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Abstract

The scheduling classified as an NP-completed problem is challenging for many researchers. This
paper is concerned with a flowshop scheduling problem with uncertain processing time. The model
consists of a set of machines (multiple machines) and a set of jobs in a flowshop plant. The uncertain
processing times can be represented by a discrete probability distribution. The objective is to find a job
sequence such that the expected makespan is minimized. The existing lower bound requires large
computational time. This paper proposes various lower bounds based on machine and job considerations.
The experiments are conducted and compared with Barasubramanian and Grossman’s algorithm. The
results found that on average, the branch and bound using various lower bounds, used more branching

nodes than the reference one, but required less computational time.
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1. Introduction

Scheduling is important in the production
planning stage of manufacturing. It aims to help
production planners and production managers to
construct a time table of related tasks. A good
scheduling helps manufacturers in reducing
production time and cost.
problem concerns the sequencing of a given
number of jobs through a series of machines in
exactly the same order on all machines, with the
aim to satisfy a set of constraints and optimize a
certain objective. The most studied objectives are
frequently defined as makespan, meaning the
completion time of the last job on the last
machine. A large number of deterministic
scheduling algorithms have been proposed in the
last five decades [1]. Several objective functions
for flowshop scheduling are considered, such as
flowshop problems with separable setup time,
which could be either sequence independent[2]
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or sequence dependent[3], a non-preemptive
multiprocessor flowshop problem[4], a minimum
weight combination of job flowtime and schedule
makespan problem[5], a flowshop problem with
minimum holding costs of inventory [6], and a
hybrid two-stage flowshop with a batch
processor in stage 1 and single processor in stage
2 [7]. In reality, the environment can be
uncertain in a number of factors such as
processing times and cost. As a result, a number
of papers in recent years have addressed
scheduling in the face of uncertainties under
different parameters [8]. A solution to the
flowshop scheduling problem arranges the order
in which jobs are processed on each machine. In
basic, there are many possible schedules and a
common objective is to select the one that
minimizes the completion time of a set of jobs.
However, in the case of uncertain processing time,
the solutions generated could not use the ordinary
deterministic models.
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For the flowshop given uncertain processing
time, the objective is to find a jobs sequencing
that minimizes the expected makespan.
Barasubramanian and Grossmann considered the
uncertainties in processing time using discrete
probability distributions. The discrete probability
distribution leads to a combinatorial explosion of
the involved state space. They proposed a novel
and rigorous branch and bound procedure for
selecting the sequence with minimum expected
makespan. However, calculation of the lower
bound of unscheduled jobs in the branch and
bound process requires permutation for the
optimal value. This problem issue is needed to be
addressed extensively. Then, the previous lower
bound will be modified for a better efficiency.

The paper is begun with introducing the
problem statement, the review of the lower bound
of Balasubramanian and Grossman’s algorithm.
Then, the various lower bounds based on
machines and jobs considerations are proposed.
The last section deals with evaluation of the
related algorithms and experimental
comparisons.

2. Problem Statement
2.1 Flowshop with probabilistic processing
time

In the flowshop environment, a set of » jobs
must be scheduled on a set of m machines, where
each job has the same routing of machines. More
recent works present a sufficient condition on the
processing time distributions that stochastically
minimize the expected makespan in the case of a
two-machine and a three-machine flowshop with
unlimited intermediate storage, respectively.
Given jobs, j=1,.., N, thatare to be produced in
a flowshop plant with i=/,.., M machines. Each
of these jobs requires processing in all of the M
machines and follows the same sequence of
processing. All the machines have one processing
unit each. The processing time of job j on
machine 7 is a random variable, 7 ;. A discrete
probability density function to describe the

uncertainty in the processing times is shown in
Figure 1.
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Figure 1. Duration uncertainty [3]

Figure 1 shows the discrete probability
function, where C; denotes the probability of a
particular realization, &, ¢ denote duration of a
particular realization &, and the number of

realizations is |K| = 3. A scenario is a

combination of the realizations of all random
variables. If there are four mutually independent

random variables and each with |K l = 3 possible

values, then, the total number of scenarios is 3* .

2.2 Objective function

The problem is to determine a schedule from
all possible permutations of the jobs for the
flowshop plant with minimized expected
makespan. The expected makespan is the average
of the sum of all products of probability and
completion time in each scenatio.

2.3 Branch and Bound

The feasible set of solutions of the flowshop
with probability processing time problem can be
represented by a set of N/ sequence orders. An
optimal solution can be obtained by the
straightforward complete enumeration method
and selecting the one with minimum objective
value. However, a complete enumeration is
hardly practical because the number of cases to
be considered is usually enormous. A branch and
bound method consists of general characteristics,
branching rules, lower bounding rules, and
search  strategies.  Balasubramanian  and
Grossmann [9] proposed a branch and bound
method with a disaggregation algorithm. They
disaggregate all the uncertainties associated with
the tasks that are involved in the processing of
scheduled jobs. They generate all possible
scheduled jobs beginning and evaluate their
expected makespans, using mean values for the
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processing times of the remaining jobs, and select
the minimum value to get the lower bound. The
lower bound must be obtained as a sequence of
monotonically increasing lower bounds, ie. . Z,
<Zis <Zype if Z; is the lower bound of job 4
located at the beginning of a work sequence. The
branching rule discussed next is the first search
depth and in the initial stage is combined with the
local best solutions search to obtain an upper
bound quickly. The nodes can be pruned if their
lower bound is higher than the current upper
bound.

2.4 Branch and Bound procedures[9]

1. Initialization. Denote the problem to be
solved as P. Define the problem parameters N, M
and the discrete probability space. Set UB=+co.

2. Create the root node. Apply algorithm
evaluate (as below) to obtain the lower bound at
the root node. Add root node to the list L of nodes
yet to be fathomed.

3. Selecting the subproblem. If L is empty, i.e.
L =, there are no more subproblems to be
solved, go to step 5. Else, choose a problem P;

(with value Z;) from L and set L=L/P ,goto
step 5.

4. Solving the subproblems. Create the
children, F;l , Ez ,...of subproblem P and
evaluate all of them. Let the values obtained be
ZI.1 s Z,.2 , ... Ifall of the jobs have been fixed and
all the uncertainties disaggregated in the children,
then UB = min (UB, Z!, Z}, ..). Add to L the
children whose values are not greater than the
current UB. Go to step 3.

5. Termination. An optimal solution has been
detected with the value UB. Stop.

Algorithm evaluate
1. Initialization, Initialize LB = +o. Let a
partial sequence be fixed at this node and let this
be denoted by SF.
- Aggregate all the uncertainties associated
with jobs in the form of mean values of
processing times, i.e. V, ., set:

ij?
_ K
Ty = Zpifktijk
k=1

2. Generate sequence. Generate sequence S by
appending the jobs not present in SF to SF.
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3. Evaluate sequence. Compute the expected
value of the makespan of sequence S. Denote this
value by Z;. Update LB if Z, is smaller than or
equal to LB. Go to step 2.

4. Termination. Return LB as the lower bound
at this node. Stop.

2.5 Balasubramanian and Grossmann’s lower
bound (B2002)

The lowerbound obtained from the
algorithm of Balasubramanian and Grossman [9]
that is described in this section is based on the
permutation procedure that the worst case
performance gives N!. It is defined as B2006.
The proposed lowerbound that is described in
section 3 is based on the Ignall-Shrage algorithm
that the worst case performance gives 2" .

The makespan (MS) equals total processing
time on 1* order on all machines + (completion
time  of 2™ completion time of 1) +
( completion time of 3™ completion time of 2™)
+,.,+ (completion time of M" completion time of
(N-1)™). Mathematically,

M
MS = ZTam,/ + ta(Z),M "ta(l).M + to(3),M _ta'(2),M +...
j=1

st t

s(NM ~ to(N-1)\M (1)

where T, ; isthe processing time of the / * job

on machinej and ¢ is the completion time of

oli).j
the i job on machine j and o denote the set of
initial partial sequence.

In case of processing time uncertainties, the
expected makespan (EMS) equals:

M
EMS = E[D 1,0 +lois Lo e

J=1

""’+t0'(N),M _tJ(N—l),M]

From the above relationship, the expected
value of the sum of random variables is the same
as the sum of expected values of the random
variables.

E[A+B-C] = E[A]+E[B]-E[C]

Then,
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M
E[Z;’am,f ot —Loins T Laonr —Locyar Foee
=
o, o (N)WM _ta(;V—l),,’\/I]
= E[Z a(). /]+ E[to'(Z),M _ta-(l),M]+
E[tm),M — ooy s
2)

+E[t0'(N),M — Lo (n-tym ]

Property 1, for a given partial schedule g, if the
uncertain processing times are replaced by their
mean values, a lower bound on the expected
makespan of the given schedule is obtained.

So,
Mo M
2T, B T, 3
J=1 i=1
and:
to‘(a),M _tcr(a—l),M < E[ta(a),M —tfr(a—l)‘M] G
where T =), 1s the expected processing time

of the 1% job on machine j replaced by related

mean values and 7 is the expected

o(i).j
completion time of the i job on machine ;
replaced by involved mean values. Branch and
bound steps based on (3) and (4) requires
calculation of the expected total processing time
ofajob which is scheduled in the 7* position,

E[ZT w. 1= Z (.

scheduled in the a" position, calculate the
expected completion time by:

E[ta(a),M tzr(a b, ’\/l]

unscheduled jobs, calculate the average
completion time by using’

E[trr(h),M Lo, wl= Loyt ~ Lopnn -

For example, if jobs 1,.., A are scheduled jobs
and jobs A#+1,..,N are unscheduled jobs,
Balasubramanian and Grossmann’s lower bound
can be obtained as (5).

. For the job which is

ot~ Loqa - FOT the

-1

LB=1 .y + (5)

hflI)an \){ Z (ta(h).M - tg(h—]).M )}
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where

M p—
cr(h)M ZT [©3Y; Z( ola M o'(a I)M)
j=1 a=]

o‘(hH) U(’V){Z (o’(b)M a'(h l)M)}

b=h+1
obtained from generation of all possible
permutations on oth+1),..., ofN) (unscheduled
jobs set) and  choose the minimum value of:

Z (O'(b)M

b=h+1

U(b l)M)

3. The proposed lower bounds

In the regular flowshop scheduling problems
with constant processing times, a branch-and-
-bound procedure proposed by Ignall-Schrage
[10] has a worst case performance analysis better
than a permutation approach. It is based on two
improving algorithms, one is a machine based
lower bound approach[10] defined as P2006, the
other is a job based lower bound approach[11]
defined as S2006. The method that selects the
best lower bound between P2006 and S2006 in
each step is defined as M2006.

For the flowshop scheduling problems with
uncertain processing times, Balasubramanian and
Grossmann’s lower bound[9] considered a lower
bound based on a permutation procedure. This
section considers two lower bound algorithms
based on a machine based lower bound
approach[10] and a job based lower bound
approach[11].

Let o denote the set of initial partial
sequence in which jobs in the first /# positions
have been fixed, o (j) = (/1}....,/h]). Let o'
denote the set of unscheduled jobs, o'() =
(fh+1],...[N])and c+0c'=N.

3.1 Machine based lower bound (P2006)

A Machine based lower bound originated
from Ignall & Schrage in 1965 [10]. The basic
concept is to compute the total expected
completion time without idle time on a machine
referred to as the critical path or the bottleneck
machine. The lower bound is:

LBUW—max{t et ZT (i T min {Z T()g

< <reN
1<k=M Py h+lrs]

1 (6)



Thammasat Int. J. Sc. Tech., Vol. 1

where hZh;I - Mngg\{ ZM T,e) is the
total expected completion time on machine & for
job oth-1),..., ofN) which are unscheduled jobs.

Then, the maximum total expected completion
time on a machine is selected.

Proposition 1 The proposed machine based
lower bound is lower than Balasubramanian and

Grossmann ‘s by the following.
N

M
in f T n <
Z a(h)k ULE}EVI Z Ta(r).g' i

=h+ - =k+1

[12’}(2?\(/ trrlh)A

Z ( (byM o‘(b 1)/\4)! (7

h=h+1

Proof

Given v as a machine with the maximum
lower bound in (7). Then:

lo(hyv T
M
1 {
h+{21:1SN~g=Zv:+1TU(r) g‘ 7L[7 %HTU(/)) "
<
N
lo(hM + min U2 Uoby,M ~To(b-1,M )}

o(h+1),..., O'(N) b=+l
~ (8)
If 7 o(h).g is the expected waiting time of the W’

job on machine g, then:
oth).g = Toth.g +Toth).g ©)

However, the expected completion time on
machine M, is:

M
oM =tomw+ 2 Uotng +Totng) (10)
g=v+l
Z + < - 3
hy, i T M
.y h+{21rn§N{g§+1 otr)e! o
(11)
since,
Io(b),y ~lo(b-1),v = Lob)y + To(b),v
then,
ta(b),v - tn’(h~1),\ 2 o(b),v (12)
from (10) and (11),
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N N
> oy ~top-D) < 2. o) m ~lob-1).M)
b=h+1 b=h+1

(13)
From (11) and (13), itcan be concluded that (8) is
true. O

Proposition 2 The Machine based lower bound
in (8) can be calculated with a less maximum
number of steps than the reference lower bound.

Proof
The lower bound max {t_a(h),k +
1< kSM
M
hmlr-lgm' (V)QJ f Z (h)k} can be
) g=k+l b=h+1

calculated within M*(1+N *M) steps,

whereas,

tcr(h),M Ot GM){ Z (n(h) M o‘(h 1), w)}

=h+1
can be calculated within (N-1)!, therefore, the
proposition holds. o

3.2 Job based lower bound (S2006)

A Job based lower bound is the extension of
Mahon & Burton firstly proposed in 1967 [11].
The lower bound considers the total expected
processing time of the critical path based on jobs
as:

LB!

o T

i T AX Z cirg T Z min(7, sk mmu)

<isN
[E93 hilsi Pt
hzi

max)t

(14)

where is
/,{1;132(\ Z aling + Z mln( aihyk? o'(h) ’\/I)
b=h~

b#i
the maximum value of the sum of the total of the
expected processing time of the i" job under
unscheduled job ofh+: ,..,0fN) processed on
machine % up to M and the minimum expected
processing time remaining on machine £ or M of
remaining unscheduled jobs.

Proposition 3 The job based lower bound value
is lower than the reference lower bound or:
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max

1<k< M louma *

¥
Z mm( sk cr(hiw):|

b=h+1bei

< to’(h).M o(h+h. U(N){b;l( h)M o—(h—l).M )}
(15)

M
max Z +
hel<igN alng

Proof

Given v and u as the machine and the job from
(15) is maximized, then:

N

M
o(h)y + ZTo'(u) g + mln(Td(h) v To‘(h),M)
g=k b=h+1,b#u
<t 0 )}
— “o(h) ’VI o(hyM ﬂ‘(b M
O'(h+l) LO(N) P

(16)
Swap the u” job to position 4+1, then:

M N
cr(h)v z o(h+l)g + z mln<Tcr(b)\ To’(b) ’\/1)
g= b=h+2
<1 min Z (t. )
(v T N R TY
4 a(ht), .., o‘(/\/) =
(17)
The fact that,
M
o'(h)v Z h+1)g o(h+])M (18)
g=k
and:
N _ _ _ _
z mln(To'([)).LxTo'(b)AM)St (N).M to’(hHLM
h=h+2
(19)
By combining (18)and (19) then,
oo T Z oththg T
N — —
Z (T (b),v, Trr(b).M) I, a(N)M
b=h+2
(20)
and from:
to(‘\),i to'(h) ut ol ”(\){bZ/: ( o (h)./ t_a'(bfl),M )}
""" +1
and  Looym — logpoym = [a(h).M +Ta(b)‘M

then:

32

11, No. 4, October-December 2006

M N _

o(h).y Z olh+l)g z mln(T(T(b)A,\x,T

o'(h).M)
g=k

<t

U(h)’\/l

h=h+2
N _ _
TP D (TR I
(21

Therefore, the proposition holds as stated.
Propeosition 4 The job based lower bound can

be calculated with a less maximum number of
steps than the reference lower bound.

Proof Since the lower bound using:
v
maX ok h+|<<\J:Z otive T Z ml“(7}<h>.ksTﬂm..M)
b=h+1b#i

requires the maximum number of steps in
calculations of M*(1+N°M) as a polynomial
increasing function of the numbers of job and
machine, whereas:

mir}ﬂ“{ z (tr(b v~ L)y can be

o (h+l Pt
calculated with the number of steps up to (N-1)!,
an exponential increasing function. Hence, the
proposition holds.

Legmm T

3.3 Composite based lower bound (M2006)
The maximum value of lower bound in (6)
and (14) is the composite based lower bound.

GBL,, =max{LB), LB.,) (22)

o(h) a(h)®
Proposition 5 The composite based lower bound
(23) is lower than the reference lower bound.

GBL,,,, = max{LB",, LBLW) <

o (h)

+ U{\){Z (Z M o'(h I)M)} (23)

t
alh)M .
olh I) ..... .

Obviously, the proposition holds as stated.

4. Results and Discussion

The algorithms in the previous section are
implemented on a personal computer with CPU
Pentium 4 and 256 MB RAM. The results can be
illustrated in Table 1 to 4.
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Table 1 Average CPU time for each problem size (’K ‘ <3)

Job M/C No. of Max.Pro  Expected CPU time (Seconds)
S scenarios c. time Makespan B2002 P2006 S2006 M2006
216 560.6650 0.0520 0.0523 0.0520 0.0517
432 521.3320 0.2603 0.2550 0.2603 0.2603
648 495.6640 0.1560 0.1613 0.1510 0.1560
6 5 864 100 560.3307 0.1303 0.1350 0.0940 0.1353
1296 498.3290 0.2813 0.2657 0.2863 0.2863
1728 530.9983 0.4063 0.4360 0.3957 0.3853
2592 490.3393 0.4320 0.3957 0.4010 0.4063
7 586.9950 0.5260 0.5047 0.5213 0.5260
8 574.3300 0.2607 0.2397 0.2343 0.2397
9 534.9963 1.3073 1.1200 1.1360 1.1720
10 5 648 100 597.7100 2.4589 1.4457 1.4994 1.4823
11 743.3300 97.6613 76.5310 77.6510 77.7137
12 676.9927 688.4690 447.2797 433.7134 439.0270
13 759.9930 8,380.4700 6,331.44 6,315.1100  6,450.8600

Table 2 Average number of nodes for each problem size (‘K | <3)

Jobs M/C  No.of Max.Proc. Expected Number of branching nodes
scenarios time Makespan B2002 P2006 $2006 M2006
216 560.6650 19.00 76.33 28.67 26.00
432 521.3320 60.67 103.333 93.6667 78.3
648 495.6640 38.00 45.000 41.3333 38.7
6 5 864 100 560.3307 36.33 76.000 42.3333 54.3
1296 498.3290 61.67 115.000 95.0000 77.3
1728 530.9983 67.33 106.000 107.0000 80.7
2592 490.3393 54.67 79.333 72.0000 62.7
7 586.9950 150.00 295.00 676.67 223.67
8 574.3300 74.00 150.33 395.67 109.33
9 534.9963 303.00 798.00 9,120.67 458.67
10 5 648 100 597.7100 460.14 1,113.67 16,628.24 774.67
11 743.3300 16,899.00  240,281.33  325.,490.33 92,486.67
12 676.9927 754.84.33  402,015.33  183,450.33 138,434.0
13 759.993  1,005,310.0  1,114,190.0 1,017,060.0 1,013,010.0

Table 1-4 All time is Seconds.

Table 3 Average CPU time for each problem size ( |K ’ <3)

I M/C No. of Max.Proc. CPU time (Seconds)
o scenarios time
b Expected
s Makespan B2002 P2006 52006 M2006
10 46.66 0.5103 0.5103 0.5387 0.5417
40 158.67 0.1663 0.1560 0.1613 0.1613
6 3 864 70 288.33 0.2553 0.2760 0.2710 0.2703
100 455.33 0.3387 0.3440 0.3440 0.3490
130 551.33 0.1297 0.1353 0.1303 0.1353
4 367.9983 0.0623 0.0680 0.0727 0.0677
6 562.3293 0.0210 0.0260 0.0263 0.0260
4 8 648 100 626.9963 0.0257 0.0260 0.0263 0.0317
10 752.6623 0.0627 0.0523 0.0573 0.0573
12 796.9993 0.0727 0.0727 0.0783 0.0710
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Table 4 Average number of nodes for each problem size (lK | <3)

Jobs M/C No.of  Max.Proc. Expected Number of branching nodes
scenarios time Makespan B2002 P2006 S2006 M2006
10 46.66 114.67 117.33 116.0 116.0
40 158.67 51.0 77.00 73.00 56.7
6 3 864 70 288.33 69.67 80.0 69.67 69.7
100 45533 86.67 97.0 89.67 87.3
130 551.33 51.00 100.7 178.67 68.0
4 367.9983 17.33 19.67 18.33 17.3
6 562.3293 6.67 10.67 9.00 8.7
4 8 648 100 626.9963 8.00 12.00 10.33 10.3
10 752.6623 13.00 16.33 15.00 14.0
12 796.9993 14.33 17.33 16.00 15.7
J— reasonable time is no more than N = 13. Larger
ﬁ problems, however, can be solved by
o approximation of existing exact solutions and
'g J— / i will be worth further investigation.
- /i
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Figure 2 CPU time and number of jobs

Graphically, Figure 2 shows how N affects
CPU time. The variation of CPU time with
respect to M is shown in Figure 3. It is clear from
Table 1 and Figure 2 that for increasing of N,
CPU time increases exponentially while
increases M, (Table 3 and Figure 3), do not
clearly affect CPU time. For given N=6, (Table 2
and Figure 4), increases number of scenarios,
increases CPU time. It is clear from Table 2 and
Figure 5 that for increases of N, the number of
branching nodes increases.

In case of N = 6, Tt was found from Table 2
and Figure 4 that the number of total scenarios
influences the CPU time while the number of
machines, (Table 4 and Figure 7), does not
influence the number of nodes. The maximum
processing times do not influence the CPU time
and the number of nodes, (Table 3, Table 4 and
Figure 6). The number of jobs which can be
solved on a branch and bound algorithm within a
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5. Conclusion

The flowshop scheduling problem with
uncertain processing time is studied, because of
the real case that the processing times are
uncertain due to uncontrollable factors. The
study assumed that each processing time could be
defined as a discrete probability function. The
objective of the problem is to find a job schedule
that minimizes the expected makespan. The
proposed lower bounds have a worst
performance analysis of less than the original
procedure by Propositions 1-5. The experimental
results show that the proposed lower bounds are
faster than the original of Balasubramanian and
Grossman [3]. But they are weaker than the
original one in term of the number of branching
nodes. For future research, the performance
evaluating of the composite and the Job based
lower bound are required for a better result.
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