower bound. The
lower bound must be obtained as a sequence of
monotonically increasing lower bounds, te. . 2,1
32,1s 3Zs7 if 21 is the lower bound of job I
located at the beginning ofa work sequence. The
branching rule discussed next is the first search
depth and in the initial stage is combined with the
local best solutions search to obtain an upper
bound quickly. The nodes can be pruned if their
lower bound is higher than the current upper
bound.

2.4 Branch and Bound procedures[9]
l. Initialization. Denote the problem to be

solved as P. Define the problem parameters N, M
and the discrete probability space. Set UB:+at.

2. Create the root node. Apply algorithm
evaluate (as below) to obtain the lower bound at
the root node. Add root node to the list L ofnodes
yet to be fathomed.

3. Selecting the subproblem. If L is empty, i.e.
L = A , there are no more subproblems to be
solved, go to step 5. Else, choose a problem P;
(with value Zi) fromZ and set L: L l{ , go to

step 5.
4. Solving the subproblen.s. Create the

children, {r , {2 ,. . . of subproblem { and

evaluate all of them. Let the values obtained be

Z: , Z:, ... Ifall ofthejobs have been fixed and

all the uncertainties disaggregated in the children,

then {JB : min (UB, Z: , Z:, ...). Add to I the

children whose values are not greater than the
current UB. Go to step 3.

5. Terminatior. An optimal solution has been
detected with the value UB. Stop.

Algorithm evaluate
l. Initialization,Initialize LB - +m. Let a

partial sequence be fixed at this node and let this
be denoted by SF.

- Aggregate all the uncertainties associated
with jobs in the form of mean values of
processing t imes.  i .e .  V, . , .  set :

K
z  - \ -  -  t'  u  -  

/ J l ' l i A r i j / '

z. G"n"roti'requence.Generate sequence S by
appending the jobs not present in SF to SF.

3. Evaluate sequence. Compute the expected
value of the makespan of sequence S. Denote this
value by 2,. Update LB if Z, is smaller than or
equal to LB. Go to step 2.

4. Termination. Return LB as the lower bound
at this node. Stop.

2.5 Balasubramanian and Grossmann's lower
bound (82002)

The lowerbound obtained from the
algorithm of Balasubramanian and Grossman [9]
that is described in this section is based on the
permutation procedure that the worst case
performance gives N!. It is defined as 82006.
The proposed lowerbound that is described in
section 3 is based on the lgnall-Shrage algorithm
that the worsl case performance gives 2' .

The makespan (MO equals total processing
time on 1" order on all machines + (completion

time of 2nd completion time of I't ) *

( completion time of 3'd completion time of 2nd )
+,..,+ (completion time of M" completion time of
(N-1)'). Mathematically,

n r " - $ "  L t
j = l

" ' ,  l t  o (  N) ,M 
-  t  o (  N - t ) ,M

where [,,,,, is the processing time of the 1" job

on machineT and to,,,., is the completion time of

the l'' job on machineT and o denote the set of
initial partial sequence.

Incase of processing time uncertainties, the
expected makespan (EMS) equals:

M

Ei r l s  :  E lL t  o , , , ,  +  I  n1z1  u  
-  t o , t , . v * . . . .

'i=1

. . . . ,  l t  o  (  N  ) ,M  
-  t  o  r  N  _ r l , u l

From the above relationship, the expected
value of the sum of random variables is the same
as the sum of expected values of the random
variables.

E[A+B-CJ : E[A] +E[B] -E[C]

Then,

( l )
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E[ f ,  " r r . ,  *  t  o (z \ ,u  
-  t  o ( t1 .M r  t  o r . t . t .u  

-  t  o (2 t , t r  * , . . .
j = l

"r* to( i , t ) .u -  tot ; t  t l ,v l

M

=  E tLTn1 , , , 1+  E l t  o , r , . ,  
-  |  o , t , . v  l +

E l t . o t ,  -  t o (2 \ ,M  ] * , . . . ,

tE l towl , ,  -  to(N r t . t t f  
Q)

Property l,for a given partial schedule o, ifthe
uncertain processing times are replaced by their
mean values, a lower bound on the expected
makespan of the given schedule is obtained.

So,
M M

lf",r.,< ElLr"(,\. jl (3)
. i= r  t= l

and:

Lr ' l ,  
-Lr '  ,1 . ,  < El tor" lu  - to(o t ) .v l  (4)

where f,,,., is the expected processing time

ofthe 1"job on machineT replaced by related

mean values und Lt,r..i is the expected

completion time of the i'' job on machineT
replaced by involved mean values. Branch and
bound steps based on (3) and (4) requires
calculation of the expected total processing time
of a job which is scheduled in the /" position,

M M

E[>T"(D. jl:17",,,,. For the job which is
; l

scheduled in the a'n position, calculate the
expected completion time by:
El t  " t ' t ,v  -  I  o1u t t . .u l :  L ,  , , .u  -T. r '  t1 .v  For  the

unscheduled jobs, calculate the average
completion time by using:

EUnr r , t . v  - l o6 - t , . . r l =  l o ,o , , . v  -  t . r r  t t . v

For example, ifjobs 1,.., l are scheduled jobs
and jobs h+1,..,N are unscheduled jobs,
Balasubramanian and Grossmann's lower bound
can be obtained as (5).

L B = t - , r , . ,  r , m i n  .  l i t t , ^ , r - t , 0 , , . u ) l  ( 5 )
d ( r + l ) . . . . . r ( N )  

r _ r + l

wnere
M h

l o , n t . v  = \ 7 . , , , . ,  Z ( + , ' ,  v  - 1 , u  , , . r , )
i = l  a = l

N

a n d  ,  m i n _  ^  { l  ( L t , u - C , n , , . r \ l
o t h + ! t . . . . - o \  \  |  

6 - _ 1 1 + l

obtained from generation ofall possible
permutations on o(h+l) , , o(N) (unscheduled
jobs set) and choose the minimum value of:

s-  . -
L  

( t o ,o , . u  -  l o rn - t t . u )
b -  h+ l

3. The proposed lower bounds
In the regular flowshop scheduling problems

with constant processing times, a branch-and-
-bound procedure proposed by lgnall-Schrage

[ 0] has a worst case performance analysis better
than a permutation approach. It is based on two
improving algorithms, one is a machine based
lower bound approachfl0] defined as P2006, the
other is a job based lower bound approachfl1]
defined as 52006. The method that selects the
best lower bound between P2006 and 52006 in
each step is defined as M2006.

For the flowshop scheduling problems with
uncertain processing times, Balasubramanian and
Grossmann's lower bound[9] considered a lower
bound based on a permutation procedure. This
section considers two lower bound algorithms
based on a machine based lower bound
approach[O] and a job based lower bound
approach[1 l].

Let o denote the set of initial partial
sequence in which jobs in the first I positions
have been fixed, o 0 : (tll, ,thl). Let o'
denote the set ofunscheduledjobs, o'(i):
( [h+l ] , . . , [N])  and o+ o '= N .

3.1 Machine based lower bound (P2006)
A Machine based lower bound originated

from Ignall & Schrage in 1965 [10]. The basic
concept is to compute the total expected
completion time without idle time on a machine
referred to as the critical path or the bottleneck
machine. The lower bound is:

L B : . , , , = m a x i r - , , , ,  -  t  L , , ,  r n i n  t  I  T ^ , . , " i t  6 l
r ' r ' 1 r  i ,  {  r ,  \  

- . - -  
-
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w h e r e  t  - , ,  +  m i n  { t  I " , . , . , }  i s  t h e
-  h l r ' \  -

h  h . t  g  t r , |

total expected completion time on machine ft for
job o(h-t) ,..., ot{) which are unscheduled jobs.

Then, the maximum total expected completion
time on a machine is selected.

Proposition 1 The proposed machine based
lower bound is lower than Balasubramanian and
Grossmann's by the following.

, \ v

m a x { r - , , . , ,  *  t  L , , ,  +  m i n  i  I .  l , , , l t  <
r i  r r  n l r  \  i

h  h . l  !  l  l

T o , n t . v  t ,  m i n  .  I  I  ( L , 0 , , ,  -  
L r a  t t . v ) i  t z r

o  I  h  + l  t . . . . . n  |  \ '  )  
l ] l * r
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N N

L Qoo),, -L(r r),") < | ttoll1,u -lo@ D.v)
b = h + l  b = h + l

( 1 3 )
From ( I I ) and ( I 3), it can be concluded that (8) is
true. !

Proposition 2 The Machine based lower bounc
in (8) can be calculated with a less maximum
number of steps than the reference lower bound.

P-regf
The lower bound max lro1p1.p +

t < k < M
M N

,  T in^ i  Z  7" , , , . r1  + I  T- ,n ,^ l  can be
, + l < ,  <  \

g  l t l  h ' h t l

calculated within M*( 1+N 2,'1.{ steps,

whereas,
,ry

1 r n , . r r  *  ,  p i n  .  1 L  ( ' " , 0 , ,  -  L , n  , ,  u ) l
- ( r + l ) . . . . 6 {  \  )  , -b=h+1

can be calculated within (N-l)!, therefore, the
proposition holds. l

3.2 Job based lower bound (52006)
A Job based lower bound is the extension of

Mahon & Burlon firstly proposed in 1967 [11].
The lower bound considers the total expected
processing time of the critical path based on jobs

P_leef
Given v as a machine with the maximum

lower bound in (7). Then:
t  o ( h ) , v  +

M N

Z foGt,e l+ L Tof t ) l
g= r ,+ l  b=h+ l

N

. , r in .  I  I  
( /ot i , t .  1q -  ro16 11.y4 l i

o l h + t l , . . . , o l N  J  h _ h + l
(8)

lf I o&),g is the expected waiting time of thc /2"

job on machine g, then:

l o th l . s  :  l o th t "g  +To th ) .g  ( s )

However, the expected completion time on
machine M is:

M

to(h) ,M =lo(h) .v  + |  (1o1n1,"  * ro( t ) ,s)  (10)

AS:

LB! , , '  -

[ .
m9f,1t,,,,.* +,,t'*" I4,,,." *

L s = {

mln I
h + l < r <  N

lo(h) .M +

/o(h),v +

' g - r+ l
M 1

,* l l ' l  t '* I  ,rot ' ' ' r  
i  =

since,
- - ;
t o(b),v 

- t o(b -l),v = I o(b),v

then,

7  - 7  > T' o 1 h ; ) . r  ' o ( A  - l ) . r '  -  '  o ( h ) . v

f r o m ( 1 0 ) a n d ( 1 1 ) ,

(  l 4 )

. t.r/ \' 1* n " " , , r r l l  
l r - , ,  +  |  m i n r l , o , , . t , n , , )  l ' t

L " '  l ' ' : '  I
the maximum value of the sum of the total of the
expected processing time ol the i ' '  job under

unscheduled job o(h*t ,..,o(N) processed on

machine k up to M and the minimum expected
processing time remaining on machine k or M of
remaining unscheduled jobs.

Proposition 3 Thejob based lowerbound value
is lower than the reference lower bound or:

+fo(b),v

/o(h) .M

( l  t )

(  l 2 )
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f  , t  I  I

, T i I t t , . * , ' 1 * . l I r . ,  " ,  |  . i " ( r . ,  . . r . , , , ) l
L  {  t h  \ '  l

3 L,r,.r*,,,gi[,,,{ uL,rr,r., 
- L,o ,.,)}

( t 5 )

P-ae9f
Given v and er as the machine and the job from
(15) is maximized, then:

M N

7 - \ - 7 r \ - ' t = = \' o r h r . t '  / i ' o t u t . s '  L  m l n l l - 1 r 1 . ' . 1 o , r , . r l , f

! t= l  b=h+1,h+u

t L ,o , . r+  m in  l L (+ ,h , ,  _ � t . , r , , . r l l
o t h ' l l . . . . . o t . v t  

h  h . l

( l  6 )
Swap the u'' iob to position ft+ l, then:

M \

7  * T i  *  T  t =  =  \
' o r h t . r  '  

l ' o r h - l t . y  L  
m l n \ l  o r t , t . r . l  n , t , t . . u  )

h=h+2

a  \ , n , . u  +  - , , T i n - , .  I  I  ( 1 , 0 ,  ,  - 1 , ,  , , . r ) l
d { r + r r , . . . . t (  v  I  , 'D = h + l

( 1 7 )
The fact that,

M

7  * T f  < 7t o 1 h 1 . , T  
/ L r o t . h . l ) . s  

:  t o t h ' l ) . u  ( 1 8 )
g-k

and:

-r_
)  m i n  

\ T o ' n , . , . T o , 0 , . . , )  
3  1 " ,  r ' ,  l o r t , . t r . r r

( l e )
By combining ( I 8) and ( 19) then,

M

T  * \ - r  r' o ( h ) , v ' , / L - o t h + l ) . . j '

o - k

\ -  r ;  ;  \  - -
/  m t n  ( / . , , r r . , . 1 . , , r , . u  ) <  l . r t t . v

b=h+2

(20)
and from:

t ^ . , .  ̂,  >  t - , , .  ^ ,  +  m i n  I  ) -  r t . ,  , ,  - � T -  ,  , ,' o t  \ t . v  - ' o t n t . v  
n , n . i i . " . . , r , l  o L r \ 1 " , r , . ,  

-  I o , t ,  l , . . u l l

and t 'rn,,,  - 
Lru-rl ,  =Toe).u *Tort l .v

then:

t " , , , , ,  + i r " , ,  -  -^ i ,  min(T^,0, ,7" , , , ,1

3  \ , n , . v + _ ,  l i n _ ,  I  I  ( L , n , , ,  -  L , , , , r ) ' ,
o ( r + l ) .  . . o (  \ ' )  , -'  h = h + l

(21)
Therefore, the proposition holds as stated.

Proposition 4 Thejob based lower bound can
be calculated with a less maximum number of
steps than the reference lower bound.

Etpgf Since the lower bound using:
f ,, v I

W.F",, ,^*.qry,I  LT",,  * |  min(L,, ,^.7_,^,,) l
L e  {  t  4 , t . b ' t  I

requires the maximum number of steps in
calculat ions of  114*11+ N'M as a polynomial
increasing function of the numbers of job and
machine, whereas:

L, , ,  ,  +  min I  L  (  L, , , . , ,  _ �To,r  t t . . r r ;1  can be
o \ h + l l . . . . o l \  )  . =

calculated with the number of steps up to (N- I ) !,
an exponential increasing function. Hence, the
proposition holds.

3.3 Composite based lower bound (M2006)
The maximum value of lower bound in (6)

and ( l4) is the composite based lower bound.

GBL"to, = max{LBltrPLBt",o) Q2)

Proposition 5 The composite based lower bound
(23) is lower than the reference lower bound.

GB L.ft) : max {LBlr 0,, LB!6 ) <

L , o , r , t  ,  T i n  .  i I  ( L  ̂ , . , ,  _ � T - r r - , , . r ) l  ( 2 3 )
o l h ' l \ . . . o 1 \ )  

h - , h + 1

Obviously, the proposition holds as stated.

4. Results and Discussion
The algorithms in the previous section are

implemented on a personal computer with CPU
Pentium 4 and256 MB RAM. The results can be
illustrated in Table 1 to 4.
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Table 1 Average CPU time for each problem size ( lKl 53)

Job M/C No. of Max.Pro Exoected CPU time (Seconds)

scenarios c. time Makesoan 82002 M2006
216
+-) z

648
864
t296
1728
2s92

560.6650
s2t .3320
495.6640
560.3307
498.3290
530.9983
490.3393

0.0520
0.2603
0 .1  560
0. 1 303
0.281 3
0.4063
0.4320

0.0523
0.2550
0 .  1 6 1 3
0.  l  350
0.2657
0.4360
0.3957

0.0520
0.2603
0 . 1 5 1 0
0.0940
0.2863
0.3957
0.4010

0 .0517
0.2603
0. l 560
0 .1  353
0.2863
0.3853
0.4063

100

7
U
9
10 5 648 100
l l
t 2
l 3

586.9950
574.3300
534.9963
597 .7100
7 43.3300
676.9927

0.5260 0.5047 0.5213 0.5260
0.2607 0.2391 0.2343 0.239'7
1 .3073  1 .1200  l . 1360  1 .1720
2.4589 t.4457 1.4994 1.4823

97 .66t3 76.5310 77.6510 77.7 l3 '7
688.4690 447.2797 433.7134 439.0270

759.9930 8,380.4700 6,33t .44 6,315.1100 6,450.8600

Table 2 Average number of nodes for each problem size (lKl 13)

Jobs M/C No. of Max.Proc
scenarios time

2 1 6
432
648
864 100
1296
t'728
2592

Expected
Makespan

s60.6650
s21.3320
495.6640
560.3307
498.3290
530.9983
490.3393

Number of branchins nodes

82002
r9.00
60.67
3 8.00
36.33
61.6'7
67.33
54.67

P2006 52006 M2006
76.33 28.67 26.00

103.333 93.6667 78.3
45.000 4 l  .3333 38.7
76.000 42.3333 54.3

115.000 95.0000 7 '7.3
106.000 107.0000 80.7
79.333 72.0000 62,7

7
8
9
l0 s 648 100
1 1
I 2
l 3

s86.9950 r 50.00 295.00 676.67
57 4.3300 7 4.00 150.33 395.61
534.9963 303.00 798.00 9,t20.61
597.7100 460.14 1,113.67 t6,628.24
743.3300 16,899.00 240,281.33 32s,490.33
676.9927 754,84.33 402,015.33 183,450.33
7s9.993 1.005.310.0 1. r14.r90.0 1.017.060.0

223.67
109.33
4s8.67
174.67

92,486.67
138,434.0

1 .013 .010 .0
Table l-4 All time is Seconds.

Table 3 Average CPU time for each problem size (lKl S3)

J M/C

b
s

No. of Max.Proc.
scenarios time

CPU time (Seconds)

1 0
40
70
100
130

864

Expected
Makespan

46.66
158 .67
288.33
455.33
551 .33

B�2002
0 .5103
0.1 663
0.2553
0.33 87
0.1297

P2006
0 .5103
0. 1 560
0.2760
0.3440
0.  1 353

s2006
0.5387
0 .  l 6 l  3
0.2710
0.3440
0. 1 303

M2006
0.5417
0 . t 6 t 3
0.2703
0.3490
0.1 353

4
o

4 8 6 4 8
t 0
1 2

367.9983
s62.3293
626.9963
7s2.6623
796.9993

0.0623
0 .0210
0.0257
0.0627
0.0727

0.0680
0.0260
0.0260
0.0s23
0.0727

0.0727
0.0263
0.0263
0.0573
0.0783

0.0677
0.0260
0.03 17
0.0573
0.07 r 0

100
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Table 4 Average number of nodes for each problem size (lKl 53)

M/CJobs No. of Max.Proc.
scenarios time

l 0
40

864 70
100
1 3 0

Expected
Makespan

46.66
158 .67
288.33
4s5.33
5 5 1 . 3 3

Number of branchinq nodes
82002 P2006 52006 M2006

114.67 1t7 .33 1 1 6.0 1 16.0
51.0 77.00 73.00 56.1

69.67 80.0 69.67 69.7
86.67 91 .0 89.67 81 .3
5 I .00 r 00.7 178.67 68.0

100

4
6

4 8 6 4 8
l 0
1 2

367.9983
s62.3293
626.9963
752.6623
796.9993

t 7 . 3 3
6.6'�7
8.00

13 .00
14.33

19.67
t0.61
12.00
16.33
17.33

18 .33
9.00

10 .33
15 .00
16.00

t7 .3
8 .7

10 .3
14 .0
t5.7

6'a
! m

t l m

,n
d .@

9.
l J 6

Figure 2 CPU time and number ofjobs

Graphically, Figure 2 shows how N affects
CPU time. The variation of CPU time with
respect to M is shown in Figure 3. It is clear from
Table I and Figure 2 that for increasing of N,
CPU time increases exponentially while
increases M, (Table 3 and Figure 3), do not
clearly affect CPU time. For given N:6, (Table 2
and Figure 4), increases number of scenarios,
increases CPU time. It is clear from Table 2 and
Figure 5 that for increases of 1/, the number of
branching nodes increases.

ln case of t/:6. It was found from Table 2
and Figure 4 that the number of total scenarios
influences the CPU time while the number of
machines, (Table 4 and Figure 7), does not
influence the number of nodes. The maximum
processing times do not influence the CPU time
and the number of nodes. (Table 3. Table 4 and
Figure 6). The number of jobs which can be
solved on a branch and bound aleorithm within a

reasonable time is no more than N: 13. Larger
problems, however, can be solved by
approximation of existing exact solutions and
will be wonh further investisation.
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Figure 3 Number of machines and CPU time
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Figure 5 Number ofbranching nodes and
number of iobs
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Figure 7 Number of machines and number of
branching nodes

5. Conclusion
The flowshop scheduling problem with

uncertain processing time is studied, because of
the real case that the processing times are
uncertain due to uncontrollable factors. The
study assumed that each processing time could be
defined as a discrete probability function. The
objective ofthe problem is to find ajob schedule
that minimizes the expected makespan. The
proposed lower bounds have a worst
performance analysis of less than the original
procedure by Propositions 1-5. The experimental
results show that the proposed lower bounds are
faster than the original of Balasubramanian and
Grossman [3]. But they are weaker than the
original one in term of the number of branching
nodes. For future research, the performance
evaluating of the composite and the Job based
lower bound are required for a better result.

6. Acknowledgement
The author gratefully acknowledges

financial support from the Ministry of University
and Thammasat University, Thailand.

Thanks to T. Aramgiatsiris for his advice on
programming.

7. References

tl l Gupta J.N.D., and Stafford E.F., Flowshop
Scheduling Research After five Decades,
European Joumal of Operational Research,
Vol .  169,  No 3,  pp.669-111,2006.

l2l Allahverdi, A., Gupta, J.N.D., and
Aldowaisan, T., A Survey of Scheduling
Research lnvolving Setup Considerations,
OMEGA. International Journal of
Management Science 27 , pp.2l9-239, 1999.

t3l Rub6n R., Concepci6n, M., and Alcarcz, J.,
Solving the Flowshop Scheduling Problem
with Sequence Dependent Set up Times
using Advanced Metaheuristics, European
Journal of Operational Research, Vol. 165,
pp.34-54,2005.

l4l Tamiis K., amd Erwin, P., A Review of
Exact Solution Methods for the
Non-preemptive Multiprocessor Flowshop
Problem, European Joumal of Operational
Research, Vol. 164, pp.592-608, 2005.

t5l Wei-Chang Yeh, A New Branch-and-bound
Approach for the nl2lFlowshoplaF'tfr^u"

&

3 s'qt
o * ls *g -
3 n

$ 5
! o
S r !

5
g 2 !

> g

o

€ a o
s
.9  ' "
I
g
6

3 t t

O t

ti

V g

35



t6l

Scheduling Problem, Computer &
Operations Research, Vol. 26, pp.
1293-r310, 1999.
Moon-Wong Park and Yeong-Dae Kim, A
Branch and Bound Algorithm for a Product
Scheduling Problem in an Assembly System
Under Due Date Constraints, European
Journal of Operational Research, Vol. 123,
pp.504-5 I 8, 2000.
Ling-Heuy Su, A Hybrid Two-stage
Flowshop with Limited Waiting
Constraints, Computers & Industrial
Engineering, Vol. 44, pp.409-424, 2003.
Kamburowski J., Stochastically Minimizing
the Makespan in Two-machine Flow Shops
Without Blocking, European Journal of

Thammasat Int.  J. Sc. Tech.. Vol. 11. No.4. October-December 2006

Operational Research, Vol. 112, pp.
304-309. 1999 .

[9] Barasubramanian J., and Grossman I.E., A
Novel Branch and Bound Algorithm for
Scheduling Flowshop Plants with Uncertain
Processing Times, Computers & Chemical
Engineering, Y o1. 26, pp.46-57, 2002.

[10] Ignall E. and Schrage L.E,., Application of
the Branch and Bound Technique to Some
Flow-shop Scheduling Problems,
Operations Research, Vol.13, pp. 400-412,
r 965.

[11] Mahon G.M.B. and Burton P.G., Flow-shop
Scheduling with the Branch and Bound
Method, Operations Research, Vol.l5, No.3,
pp. 473-481, 1967 .

17l

t8l

36


