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Abstract

The extended Kantorovich method is employed to solve the bending problem of symmetrically
laminated composite rectangular plates with various edge supports. The variational principle with a
separable displacement function is utilized to derive a set of governing ordinary differential equations
whose exact general solutions are obtained. The solution of the displacement function is determined
from iterative calculations of these governing equations using an initial trial function that can be
selected arbitrarily. The convergence rate for cross-ply laminated plates is very fast, within only a few
iterations. The accuracy of this method is validated numerically with the available Levy-type
solutions. The results demonstrate that the proposed semi-analytical approach can be used to solve
efficiently the bending problem of isotropic and symmetric cross-ply laminated plates with any
combinations of simple, clamped and free supports. New numerical examples of symmetric cross-ply
plates with complicated boundary conditions are also presented.
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1. Introduction arc usually employed. The following proposed
Due to their high stiffness-to-weight and method of calculation can be used with any
strength-to-weight ratios along with other combinations of simple, clamped and free
desirable properties, laminated composite supports
materials are increasingly considered in In this paper, the Kantorovich method [5] is
mechanical, civil, and aerospace engineering extended to obtain the bending solution of
applications. Furthermore, composite materials symmetrically laminated rectangular plates with
can be designed to have the desired properties in various  combinations of the boundary
the specified directions without over-designing conditions. Earlier, Kerr [6] used the extended
in other directions. In designing plate Kantorovich method for the problem of bending
components to withstand a particular type of and buckling of an isotropic rectangular plate
loading, a solution for stress analysis must be successfully. The efficiency and accuracy of the
obtained first, There have been studies on stress method have also been demonstrated in the
analysis of laminated composite rectangular stress analysis of clamped rectangular isotropic
plates, but closed-form solutions are possible plate by Kerr and Alexander [7] and clamped
only for the case for which all or opposite edges rectangular orthotropic plate by Dalaei and Kerr
are simply supported [1, 2]. For other types of [8] also. Aghdam and Falahatgar [9] employed
boundary conditions, either approximate the extended Kantorovich method to the bending
methods such as the Ritz method [3, 4] or problem of moderately thick clamped laminated

numerical methods such as the FEM and BEM plates. Although the extended Kantorovich

o8]
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method is based on the variational principle, the
works of several researchers, e.g., [7, 8], have
shown that initial trial functions are neither
required to satisfy the geometric, nor the force
boundary conditions, because the iterative
procedure will force the solution to satisfy all
boundary conditions eventually. Furthermore,
the proposed method reduces the problem of
solving the partial differential equations to a set
of ordinary differential equations in the x and y
directions. These two outstanding features make
the extended Kantorovich method more
attractive than the Galerkin or Ritz methods for
certain circumstances.

2. Derivation of the iterative differential
equations

The extended Kantorovich method is a
semi-analytical method which requires iterative
calculation by reducing the governing partial
differential equations to two sets of governing
ordinary differential equations (ODE). These
iterative equations are derived by the variational
principle because equations for all boundary
conditions are established automatically. The
total potential energy for bending of
symmetrically laminated composite plates
subjected to a uniform lateral load g is given by

Reddy {2] as:

II=U+V
= % :jzj[Dl Wl 2D, w, w, +Dyw
+4Dgw,;, +4(Dyow, +Dyew,  Iw, | Jdxdy
ab
— [ [qwaxdy (1)
00

where comma denotes the differentiation with
respect to the subscripted variable and D,-,- is the

bending stiffness of the laminated composite
material.

For the classical Kantorovich method, the
solution w(x, y) is assumed to be separable as:

w(x, ) = X ()Y (y) @

Substituting Equation (2) into (1), the total
potential energy becomes:

34

Y XY+

1
2 XX

ah
IM=— -[J.[DHX.Z\'XYZ +2D|2X
00
Dy XPY2 +4D X Y + 4D, X Y+

3)

a b

D, XY )X Y, Jdxdy - [ [qXVdrdy
00

If X(x) is priorly specified, eq. (3) can be
written as:
1’ : :
= 5 I[Sl,xDlly + 252,\~D12YY,,\-_V + S},\-Dzzx,\)-
0

+ 4S4XD66X5 + 4(S5XD|6Y}/.)’ + S(),rDZ(»Y.yY.);\')]dy

b
~ [S,.q¥dy (4)
4]

If Y(y) is priorly specified, eq. (3) can be
written as:

1 ,
n=2 j[s3yz)l X2 428, D, XX+, D X+
0
4S4yD66X,i + 4(S6}‘D16X,XX,)CX + SSyDzoXX.x )]dx

- J.S7qudx (5)
0

where:

0 0 ’

Sy = (IXidxs Ss, = ]X.,VX.xxdx’Séx = ]-XX.de
0 0 0

S, = andx
0

Sy, = th,f-ydy, S, = bfYY, LAy, Sy = ijQdy
0 0 0

b b b
S4,v = J.dey’ Ssy - J.Y:yY,Wdy’ Sﬁy = IYdey
0 0 0

b
S,, = [¥dy (6)
0
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When X(x) is priorly specitied, to obtain
the equilibrium equation, the variational
principle requires the stationary condition for
the functional equation (4), N1 =0. The
procedure yields the following governing ODE
and the associated boundary conditions (BCs):

4

d'y dy
S,.Dy, W +2(S,.D, ~ ?_SMD%)W

+5,.0,Y=S5, 4 (7
BCs along y=0and y=>b are :
Either:
d’Y dy
S}.xDzz W + (SZ.\'DIZ - 4S4.YD66)$
_2SS,YD](>Y = 0 (8)
or oY =0 (9)
And either:
d’y dy
S}xDzz — t ZSs,xD% -+ Sz.\-DuY =0 (10)
dy” dy
or 5YJ, =0 (1)

These conditions, eqgs. (8)-(11), correspond to
the following edge supports:
Simply supported edge: eqgs. (9) and (10)
Clamped edge: egs. (9) and (11)
Free edge: egs. (8) and (10)

When Y(v) the

variational principle requires that the first
variation of functional equation (5) to equal
zero. The procedure yields the following
governing ODE and the associated BCs:

is priorly specified,

5

dX
dX_Z

d*x
S3V\'D1 1 W + Z(Sz_yDlz - 2S4)‘D66)

+SU'D22X = an (12)

BCs along x=0 and x=a are:
Either:
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S,.D, ch_i( +(8,,D, - 4S4}_D66)%
=25, D, X =0 (13)
or o0X =0 (14)
And either:
S3.‘D”cj;—)z(+2SMDm%+SZ_‘,D,2X:O (15)
or 0X =0 (16)

Hence, we have completed the derivation of
two sets of ODE for iterative calculation. One
set is for X(x) specified beforehand, and the
other set is for Y () specified beforehand. Next

the exact solutions for both sets of differential
equations will be obtained.

3. Solutions of the iterative ODE
From eq. (7), one has the following fourth
order ODE.

5

d'y ay
—4+2kl—7+k2)/:q\. (]7)
dy dy’ '
where :
S, D,-2S, D
k. :( 212 1 Dss) (18)
S},\‘DZZ
D
kz — SL\' 11 (19)
S}‘(D22
S
g, =—u1 (20)
S}ADZZ
The characteristic equation of eq. (17) is :
st 42k s +k, =0 (21)
whose four roots are :
8254 = Bk £k —k, (22)

Depending on the values of &, and k,, and

since k, is always positive, there are three kinds
of roots in eq. (22). Therefore, the general
solution of eq. (17) can be written in one of the
following three forms:
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Y(y)=A,sin(p,y)+ B, cos(p,y) +

C,sin(p,y)+ D, cos(p,y)+q, 1k, (23)

Y(y)=[A4, cos(p,y) + B, sin(p,y)]cosh(p,y) +
[C, cos(p,y)+ D, sin(p,y)sinh(p,y)+q, / k,

(24)
Y(y) = 4, sinh(p,y)+ B, cosh(p,y) +

C, sinh(p,y)+ D, cosh(p,y)+q,/k, (25)

The conditions for each type of solution are
as follows.

1.If k, >0 and (k' —k,)>0, all four
roots are imaginary, eq. (23) is the solution with

81, =%ip;, S, 4 = Eip,, where
b= k, +\[k12 —kz ,
P, =k — k12 -k, (26)

2.If k, <0 or k>0 and (k' —k,)<0,
roots are in complex conjugate pairs, eq. (24) is
the solution with :

S, =D Tip,,

1

P :—EVVkZ —k .
1

P, =$\/\/kz +k,

3.0f k<0 and 0<k, <k, all four
roots are real, eq. (25) is the solution with :

S, =Ep;,

b= \/"kl + \/kl2 —k;
P :\/_kl_Vklz_kZ

Similarly, if Y(y) is known, eq. (12) can
be arranged as :
AP ¢
W + 2k3

where :

S0 =D Eip,,
where

@n

85, =%p,, where

(28)

D¢

2

+k,X =g, (29)
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o (SzyDlz - 254,\-D66)

k 30
’ SsyDll G0

SI\’D2Z
ky =— 31

SSyDll

S5.q
g, =— (32)

S}}'Dll

whose four roots are :
Si234 = i\/ —k; £ k32 —k, (33)

Similarly, three possible general solutions
for this case are:
X(x)= 4, sin(p,x)+ B, cos(p,x)+C, sin( p,x)
+D_cos(p,x)+q,/k, (34)
X(x)=[4, cos( p,x)+ B_sin( p,x)]cosh(p,x)+
[C. cos(p,x)+ D_sin(p,x)]sinh(p;x)+q /k,

(35)

X(x)= A, sinh(p;x)+ B, cosh(p;x)+

C,sinh(p,x)+ D _cosh(p,x)+q./k, (36)

The conditions for each type of solution are
as discussed previously. The roles of

k,ky, p,,p, are replaced by ki.k,,ps,p,,
respectively.

4. Iterative procedure
To obtain the solution usually requires only
a few iterations. The first calculation is to use
the assumed function X (x) to obtain the exact
solution of Y(y) and then use this Y(y) to
obtain the exact solution of X (x). Hence, the
following algorithm is devised.
1. Assume an initial solution X (x) in the
x direction which may or may not
satisfy any boundary conditions, and
then evaluate k,k, according to egs.
(18)-(19).
2. Calculate the four roots in eqs. (26)-(28)
and select the form of solution Y(y)
from egs. (23)-(25) corresponding to the
roots.
3. Apply the BCs to the solution Y(y) and
determine all their constants. Hence, the
solution  Y(y)is obtained.  This
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completes the simple Kantorovich
method.
4. For the extended Kantorovich method,

use the Y()) obtained in step 3 to
evaluate k,,k, according to egs. (30)-
3.

5. Calculate the four roots and select the
form of solution X(x) from eqgs. (34)-
(36) corresponding to the roots.

6. Apply the BCs to the solution X(x)
and determine  all their constants.
Hence, the solution X (x) is obtained.

7. The complete solution is
wix,y) = X(x)Y(y). With an assumed
geometry and materials, calculate the
deflectionw, say at its center, and
compare its value with the previous one.
If the difference satisfies the specified
tolerance, the last solution is taken as the

final solution. This completes the
extended Kantorovich ~ procedure.
Otherwise  continue the iterative

calculation by repeating steps 1 to 3
using the most recent X (x) as the trial

function.
Observe that if the assumed initial function
in step 1 is identical to the solution, the first
iteration will give good results.

G s a o s

Boundary conditions: SCSF Boundary conditions: SCSC
Fig. 1 Boundary conditions of plate denoted by
S,C,and F

5. Numerical verification and accuracy
The iterative procedure outlined in the
previous section may be applied to rectangular
plates with any combinations of simple support
(S), clamped support (C), and free edge (F). A
simple-clamped-simple-free (SCSF) plate as
shown in Fig. 1 is a specimen with simple
supports on y = 0 and y = b, and free and
clamped on x = 0 and x = a, respectively. The
other example in Fig. 1 is a SCSC specimen
which is simply supported on y = 0 and y = b,
and clamped on x = 0 and x = a. The iterative
example for a symmetric cross-ply, [0/90],

37

CCCF square plate, subjected to a uniformly

distributed load is illustrated in Tablel.
Mechanical properties of this plate are
E

=L =25, G,=05E,, v,=0.25. The first
E,
iteration begins with assuming the function

X(x) is sin[ﬂ) and solving for Y(y)
a

according to eq. (17). This selected function is
not required to satisfy the F-C boundary
conditions on x = 0 and x = a. The function
Y(y) obtained from the first iteration denoted
as A is forced to satisfy the boundary conditions
in the y-direction automatically. The non-

dimentional out-of-plane displacement
3

_ E.h
w(x, ) :L i

qa
column of Table 1. Its value evaluated at
x=0,y=5b/2 is used as the convergent
criterion. Notice that #{0,5/2) =0 in the first

iteration because the assumed function X (x)

]w(x,y) is plotted in the last

does not correspond to the free edge. The second
iteration employs function “A” obtained from
the first iteration as an assumed function Y(y).
The solution X(x) obtained from the second
iteration is  denoted as “B”  with
w(0,6/2)=0.00900. The third iteration is

performed using the function “B” from the
second iteration, which yields the solution “C”

with  w(0,b/2)=0.009236. The fourth
iteration gives function “D” with
w(0,b/2)=0.009258. The next iteration

yields the same value of w(0,b6/2). Hence, the

iteration processes conclude with Ww(0,b/2)

converging to 0.009258 for the CCCF, [0/90],
square plate.

The present method is numerically verified
by comparing the solution obtained from this
method with those of known isotropic and
laminated  plate  solutions of  various
combinations of support. In Tables 2-6,
deflections and bending moments of uniformly
loaded rectangular isotropic plates of CCCC,
CSCS, CSFS, CSSS and SSFS are compared
with the exact solutions in the book of
Timoshenko and Woinowsky-Krieger [10]. The
convergence of the solution requires only three
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iterations. Here the non-dimensional variables of
isotropic plates are defined as follows.

— D ~ M
w= w{—4J, M, =—, and
qa qa
_ M,
M =—. 37)
¥ ga
The present method applies to

symmetric cross-ply plates of SSSS, SCSS,
SCSC and SSSF. SCSF is also verified with the
available Levy—type solutions [2] as shown in
Table 7. The non-dimensional deflection
3

Eh
A ]w(x,y).
ga

Convergence to the exact Levy-type solutions is
very fast within four iterations, even although
only a one term solution is used and the initial
assumed function does not satisfy the boundary
conditions. Hence, it is verified that the
extended Kantorovich method can be used for
solving the bending problem of isotropic and
symmetric cross-ply laminated plates with high
accuracy and efficiency.

function is w(x,y)= [

6. Other numerical results
Numerical results for symmetric cross-ply
laminated plates with complicated BCs, which

are not available elsewhere, are shown in Table
8. They are CCCC, CCCS and CCCF plates

E
with stacking sequence of [0/90];, E1=25,
2

G, =0.5E,, v,, =0.25. The required number

of iterations for the results is only four. The
deformed configurations of square plates in
Tables 7-8 are shown in Fig. 2 also.

7. Conclusion and discussion

Bending problems of isotropic and
symmetrically cross-ply laminated plates are
solved efficiently by the extended Kantorovich
method. The boundary conditions of the
rectangular plates can be any combinations of
simple support, clamped and free edges.
Although the solution by Kantorovich method is
obtained from solving a set of ODE, this method
requires a series of iterative calculations, so it is
considered to be a semi-analytical method. By
assuming that the out-of-plane displacement
function of plates is separable and either one of
X(x) or Y(y) is known beforehand, applying

38

the variational principle to the total potential
energy, yields a set of ODE in the x or y
direction. These ODE and the associated
boundary conditions are used in the iterative
calculations to obtain the deflection function.
The procedure is repeated until the deflection at
a specified point converges to the specified
tolerance. The final product of X (x) and Y(y)
indicates the solution of the deflection function.
The extended Kantorovich method is
verified numerically by comparing the
deflections and bending moments with the
known solutions in references [10] and [2]. The
results for isotropic and cross-ply laminated
plates agreed very well. Therefore, the extended
Kantorovich method is validated for isotropic
rectangular plates and composite plates with
unidirectional or cross-ply symmetric stacking
sequence, 1.e. specimens with D= D= 0. For
specimens with the presence of Dy and Dag, i.€.
angle-ply laminates; the approximation of the
displacement function is required to include
additional terms in order to simulate the actual
deflection patterns. The approximate function
could be in a form of

wx, y) = X, () () + X, (0L (n) + X ()X (v)

which will lead to iterative calculations
involving three sets of simultaneous ODE. The
method is prohibitive without efficient software
for ODE solving {11]. Solving these ODE are
tedious and not in the scope of this study.
Webber [12] also suggested simplification of

multi-term solutions by assuming that X, (x)
and Y, (y),obtained from the first iterative
procedure, were held constant while X, (x) and

Y,(y) were determined through the iterative

procedure, New numerical examples of
specimens with combinations of simple,
clamped, and free boundary conditions are also
included in our work.

An advantage of this proposed method is
that there is no need to solve the governing
partial  differential equations. They are
transformed to a set of ODE with an assumed
displacement function. Another advantage is
that the initial assumed displacement function in
the first iteration could be arbitrarily selected
regardless of the type of boundary conditions.
The displacement functions are automatically
forced to satisfy the boundary conditions in the
next iterations.
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Fig. 2. Deflection of plates with various edge supports
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Table 1. Tteration example for [0/90]; plate with CCCF boundary condition

Iteration Non-dimensional Deflection
No. X(x) Y(y)

w(x, y)

.| T
1 sin| — A
a

2 B A
- -il:':f-'"-
.lll' L
o L rl'!‘ia’é':’
3 B C o ooe
5 U
o oom Pt
8T T T e <o
(T 7Tt 7 rves
(117 B s
HIH T
it
&
4 D C NS
PN
O
Af eo °

Note: El/EZ =25.G,, = O.SE2 ,V12 =0.25

12
A = (= 0.0071cos (3.17y ) cosh (3.62y ) - 0.0086sin (3.17) ) cosh (3.62) + 0.0075cos (3.17y ) sinh (3.62)

+0.0086sin (3.17y ) sinh (3.62y ) + 0.0071)£
Eh

B = 0.3390c0s ( 2.13x ) cosh (2.28x ) - 0.4836sin ( 2.13x ) cosh (2.28x ) - 0.4642cos ( 2.13x ) sinh (2.28x )
+0.0048sin (2.13x ) sinh (2.28x ) + 1.7028
C = (- 0.0214cos ( 2.15y ) cosh (2.34y ) — 0.0222sin (2.15y ) cosh { 2.34y ) + 0.0204cos ( 2.15y } sinh ( 2.34y)

3

+0.0168sin (2.15y ) sinh (2.34y ) + o.ozmﬂ_
EHR

D = 0.3345¢0s (2.11x ) cosh ( 2.27.x) — 0.4908sin ( 2.11x ) cosh ( 2.27x ) - 0.4704cos ( 2.11x ) sinh ( 2.27x)

+0.0053sin ( 2.11x } sinh ( 2.27x ) + 1.7123
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Table 2. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CCCC)

with v=10.3
b/a Exact Present Exact Present Exact Present
Solution Solution Solution Solution Solution Solution
W " M M M M
_ _ x=a/2,y=b/2 x x ¥ Y
x=a/2,y=b/2 x=a, y=b/2 x=a, y=b/2 x=a/2, y=b x=a/2, y=b
0.5 - 0.00016 - -0.0145 - -0.0214
1.0 0.00126 0.00126 -0.0513 -0.0522 -0.0513 -0.0522
1.5 0.00220 0.00220 -0.0757 -0.0776 -0.0570 -0.0581
2.0 0.00254 0.00253 -0.0829 -0.0855 -0.0571 -0.0582
2.5 - 0.00260 - -0.0861 - -0.0583
3.0 - 0.00261 - -0.0854 - -0.0583

Table 3. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CSCS)

with v=10.3
b/a Exact Present Exact Present Exact Present
Solution Solution Solution Solution Solution Solution
w w _ _ _ _
x=a/2,y=b/2 | x=a/2,y=b/2 M. M. M, M,
x=a/2,y=b/2 | x=a/2,y=b/2 | x=a/2, y=b x=a/2, y=b

0.5 - 0.00016 - 0.0035 - -0.0217
1.0 0.00192 0.00191 0.0244 0.0240 -0.0697 -0.0720
1.5 0.00531 0.00532 0.0585 0.0578 -0.1049 -0.1077
2.0 0.00844 0.00843 0.0869 0.0860 -0.1191 -0.1221
2.5 - 0.01049 - 0.1037 - -0.1266
3.0 0.01168 0.01167 0.1144 0.1136 -0.1246 -0.1278

Table 4. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CSFS)

with v=0.3
b/a Exact Present Exact Present Exact Present
Solution Solution Solution Solution Solution Solution
w w _ _ _ _
x=a/2,y=b | x=a/2,y=b M M M, M,y
x=a/2,y=b | x=a/l2,y=b | x=a/2,y=0 | x=a/2,y=0

0.5 0.0036 0.0036 0.0293 0.0285 -0.0797 -0.0824
1.0 0.0113 0.0112 0.0972 0.0959 -0.1190 -0.1220
1.5 0.0141 0.0141 0.1230 0.1220 -0.1240 -0.1270
2.0 0.0150 0.0149 0.1310 0.1295 -0.1250 -0.1280
2.5 - 0.01515 - 0.1315 - -0.1282
3.0 0.0152 0.0152 0.1330 0.1321 -0.1250 -0.1283

42




Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

Table 5. Deflections and bending moments of uniformly loaded rectangular isotropic plate (CSSS)

with v=10.3
b/a Exact Present Exact Present Exact Present
Solution Solution Solution Solution Solution Solution
w w _ _ _ _
x=a/2,y=b/2 | x=a/2,y=b/2 M, M. M, M,
x=a/2,y=b/2 | x=a/2,y=b/2 | x=a/2, y=0 x=a/2, y=0

0.5 0.0003 0.0003 0.0058 0.0058 -0.0305 -0.0314
1.0 0.0028 0.0028 0.0340 0.0336 -0.0840 -0.0865
1.5 0.0064 0.0064 0.0690 0.0685 -0.1120 -0.1151
2.0 0.0093 0.0093 0.0940 0.0934 -0.1220 -0.1246
2.5 - 0.0110 - 0.1080 - -0.1275
3.0 - 0.0119 - 0.1159 - -0.1282

Table 6. Deflections and bending moments of uniformly loaded rectangular isotropic plate (SSFS)

with v=10.3
b/a Exact Present Exact Present Exact Present
Solution Solution Solution Solution Solution Solution
w w _ _ _ _
x=a/2, y=b x=a/2, y=b M M. M, M,
x=a/2,y=b | x=a/2,y=b | x=a/2,y=b/2 | x=a/2,y=b/2
0.5 0.00710 0.00709 0.0600 0.0594 0.0220 0.0227
1.0 0.01286 0.01284 0.1120 0.1106 0.0390 0.0392
1.5 0.01462 0.01460 0.1280 0.1265 0.0420 0.0422
2.0 0.01507 0.01506 0.1320 0.1310 0.0410 0.0414
2.5 - 0.01518 - 0.1319 - 0.0401
3.0 0.01520 0.01520 0.1330 0.1322 0.0390 0.0390
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Table 7. Non-dimensional deflections of uniformly loaded rectangular [0/90], plates determined from
the Levy solution and Kantorovich method.

b/a 0.5 1.0 1.5 2.0 2.5 3.0

Levy
SSSS Solution | 0.00204 0.00680 0.00768 0.00746 0.00721 0.00720

x=a/2,y=b/2 Present
Solution 0.00203 0.00679 0.00767 0.00746 0.00720 0.00710

Levy
SCSS Solution 0.00149 0.00305 0.00303 0.00288 0.00283 0.00283

x=a/2,y=b/2 | Present
Solution 0.00148 0.00303 0.00301 0.00287 0.00281 0.00281

Levy
SCSC Solution | 0.00106 0.00157 0.00146 0.00141 0.00142 0.00142

x=a/2,y=b/2 Present
Solution 0.00107 0.00156 0.00146 0.00141 0.00141 0.00142

Levy
SSSF Solution 0.00277 0.04698 0.21880 0.57601 1.16870 1.99502

x=0,y=b/2 Present
Solution | 0.00276 0.04879 0.21836 0.57838 1.16589 1.99063

Levy
SCSF Solution | 0.00285 0.03063 0.05950 0.07107 0.07371 0.07290

x=0,y=b/2 Present
Solution 0.00284 0.03050 0.05926 0.07078 0.07341 0.07261

Note: EI/EZ =25,G]2 :G13 =0.5E2,V12 =0.25

Table 8. Non-dimensional deflections of uniformly loaded rectangular [0/90], plates
determined from the Kantorovich method.

b/a 0.5 1.0 1.5 2.0 2.5 3.0

cccce
x=a/2,y=b/2 | 0.00044 0.00143 0.00149 0.00143 0.00141 0.00141

CCCS
x=a/2,y=b/2 | 0.00049 0.00247 0.00300 0.00293 0.00285 0.00283

CCCF
x=0,y=b/2 0.00050 0.00926 0.03264 0.05490 0.06674 0.07094

Note: EI/E2 =25, G12 = 0.5E2 ,V12 =0.25
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