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Abstract
The extended Kantorovich method is employed to solve the bending problem of symmetrically

laminated composite rectangular plates with various edge supports. The variational principle with a
separable displacement function is utilized to derive a set of goveming ordinary differential equations
whose exact general solutions are obtained. The solution of the displacement function is determined
from iterative calculations of these governing equations using an init ial tr ial function that can be
selected arbitrarily. The convergence rate for cross-ply laminated plates is very fast, within only a few
iterations. The accuracy of this method is validated numerically with the available Levy-type
solutions. The results demonstrate that the proposed semi-analytical approach can be used to solve
efficiently the bending problem of isotropic and symmetric cross-ply laminated plates with any
combinations of simple, clarnped and free suppofts. New numerical examples of symmetric cross-ply
plates with complicated boundary conditions are also presented.
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l. Introduction
Due to their high stiffness-to-weight and

strength-to-weight ratios along with other
desirable properties, laminated composite
materials are increasingly considered in
mechanical .  c iv i l .  and acrospace engineer ing
applications. Furthermore. composite materials
can be designed to have the desired properties in
the specified directions without over-designing
in other directions. In designing plate
components to withstand a parlicular type of
loading, a solution for stress analysis must bc
obtained first. There have been studies on stress
analysis of laminated composite rectangular
plates, but closed-form solutions are possible
only for the case for which all or opposite edges
are simply supported [, 2]. For other types of
boundary conditions, either approximate
methods such as the Ritz method [3, 4] or
numerical methods such as the FEM and BEM

arc usually employed. The following proposed
method of calculation can be used with any
combinations of simple, clamped and fiee
supports

In this paper, the Kantorovich method [5] is
extended to obtain the bending solution of
symmetrically laminated rectangular plates with
various combinations of the boundary
conditions. Earlier, Kerr [6] used the extended
Kantorovich method for the problem of bending
and buckling of an isotropic rectangular plate
successfully. The efficiency and accuracy of the
method have also been demonstrated in the
stress analysis of clamped rectangular isotropic
plate by Kerr and Alexander [7] and clamped
rectangular orlhotropic plate by Dalaei and Kerr

[8] also. Aghdam and Falahatgar [9] employed
the extended Kantorovich method to the bending
problem of moderately thick clamped laminated
plates. Although the extended Kantorovich
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method is based on the variational principle, the
works of several researchers, e.C., l1 , 8], have
shown that initial trial functions are neither
required to satisfy the geometric, nor the force
boundary conditions, because the iterative
procedure will force the solution to satisfy all
boundary conditions eventually. Furthermore.
the proposed method reduces the problem of
solving the partial differential equations to a se1
of ordinary differential equations in the x and y
directions. These two outstanding features make
the extended Kantorovich method more
attractive than the Galerkin or Ritz methods for
certain circumstances.

2. Derivation of the iterative differential
equations

The extended Kantorovich method is a
semi-analytical method which requires iterative
calculation by reducing the governing parlial
differential equations to two sets of governing
ordinary differential equations (ODE). These
iterative equations are derived by the variationaL
principle because equations for all boundary
conditions are established automatically. The
total potential energy for bending of
symmetrically laminated composite plates
subjected to a uniform lateral load q is given by

Reddy [2] as:

l I = U  + V
1 u-h-

n:a I  f  Io, , r . i ,  +2D,rw., ,  w., ,  +D,w.] ,
)  J  J '- 0 0

+ 4 D uuw,f,, +4(Druw,,, + Drow, n )w,,, ldxdy
d b

- | lqwdxdv (l)
I  t r

where comma denotes the differentiation with

respect to the subscripted variable and Du is the

bending stiffness of the laminated composite
material.

For the classical Kantorovich method, the
solution w(x,y) is assumed to be separable as:

w(x,Y)= X(x)Y(Y) (2)

Substituting Equation (2) into (l), the total
potential energy becomes:
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D22X2Y.,:, +4DooX'�,Yi +4(D,oX..,Y + (3)

D,W,, tx,Y, ktxcty - 
! ltwa*a,
0 0

If X(x) is priorly specified, eq. (3) can be

written as:

t " n
n = ;  f  t s ,  *D, ,Y)  +2s : ,DDw, ,  +s . ,Dr , ) ' i

- 0

+ 451,D66y.:" + 4(55,DftW. + Su..Dro{"Y.,,.)ldy

b
t ^- 
)S.,,qYdy @)
0

tf f(y) is priorly specified, eq. (3) can be

written as:

1 u ,
r :; f [E,o,,lx.;. +2s2),Dt2xx.,, + s,,DrrX2 +

- 0

4 S 4 r- D 66X,2, + 4( 5 6, D ftX,,{,, * S r, D ruXX .,)ldx

- 
lS,,qXdx 

(5)
0

where:

-  
o r , , ,

s,, = lx.',,dx, sr. = lxx.,dr, sr, = [x'ax
0 0 0

u a a

so, = 
[xt dx, sr" : [x.,x',dr,su, 

: 
Io ,*

0 0 0

J?,  = 
J, {dx

D D

-  f " z  ,  n  f ' ^ '5,,  = 
)Y.r,dy. Jr,  = 

JYY., ,dY.
0 0

b b

S^,  = lY idy.  S. ,  =  l  Y ,Y , .dy.J  , '  -  J
0 0

b
^  |  t ,  t

J 7 v  =  
J r q y
0

h
^  I  - - )  .

5 , .  =  l f - d l
0

b

su, = 
[YY.rdy

(6)
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When X(,r) is priorly specified, to obtain

the equilibrium equation, the variational
principle requires the stationary condition for
the functional equation (4), AI : 0. The
procedure yields the following governing ODE
and the associated boundarv conditions (BCs):

, ' l1Y ' ' l -Y
S,,4, A + 2(52.Dr. - 2S.*.4" la

LIV 6-

+s,,4,I:  Sr,q

BCs along y- 0 and y-b are :
Either:

. l 1 v  . t v

S,,D., ,* f r  + (S.,Dr2 -451,Q')+
qv qv

-Zq ,O, . f  =  O (8)

o r  d Y = 0  ( 9 )

And either:
r )  r r

5,,  D.. t :+2.s^.D,^ q + S,,D,.Y =o (  to)' - - d ) ' '  ' ' ' b

o r  6 Y . = 0  ( l l )

These conditions, eqs. (8)-(l l), correspond to
the following edge supports:

Simply supported edge: eqs. (9) and ( l0)
Clamped edge: eqs. (9) and (l 1)
Free edge: eqs. (8) and (10)

When f(l) is priorly specified, the

variational principle requires that the first
variation of functional equation (5) to equal
zero. The procedure yields the following
governing ODE and the associated BCs:

) 4 v  . 1 : v
Sr, D,, TIf + 2(S:, D,, - 2S.*, D.,\+' clx clr-

+S. ,D. .X :  Sr ,4 (12)

BCs along -r:0 and x:d are'.
Either:

) l v
S, ,4 ,T+(S , ,4 ,

ax
-2Sr,D.uX:0

o r  5 X : 0

And either:
. t 2  w

S,,q =+2,S, , ,q .
dx'

o r  d X .  - 0

,lY-4E D".);
. 

LLX

(l 3)

(  l 4 )

1 ' * S , ,  D , , X = o  ( 1 5 )
tu

(  l 6 )

Hence, we have completed the derivation of
two sets of ODE for iterative calculation. One
set is for X(r) specified beforehand, and the

other set is for I(y) specified beforehand. Next

the exact solutions for both sets of differential
equations wil l be obtained.

3. Solutions of the iterative ODE
From eq. (7), one has the following fourth

order ODE.

doy  ,  . , .  d tY
r - - ^ r  r  + k , I ' = 4 ,  ( 1 7 )

dy dy-

where :

,  ( s . ,  D , ,  - 2So ,D^^ )
t  r u f'  S,,D' ,

,s, D
k. =___r_i____r_' (19)' 

S,'Drt

S _ q
q,  = ^- -  (20)

S,.D,

The characteristic equation ofeq. (17) is :

s ' + 2 k r s t l k . = 0  ( 2 1 )

whose four roots are :

(7)

(22)

Depending on the values of k, and k., and

since fr, is always positive, there are three kinds

of roots rn eq. (22). Therefore, the general
solution of eq. (17) can be written in one of the
followins three forms:

35



Y(y) = A, sin(p,y) + B, cos(p,y) +

C, sin(pry) + Q cos(p,y) + q, I k, (23)

Y(y) =[A, cos(p,y)+ B, sin(pry)]cosh(p,y) +

[C, cos(pry; + D,.sin(pry)]sinh(p,y)+ q, I k,
(24)

Y(y)= l ,  s inh(p,y)+8, cosh(p,y)+

C, sinh(pry) + D, cosh(p.y) + q, I k, (25)

The conditions for each type of solution are
as follows.
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K r =
(s,,4, - 2E, Doo )

s,,,D, ,
,s,. D,,

- s.,,D, ,
sr,4

S,,D' '
whose four roots are :

s r . . : . , .q  =  t

Similarly, three possible general solutions
for this case are:
x(x) =,4, sin(p,r) + B, cos(p.,r) + C. sin(p.x)

(30)

(3  1 )

(32)

n l ' l

l . l f  h  > 0  a n d
roots are imaginary, eq.
:

sr. ,  = t iPr,

( k i  - k r )>0 ,  a l l  f ou r

(23) is the solution with

s..o = Xipr, where

(27)

four

P , = l k , +
l-r-

p, : lkl 
- 'lk: - k' (26)

2. I f  k t  <  0 or  t ,  >  0 and (k :  -kr )  <0,
roots are in complex conjugate pairs, eq. (24) is
the solution with :

sr . ,  :  p rX ip r ,  s r , ^  :  -p r t ip r ,

I
P , = -  -

J2

f -

' ltlkt - k' ,

I I -

P z = i { t / k ,  + k '
1 Z

3.  l f  k t  < 0 and 0 <kr .kr ' �  ,  a l l

roots are real, eq. (25) is the solution with :

s t .z :  !p t ,  s3.4 :  *  pr ,  where

Similarly, if Y(y) is known, eq. (12) can

be arranged as :

+D, cos(por)+ q,l ko (34)

X(x) : [], cos(p.x) + B, sin(p.x)]cosh(prx) +

[C. cos(pox) + D, sin(pox)]sinh(p.,x) + q,I ko
(35)

X(") : ,{ sinh(p,r) + B, cosh(p,x) +

C, sinh(pox) + D, cosh(p, x) + q, I ko

The conditions for each type of solution are
as discussed previously. The roles of

k, ,k2,  P. ,  Pz are rePlaced bY k. ,ka,  P3,  P, t ,
respectively.

4. Iterative procedure
To obtain the solution usually requires only

a few iterations. The first calculation is to use
the assumed function X(x) to obtain the exact

solution of )'(y) and then use this Y(y) to

obtain the exact solution of X(x). Hence, the

following algorithm is devised.
1. Assume an initial solution X(r) in the

x direction which may or may not
satisfy any boundary conditions, and

then evaluate kr,k, according to eqs.

(18 ) - (1e ) .
2. Calculate the four roots in eqs. (26)-(28)

and select the form of solution I(y)

from eqs. (23)-(25) corresponding to the
roots.

3. Apply the BCs to the solution I(y) and

determine all their constants. Hence, the
solution IZ(y) is obtained. This

(36)

(28)

doX ,  " , -
clx

where :

d ,X------'-* koA = Q,
ax

(2e)
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completes the simPle Kantorovich
method.

4. For the extended Kantorovich method,

use the Y(y) obtained in steP 3 to

evaluate k3,ko according to eqs. (30)-

(31 ) .
5. Calculate the four roots and select the

form of solution X(x) from eqs. (34)-

(36) corresponding to the roots.
6. Apply the BCs to the solution X(x)

and determine all their constants.
Hence, the solution X(x) is obtained.

7. The complete solution is

w(x,y) - X(x)Y(y). With an assumed
geometry and materials, calculate the
deflection w, say at its center, and
compare its value with the previous one.
If the difference satisfies the specified
tolerance. the last solution is taken as the
final solution. This comPletes the
extended Kantorovich procedure.
Otherwise continue the iterative
calculation by repeating steps I to 3
using the most recent X(x) as the trial

function.
Observe that if the assumed initial function

in step I is identical to the solution, the first
iteration will give good results.

"*"o"o.t"ro,,i"nr,ra$ Boundaryconditions:SCSC

Fig. I Boundary conditions of plate denoted by
S, C, and F

5. Numerical verification and accuracy
The iterative procedure outlined in the

previous section may be applied to rectangular
plates with any combinations of simple suppoft
(S), clamped support (C), and free edge (F). A
simple-clamped-simple-free (SCSF) plate as
shown in Fig. I is a specimen with simple
suppofts on I - 0 and 1 

-- b, and free and
clamped on .r : 0 and x : a, respectively. The
other example in Fig. I is a SCSC specimen
which is simply supported on I : 0 and y : b,
and clamped on .r : 0 and x : a. The iterative
example for a symmetric cross-ply, [0/90].,

Thammasat Int. J. Sc. Tech.. Vol 11. No. 1. Januarv-March 2006

CCCF square plate, subjected to a uniformly
distributed load is illustrated in Tablel '
Mechanical properties of this plate are

t = r t ,  
G , r=0 .582 ,  v , r=0 .25 .  The  f i r s t

iteration begins with assuming the function
I  1 7 Y  I

X(x)  is  s in l - : : :  I  and solv ing for  Y(Y)
\ a  /

according to eq. (17). This selected function is
not required to satisfy the F-C boundary
conditions on ;r : 0 and x : a. The function

I/(y) obtained from the first iteration denoted

as A is forced to satisfy the boundary conditions
in the y-direction automatically. The non-
dimentional out-of-plane displacement

(  n.n ' ' t
w(x . l )= l -  lw (x . y )  i s  p lo t t ed  i n  t he  l as t

\ q a  )
column of Table l. Its value evaluated at

x:0,y: b I 2 is used as the convergent

criterion. Notice that w(0,b l2) = 0 in the first

iteration because the assumed function X(x)

does not correspond to the free edge. The second
iteration employs function "A" obtained from

the first iteration as an assumed function I(y) .

The solution X(x) obtained from the second

iteration is denoted as "B" with

w(0,b l2): 0.00900 . The third iteration is

performed using the function "8" from the
second iteration, which yields the solution "C"

with w(o,b I 2) = 0.009236 . The fourth

iteration gives function "D" with

w(O,b l2): 0.009258 . The next iteration

yields the same value of w(O,b l2). Hence, the

iteration processes conclude with w(O,b l2)

converging to 0.009258 for the CCCF, [0/90],
square plate.

The present method is numerically verified
by comparing the solution obtained from this
method with those of known isotropic and
laminated plate solutions of various
combinations of suppoft. In Tables 2-6,
deflections and bending moments of uniformly
loaded rectangular isotropic plates of CCCC,
CSCS, CSFS, CSSS and SSFS are compared
with the exact solutions in the book of
Timoshenko and Woinowsky-Krieger [10]. The
convergence of the solution requires only three

c

. J t



iterations. Here the non-dimensional variables of
isotropic plates are defined as follows.
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(37)

the variational principle to the total potential
energy, yields a set of ODE in the x or y
direction. These ODE and the associated
boundary conditions are used in the iterative
calculations to obtain the deflection function.
The procedure is repeated until the deflection at
a specified point converges to the specified
tolerance. The final product of X(x) and Y(y)

indicates the solution of the deflection function.
The extended Kantorovich method is

verified numerically by comparing the
deflections and bending moments with the
known solutions in references [0] and [2]. The
results for isotropic and cross-ply laminated
plates agreed very well. Therefore, the extended
Kantorovich method is validated for isotropic
rectangular plates and composite plates with
unidirectional or cross-ply symmetric stacking
sequence, i.e. specimens with D16: Dzo: 0. For
specimens with the presence of Dro and D26, i.e.
angle-ply laminates; the approximation of the
displacement function is required to include
additional terms in order to simulate the actual
deflection pattems. The approximate function
could be in a form of

,\*, y) = X,(x)Y,(y) + X r(x)Yr(y) + Xr(r)Y.(y)

which will lead to iterative calculations
involving three sets of simultaneous ODE. The
method is prohibitive without efficient software
for ODE solving [1]. Solving these ODE are
tedious and not in the scope of this study.
Webber [12] also suggested simplification of
multi-term solutions by assuming that X, (x)

and {(y),obtained from the first iterative

procedure, were held constant while Xr(x) and

)', (y) were determined through the iterative

procedure. New numerical examples of
specimens with combinations of simple,
clamped, and free boundary conditions are also
included in our work.

An advantage of this proposed method is
that there is no need to solve the governing
partial differential equations. They are
transformed to a set of ODE with an assumed
displacement function. Another advantage is
that the initial assumed displacement function in
the first iteration could be arbitrarily selected
regardless of the type of boundary conditions.
The displacement functions are automatically
forced to satisfu the boundary conditions in the
next iterations.

( r )
w = w l  o  I '

\qa ' /
M.

M , : - i '' qa-

t t ,= \ ,  una

The present method applies to
symmetric cross-ply plates of SSSS, SCSS,
SCSC and SSSF. SCSF is also verified with the
available Levy-type solutions [2] as shown in
Table 7. The non-dimensional deflection

tuncr ion  is  w(x .y t=(L+]q* . r r .
\ q q  )

Convergence to the exact Levy-type solutions is
very fast within four iterations, even although
only a one term solution is used and the initial
assumed function does not satisfy the boundary
conditions. Hence, it is verified that the
extended Kantorovich method can be used for
solving the bending problem of isotropic and
symmetric cross-ply laminated plates with high
accuracy and effi ciency.

6. Other numerical results
Numerical results for symmetric cross-ply

laminated plates with complicated BCs, which
are not available elsewhere, are shown in Table
8. They are CCCC, CCCS and CCCF plates

with stacking sequence of [0/90]., * = rt ,
L 2

Grr:0.58r ,  v tz :0.25 .  The requi red number

of iterations for the results is only four. The
deformed configurations of square plates in
Tables 7-8 are shown in Fig. 2 also.

7. Conclusion and discussion
Bending problems of isotropic and

symmetrically cross-ply laminated plates are
solved efficiently by the extended Kantorovich
method. The boundary conditions of the
rectangular plates can be any combinations of
simple support, clamped and free edges.
Although the solution by Kantorovich method is
obtained from solving a set of ODE, this method
requires a series of iterative calculations, so it is
considered to be a semi-analytical method. By
assuming that the out-of-plane displacement
function of plates is separable and either one of
X(x) or )z(y) is known beforehand, applying
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Fig. 2. Deflection of plates with various edge supports
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lteration
No. X(x) Y(y)

Non-dimensional Defl ection

w(x,y)

( ^ \
s m l  - l

\ . 4  )
A

l
l
l
I

l

2 B A

3 B C

4 D C

"i-->.-
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Table 1. Iteration example for [0/90], plate with CCCF boundary condition

Nore:  E,  I  EZ :  25  ̂Gn= g.5E2.vr ,  =  0.25

A=( -0 .0071cos ( l . t r y ) cosn ( : . 021 ) -o .ooaos in (3 .17y )cosh (3 .62 - r , )+0 .0075cos (3 .17 ) , ) s i nh (3 .62 , f  )

+ 0.0086sin (3.171) s inn (r .ou-v)  + o.oor r l  L

E .h

s=0 .3390cos (2 . t : , r ) cosh (2 .28 r ) - 0 .+a :o r ; n ( z . t : x ) cosn (z . z t x ) - 0 .4642cos (2 .13x )s i nh (z . zs - r )

+ 0.0048sin (2.  l3r)  s int ,  (  z .ztx)  + t .zozs

c  = (  0 .0214cos (z . r sy ) cosn (2 . :+y )  o .ozzzs in ( z . r : y ) cos t ' ( z . r 4y )+0 .0204cos (2 .15 . v ) s i nh (2 .34 ) , )

+  0 .0 l 68s in  ( 2 .  t s - r ) . i n t  ( 2 . :  a  y )  +  0 .021  a )  L

E.h

D=0 .3345cos (2 . r r x ) cosh (2 .27 . r )  o .+ l o t r l n ( z . t t x ) cosn (z . zz . r ) - 0 .4704cos (z . t t " ) s i n i r ( z . zzx )

+ 0.0053sin (  2.  1 1r)  s intr  (  z .zzx )  + t . l tz :

4 1
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Table 2. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CCCC)
wi th v :  0.3

Table 3. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CSCS)
wi th v :  0.3

Table 4. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CSFS)
wi th v :  0.3

bla Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

w

x:al2,y:bl2

w
x:al2,y:bl2 M ,

x:a, y-b12
M"

x-a, y-bl2
M ,

x:al2,y-b
M y

x:a12, y--b

0.5 0.00016 -0.0145 -0.0214

1 . 0 0.00126 0.00126 -0 .0513 -0.0522 -0.05 r 3 -0.0522

1 . 5 0.00220 0.00220 -0.0757 -0.0776 -0.0570 -0.058 r

2.0 0.002s4 0.00253 -0.0829 -0.08s5 -0 .0571 -0.0582

2.5 0.00260 -0.0861 -0.0583

1 n 0.00261 -0.08s4 -0.0583

bla Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

w
x:al2,y:bl2

w
x:al2,y:bl2 M ,

x:al2ry:bl2
M,

x:al2,y:b12

A T
1vt  )

x:a/2. v:b

i / f
lva )

x:al2.y:b
0.5 0.00016 0.0035 -0.0217

1 . 0 0.00192 0.0019 t 0.0244 0.0240 -0.0691 -0.0720

1 . 5 0.00531 0.00532 0.0585 0.0578 -0. I 049 -0.t077

2.0 0.00844 0.00843 0.0869 0.0860 -0.1 19 r -0.1221

2.5 0.01049 0.1037 -0.t266

3.0 0 . 0 1 1 6 8 0 . 0 1 1 6 7 0.1t44 0 . 1  1 3 6 -0.t246 -0.t278

bla Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

w
x:al2,y:b

w
x:al2,y:b M,

x:al2,y:b
M ,

x:a12, y:b
M ,

x:a12. v:0
M ,

x:al2,y:0
0 .5 0.0036 0.0036 0.0293 0.0285 -0.0797 -0.0824

1 . 0 0 . 0 1 1 3 0 . 0 1 1 2 0.0972 0.0959 -0.1 1 90 -0.t220

t . 5 0 . 0 1 4 1 0 .0141 0. l  230 0.t220 -0.1240 -0.t270

2.0 0 .0150 0.0149 0 . 1 3 1 0 0.r295 -0 .1250 -0.1280

2.5 0 . 0 1 5 1 5 0 . 1 3 1 5 -0.1282

3.0 0 .0152 0.0152 0. l  330 0.1 32 r -0.1250 -0.1 283

^ a
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Table 5. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CSSS)
wi th v :  0.3

Table 6. Deflections and bending moments of uniformly loaded rectangular isotropic plate (SSFS)
wi th v :  0.3

bla Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

w
x:a/2,y:bl2

w
x:al2,y:bl2 M,

x:al2,y-bl2
M ,

x:al2,y:bl2
M ,

x:a12. v:0
M ,

x:al2,y:0
0 .5 0.0003 0.0003 0.0058 0.0058 -0.0305 -0 .0314

1 . 0 0.0028 0.0028 0.0340 0.0336 -0.0840 -0.0865

1 . 5 0.0064 0.0064 0.0690 0.0685 -0. I 120 - 0 . 1  l 5  t

2.0 0.0093 0.0093 0.0940 0.0934 -0.t220 -0.1246

2.5 0 .01 r0 0. I  080 -0.r275

3.0 0 .0r  19 0 . 1  1 5 9 -0.t282

bla Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

Exact
Solution

Present
Solution

w
x:al2,y:b

w
x:al2,y:b 14,

x:al2,y:b
A4,

x:al2,y:b
Ir l

x:al2.v:bl2

irf

x-al2.v:bl2
0.5 0.00710 0.00709 0.0600 0.0594 0.0220 0.0227

1 . 0 0 .01286 0.01 284 0. I  120 0.1  106 0.0390 0.0392

1 . 5 0.01462 0.01460 0.1280 0.1265 0.0420 0.0422

2.0 0 .01507 0.01506 0.1320 0 . 1 3 1 0 0.0410 0.0414

2.5 0 . 0 1 5 1 8 0 . 1 3 1 9 0.0401

3 . 0 0 .01520 0.01520 0.  I  330 0.t322 0.0390 0.0390

43
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the Levv solution and Kantorovich method

Table 8. Non-dimensional deflections of uniformly loaded rectangular [0/90]. plates
determined from the Kantorovich method.

Table 7. Non-dimensional deflections of uniformly loaded rectangular [0/90]. plates determined from
on

bla 0.5 1 . 0 1 . 5 2.0 2 .5 3 .0

SSSS
x:al2,y:bl2

Levy
Solution 0.00204 0.00680 0.00768 0.00746 0.0072r 0.00120
Present
Solution 0.00203 0.00679 0.00761 0.00746 0.00120 0.00710

SCSS
x:al2ry:bl2

Levy
Solution 0.00149 0.00305 0.00303 0.00288 0.00283 0.00283
Present
Solution 0.00 r48 0.00303 0.00301 0.00287 0.00281 0.00281

SCSC
x-al2,y:bl2

Levy
Solution 0.00106 0.00157 0.00146 0.00141 0.00142 0.00142
Present
Solution 0.00107 0.00156 0.00146 0.00141 0 . 0 0 1 4 1 0.00142

SSSF
x:o,y:bl2

Levy
Solution 0.00277 0.04698 0.2  r880 0.57601 1 . 1 6 8 7 0 1.99502
Present
Solution 0.002'76 0.04879 0.21836 0 .57838 L 1 6589 1.99063

SCSF
x:0,y:bl2

Levy
Solution 0.00285 0.03063 0.05950 0.07r07 0.0737 | 0.07290
Present
Solution 0.00284 0.03050 0.05926 0.07078 0.07341 0.07261

Note: E, f E, = 25, Gn : Gt3 = 0.5 E 2,vr, 
:  0.25

bla 0.5 1 . 0 1 . 5 2.0 2 . 5 3 . 0
CCCC

x-al2-v-bl2 0.00044 0.00143 0.00149 0.00143 0.00  t  41 0.00141
CCCS

x:al2.v:bl2 0.00049 0.00247 0.00300 0.00293 0.00285 0.00283
CCCF

x:0,v:bl2 0.00050 0.00926 0.03264 0.05490 0.06674 0.07094
Note: E, f E, = 25, Gr, = g.5E 

2,vr, 
:  0.25

++


