Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

A Comparative Analysis of P2P File
Sharing Mechanisms

Anjan Mahanta and Thanaruk Theeramunkong
Sirindhorn International Institute of Technology, Thammasat University
131 Moo 5 Tiwanont Rd., Bangkadi,

Muang, Pathum Thani, Thailand, 12000
anjan@Icct.ac.th and thanaruk @siit.tu.ac.th

Abstract

This paper gives a comparative study on multi-layer file sharing mechanisms in Peer-to-Peer
(P2P) systems. Based on a well-known P2P system named Gnutella, two system architectures, /-layer
and 2-layer Ngnu architectures are proposed in order to reduce network traffic and to gain better
scalability. These architectures can be applied to large-scale systems, such as e-government, e-office
and e-library, which need an efficient file-sharing mechanism. To examine the efficiency and
effectiveness of the proposed methods, a number of simulations are made with respect to three factors:
time-to-live’s (TTLs), the number of nodes and the number of queries. To compare these systems, the
number of messages and the mean query hits are measured and compared with the original flat

Gnutella system.

Keywords: peer-to-peer systems, distributed systems, Gnutella, 1L-Ngnu, 2L-Ngnu

l.Introduction

Recently, the peer-to-peer (P2P) systems
have emerged to be a focused architecture in
both significant social and technical points of
views. The P2P architecture refers to a class of
systems and applications that employ distributed
resources to perform a critical function in a
decentralized manner [1]. P2P systems usually
provide infrastructure for interpersonal
collaborative communities that share computing
power and storage space (e.g., Gnutella [2],
FreeNet [3]).
Currently, P2P systems have been used for a
class of systems and applications that employ
distributed resources to perform a critical
function in a decentralized manner. The
resources encompass computing power, data
(storage/content), network bandwidth, and
presence (computers, human, and other
resources). The critical function can be
distributed computing, data/content sharing,
communication and collaboration, or platform
services. Typical P2P systems reside either on
the edge of the Internet or in ad-hoc networks.
The advantage of P2P systems includes (1)
valuable externalities, by aggregating resources

52

through low-cost interoperability, (2) lower cost
of ownership and cost sharing, by using existing
infrastructure and by eliminating and
distributing the maintenance costs, and (3)
anonymity/privacy, by incorporating these
requirement in the design and algorithms of P2P
systems and applications, and by allowing peers
a greater degree of autonomous control over
their data and resources. In the past, P2P gained
visibility with Napster’s support for music
sharing on the Web [4]. As more recent P2P
technology, the Gnutella file sharing has been
introduced in [5]. In such applications, the
Gnutella protocol allows users to search for and
download files from other users connected to the
Internet. However, the Gnutella has several
limitations, such as high download failure,
scalability and security. Towards these problem,
this paper propose two new architectures, /-
layer and 2-layer Ngnu systems. By adding the
concept of layers into the original Gnutella
system, we can improve the download failure,
scalability and security. By means of simulation
experiments, we examine the efficiency and
effectiveness of the proposed methods with
respect to three factors: time-to-live’s (TTLs),
the number of nodes and the number of queries.

Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

5. File
Download

Servent A
A

4. Search
Response

1. Search
Query
) 4

Servent B
3. Search

2. Search Respons

query 2. Search

query

Servent C Servent D

Fig. 1: Gnutella decentralized P2P model.

The number of messages and the mean
query hits are evaluated and compare to the
original flat Gnutella system. In the rest of this
paper, the architecture of Gnutella is described
in section 2. The multi-layer Ngnu is proposed
in section 3. Section 4 shows the experimental
result of the simulations of multi-layer Ngnu.
The resulting analysis is given in section 5.
Finally, the conclusion is made in section 6.

2.Gnutella Architecture

This section gives a brief introduction to
Gnutella, the communication protocol used to
search for and share files among users [6], using
the example shown in Figure 1. Initially, to
share files on the Gnutella network, a user (say
the node A in Figure 1) starts with a networked
computer that runs a Gnutella client. Since this
node will work both as a server and a client, it is
generally referred to as a (Gnutella) "servent”
(i.e., a SERVer and a cliENT). The servent (or
node) A will then connect to another Gnutella-
enabled networked computer (e.g., B in Figure
1) and then A will announce its existence to B.
The node B will in turn announce its existence
to all of its neighboring nodes (e.g., C and D in
Figure 1) that the node A is alive. This pattern
will continue recursively with each new level of
nodes announcing to its neighbors that the node
A is alive. Once A has announced its existence
to the rest of the network, the user at this node
can now query the contents of the data shared
across the network.

Gnutella [7] uses Time-To-Live (TTL)-
based flooding to search for objects. This
announcement broadcasting will end when the
TTL packet information expires; that is, at each

53

level the TTL counter will be decreased by one
from some initial value until it reaches zero at
which point its broadcasting will stop. To
prevent users from setting this initial TTL value
too high, the majority of the Gnutella servents
will refuse packets with excessively high TTL
values. However, from the user perspective, the
maximization of the chances to find the required
file, means using a as high as possible, TTL
value. This is the trade-off point for this
network. A low TTL means to minimize the
usage of the network resources whereas a high
TTL value will maximize the QoS provided to
the users of the network. The Gnutella protocol
consists of five descriptors that are used by the
servents or the clients to communicate with each
other over the network. The descriptors follow a
set of rules as to exchange these descriptors. The
descriptors that Gnutella uses are defined in
Table 1.

Descriptor Description

Used to actively discover hosts on
the network. A servent receiving a
Ping descriptor is expected to
respond with one or more Pong
descriptors.

Ping

The response to a Ping. Includes
the address of a connected

Gnutella servent and information
regarding the amount of data it is
making available to the network.

Pong

The primary mechanism for
searching the distributed network.
A servent receiving a Query
descriptor will respond with a
Query Hit if a match is found
against its local data set.

Query

Query Hit | The response to a Query. This
descriptor provides the recipient
with enough information to
acquire the data matching the

corresponding Query.

A mechanism that allows a
firewalled servent to participate in
the file sharing.

Push

Table 1: Gnutella Descriptor Overview.

Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

 Cluster Head

@® Gateway Node

O Internal Node

Fig. 2: The 1L-Ngnu architecture.

3. 1-layer Ngnu vs. 2-layer Ngnu

Architectures

In Gnutella, the communication is high due
to the fact that the communication will
propagate from a node to all of its neighboring
nodes. Therefore, when time passes, the number
of issued messages grow exponentially. In the
worst case, the number of messages transferred
is kx(k-1) pairs, where k is the number of nodes
in the system. In order to solve this
exponentially growing communication, we
propose the concept of multi-layer file sharing
mechanisms, called Ngnu. Instead of a flat
structure like Gnutella, the nodes are arranged
into layers. In this paper, we propose two
versions of Ngnu, called 1-layer (1L-Ngnu) and
2-layer (2L-Ngnu). The Ngnu architecture is
dictated by geographical relationships between
nodes and “logical” hierarchy of clusters and
sub-clusters in which the members move as a

group.

3.1 The 1L-Ngnu Architecture

Figure 2 illustrates an example of the
physical clustering in the proposed 1L-Ngnu
architecture. In this architecture, the existing
nodes (computers) are grouped into a set of
clusters. Although it is possible to consider
different approaches in clustering the nodes,
distance constraints need to be considered in
order to reduce high traffic communication. In
each cluster, there are three main types of nodes;
namely (1) the cluster head, (2) gateway nodes
and (3) internal nodes. The cluster head acts as a

54

local coordinator of transmissions within the
cluster. Gateway nodes are located at the
boundary of the cluster, and performing
communication with nodes outside the cluster.
In general, each node in the cluster has their
unique identifier. When a new internal node
joins the network, it will register itself to the
cluster head. Therefore, the cluster head keeps
tracks of all internal nodes within its responsible
cluster. When a node sends out a request (a
query) for an object, it initially sends the query
to the cluster head. Later the cluster head
forwards the query request to all the existing
internal nodes present in its responsible cluster.
As done in Gnutella, the query request will be
propagated according to the reply message;
object found or object not found. When the
object is found in a particular internal node, the
cluster head will be informed and then it will
send the information, including its ID, of the
node which possesses the object, to the node
which made the request. Finally, a direct link
between these two nodes is established and the
object is transferred or shared. On the other
hand, if the requested object does not exist in the
local cluster, the cluster head forwards the query
request to the neighboring cluster head via the
cluster’s gateway nodes. If the requested object
is found in a neighboring cluster, a “virtual link”
between the requesting node and the node
holding the object will be established and then
the object is transferred or shared. The drawback
of the 1L-Ngnu with respect to Gnutella is the
need to continuously update information in the
cluster head when internal nodes join and leave
the network. On the other hand, 1L-Ngnu
provides security with node registration and
node identification and can handle scalability
because the entire system is divided into a set of
clusters with respect to its geographical location.
This feature is desirable since it is more likely
that a requested object tends to be available in
the same area, i.e., users belonging to the same
area normally possess same likes and dislikes.
At the same time, the 1L-Ngnu still holds the
P2P property within the cluster by propagating a
query from a node to its neighboring nodes.
However, for a remote area, the query is
processed in a centralized manner via the cluster
head. Hence, the logical partitioning of the
nodes into separate clusters could provide
scalability, security, improve query performance
and minimize download failures and reduce or

Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

1: EXECQUERY(query, respond)
2: begin

3: pid= GETPID();

4: if(FINDOBJECT(query)) then
5: respond = {pid};

6

7

8

else
if (TTL < threshold) then
nlist = GETNEIGHBOR(pid);
9: foreach nid in nlist
10: EXECQUERY(query, respondl)@nid;

11: respond = respond respondl;
12: else

13: respond = J;

14: endif

15: endif

16: if(ISCLUSTERHEAD(pid) AND

17: respond ==) then

18: clist = NEIGHBORCLUSTER(pid);
19: foreach cid in clist

20: EXECQUERY (query, respondl)@cid,
21: respond = respond U respondl;
22: else

23: respond = &,

24: endif

25: end

26 : INITIALQUERY(query, respond)

27 : begin

28: pid = GETPID();

29: if(ISCLUSTERHEAD(pid)) then

30: EXECQUERY(query, respond)@pid,
31: else

32: cid = CLUSTERHEAD();

33: EXECQUERY(query, respond)@cid;
34: endif

35: end

Figure 3: The pseudo code for 1L-Ngnu.

separate network support cost. The algorithm for
the 1L-Ngnu mechanism is shown in Figure 3.
When a node dispatches a query to find a
resource, the INITIALQUERY function will be
executed. The GETPID function returns the ID of
the node (pid) executing the function. The
ISCLUSTERHEAD checks whether the node is the
cluster head of that cluster or not. The
EXECQUERY function transfers the query for the
requested object to the node specified by its ID
(i.e., @pid or @cid). The CLUSTERHEAD
function outputs the ID of the cluster head node.

55

(/D Cluster
€ Sub-Cluster

® Gateway Node

O Internal Node

Fig. 4: The 2L.-Ngnu architecture.

The FINDOBJECT function returns 1 when the
object matching with the query is found inside
the node. The GETNEIGHBOR function returns
the list of neighboring nodes (nlist). The
NEIGHBORCLUSTER returns the list of cluster
head nodes which are neighbors to the current
node.

3.2 The 2L-Ngnu Architecture

The 2L.-Ngnu architecture aims to provide
the same functionality to that of the 1L-Ngnu
but more scalable with one more layers added.
For example, as depicted in Figure 4, the inner
layer (later called layer 1) of the 2L-Ngnu
system occupies a number of physical sub-
clusters in a cluster. In the figure, there are 4
sub-clusters forming a cluster. A cluster is
organized in the form of a 1L-Ngnu architecture.
That is, there are a sub-cluster head, gateway
nodes and the internal nodes for each sub-
cluster. In the outer layer (later called layer 2), a
system is virtually formed by a number of
clusters. In the outer layer there are no cluster
heads to communicate with the other clusters so
the Sub-cluster heads communicate with local
Sub-clusters as well as with the neighboring
Sub-clusters. Sub-clusters and clusters are
organized by taking geographical locations into
account.

8 Sub-Cluster Head

Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

In each sub-cluster, the sub-cluster head node
acts as a local coordinator of transmissions
within the sub-cluster. Analogous to the 1L-
Ngnu architecture, the sub-cluster head acts as
the cluster head in the 1L-Ngnu architecture.
When an internal node queries an object in the
network, the process is the same as the 1L.-Ngnu
architecture, except the request reaches the

1: EXECQUERY(query, respond)
2: begin

3: pid = GETPID();

4: if(FINDOBJECT(query)) then

5: respond = {pid};

6: else

7: if (TTL < threshold) then

8: nlist = GETNEIGHBOR(pid);

9: foreach nid in nlist

10 EXECQUERY(query, respondl)@nid;
11: respond = respond respondl;
12: else

13: respond = &

14: end if

15: endif

16: if(ISSUBCLUSTERHEAD(pid) AND
17: respond == J) then

18: clist = NEIGHBORCLUSTER(pid);
19: foreach cid in clist

20: EXECQUERY(query, respondl)@ cid,;
21: respond = respond respondl;
22: else

23: if (ISBOUNDARYNODE(pid)) then
24: glist = GATEWAYNODE(pid);

25: foreach gid in glist

26: EXECQUERY(query, respondl)@gid,
27: respond = respond U respondl;
28: else

29: respond = &,

30: endif

31: endif

32: end

33 : INITIALQUERY(query, respond)

34: begin

35: pid = GETPID();

36: if(ISSUBCLUSTERHEAD(pid)) then
37: EXECQUERY(query, respond)@pid,
38: else

39: cid = SUBCLUSTERHEAD();

40: EXECQUERY(query, respond)@cid,
41: endif

42 : end

Figure 5: The pseudo code for 2L-Ngnu.

boundary of the cluster. At the boundary, the
request is transferred to gateway nodes of the
neighboring cluster. The pseudo code for the
2L-Ngnu is shown in Figure 5. The 2L-Ngnu
code is similar to the 1L-Ngnu code, but also
includes the codes for handling boundary nodes,
appearing at line numbers 23 to 30. When the
request reaches a boundary between any two
clusters, the gateway (boundary) nodes dispatch
a query to the gateway nodes of its neighboring
clusters. The [SBOUNDARYNODE function
returns true if the current node (pid) is a
boundary node. The GATEWAYNODE function
returns the list of neighboring gateway nodes
(glist). Then the request is transferred to the
neighboring clusters via these gateway nodes.

4. Simulation Experimental Results
4.1 Experiment Environment

In order to evaluate the proposed
architectures, a simulator is implemented using
Visual Basic and its networking functions.
Using the simulator, a set of experiments is
made to compare the proposed system
architectures 1L-Ngnu and 2L-Ngnu to a
Gnutella-style P2P network [8]. The basic
scheme of the simulation is to initialize a P2P
file sharing system based on observed statistical
data and educated assumptions. Each peer of
Gnutella, domain and sub-domain of 1L-Ngnu
and 2L-Ngnu is simulated as a separate process,
and each of them maintains a FIFO queue for
incoming requests. A workload generator
continues generating query and download
requests, the intervals between successive
requests follow an exponential distribution. A
peer process is an infinite loop, which
continuously services incoming requests and
performs appropriate actions based on the
request type. To account for the dynamic nature
of the P2P network, we created a process that
emulates the behavior of peers leaving and
joining the network. The simulation used
various statistical distributions to simulate the
behavior or resource distributions within the
network. These data are derived from
measurement studies by Ripeanu et al. and
Saroiu et al. [8], and therefore our simulation is
close to real Gnutella networks.

Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

600 ¢
~—— Gnutella

—-1L-Ngnu
——2L-Ngnu

500 A

400 1

300 4

200 A

100 A

Number of Messages

0 T T T T T T T T T i
10 20 30 40 50 60 70 80 90 100

Number of Nodes

Fig. 6: Total network traffic in 2L-Ngnu,
1L.-Ngnu and Gnutella (TTL = 7, Time = 10 ms.)

4.2 Simulation Settings

The following assumptions are applied to
all the system architectures; Gnutella, 1L-Ngnu
and 2L-Ngnu for all experiments if no other
settings are specified.

e There are 10000 nodes with identical
capabilities participating in the network.

e The TTL value can be set to any value. The
default value is 7 if not specified. It is the
common value used in most Gnutella
networks.

e Two alternative queries are (1) random

query and (2) static query. A random query

is a query starting from a random location
and searching for some random objects
while a static query is one that starting from

a fixed location with a fixed time interval

and then searching for specified objects

The simulation duration can be set to any

length.
900 romi
w 11 = Gnutella |
% 80011 1L-Ngnu |
s 700 9| ~ 2I-Nenu |
& 600
= 500
3 400
b
& 300
Z 200
o
O 100 4
0
1 2 3 4 5 6 7

TTL Step

Fig.7: Number of generated messages in each TTL.

57

120% 7

100% 4

80% 1

60%

40% A

Mean hit rate

20%

~ Gnutella
- 1L-Ngnu/-
~ 2L-Ngnu

123 456 7 8 910
Time(secs)

0%

Fig. 8: Comparison of query hit rate.

4.3 Simulation Results

As the first step, the total number of
network messages is examined. With the TTL of
7, the system is simulated by varying the
number of nodes. The simulation duration for
each test is 10 milliseconds. The total numbers
of generated messages are shown in Figure 6.
From the result, as the number of nodes
increases the network traffic in Gnutella is much
higher than that of IL-Ngnu or 2L-Ngnu
throughout the entire simulation. The 1L-Ngnu
has the lowest network traffic. This is due to the
distribution of nodes into clusters as per their
geographical location.

As the second experiment, the network
traffic of the three systems is examined with
different TTL values starting from 1 to 7. By
default, the TTL value is set to 7. The result is
shown in Figure 7. When the TTL is small (1 or
2), there are not so many messages generated
and all the systems have almost the same
number of messages. However, when the TTL
value is set to a larger number, it is observed
that the Gnutella network generates much more
messages than the 1L-Ngnu and 2L-Ngnu do.
The 1L-Ngnu achieves the lowest network
traffic.

In the third experiment, we compare the
query hit rate percentages of these three
systems. In this experiment, the TTL is set to its
default value (i.e. 7), the number of nodes is set
to 10000 and the number of queries is set to 300.
The query hit is recorded by varying the time to
run the simulation. Initially, the Gnutella
network gains the lowest query hit rate of 60%,
1L-Ngnu has a query hit rate of 80% and 2L-
Ngnu has a query hit rate of nearly 90%. When

Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

the simulation duration is set longer, the query
hit rate increases for all the systems and finally
their query-hit rates are saturated to 100%,
especially after 10 seconds.

§) 1200

2 1000 [

S 800 T

=600

T 400 - ~ Gnutella

",% 200 1 - 1L-Ngnu

2 0 . ‘ ' -—ZF-Ngnu
2 4 6 8 10

Time(secs)

Figure 9: Number of messages with various
durations.

Figure 9 displays the simulation result of a
stable network of 100 nodes. The TTL is set to
the default value (i.e. 7) and the number of
queries is set to 300. It is observed that except
for the initial state, all the systems have almost a
constant number of messages when the
simulation is recorded with various runtime
durations. This means the traffic is almost stable
and independent of the time passed.

5. Conclusion

In this paper, two peer-to-peer (P2P)
system architectures for file sharing mechanism,
called 1L-Ngnu and 2L-Ngnu, are presented. In
the architectures, a multi-layer mechanism was
introduced to extend a well-known P2P system
named Gnutella. A cluster head is established to
be a local coordinator of transmissions within
the cluster. When a node joins the network, it
registers itself to the cluster head (or sub-cluster
head). The nodes belonging to the same
geographical location are grouped in the same
cluster (or sub-cluster). These system
architectures provide more scalable alternatives
to existing Gnutella algorithms [9], focusing on
the search and replication aspects. By simulation
experiments, it was found that the total number
of network messages in 1L.-Ngnu is considerably
less than both Gnutella and 2L-Ngnu. But if we
compare only the two systems, i.e. Gnutella and
2L-Ngnu, the number of messages generated in
the 2L-Ngnu are much less than that of Gnutella.

58

The 1L-Ngnu and 2L-Ngnu not only have less
network traffic than Gnutella but also provide
scalability, security by registering the users as
well as reduction in download failure due to the
unavailability of the cluster head or the sub-
cluster head. The 1L-Ngnu and 2L-Ngnu
architectures can be implemented as a part of
file-sharing applications such as e-government
and e-library [10]. In the future, in order for
Ngnu to establish itself among individuals and
organizations as a file sharing method of choice,
we are going to provide Ngnu with a naming
system for its dynamic nodes and objects. It is
also interesting to explore how a system with a
higher degree of layering performs.

6. Acknowledgement

The authors would like to thank Lampang
College of Commerce and Technology (LCCT)
for providing financial support through the
project. Many thanks are given to Dr.
Kritchalach Thitikamol for his useful comments
and suggestions. We also would like to thank to
Dr. Nimit Jivasantikarn for his encouragement
and useful comments.

7. References

[1] Mahanta A., Comparative Simulation
Analysis: Proposal of a new system
architecture — N-Gnu, In Proceedings of
International Conference on Telecomputing
& Information Technology (ICTIT-2004),
22-24 September 2004, Amman, Jordan,

pp. 244-250.
[2] Clip2, The Gnutella Protocol Specification
v0.4 (Document Revision 1.2),

Junel5,2001.
http://www9.limewire.com/developer/gnute
lla_protocol_0.4.pdf.

[3] TIan Clarke, Oskar Sandberg, Brandon
Wiley, and Theodore W. Hong, Freenet: A
Distributed ~ Anonymous Information
Storage and Retrieval System. In Proc. of
the ICSI Workshop on Design Issues in
Anonymity and Unobservability (LNCS
2009), Berkeley, CA, pp. 46-68, 2000.

[4] I Clarke, O. Sandberg, B. Wiley, and T.W.
Hong. Freenet: A distributed anonymous
information storage and retrieval system in
designing privacy enhancing technologies.
International Workshop on Design Issues in
Anonymity and Unobservability, LNCS
2009, pp. 46-66, 2001.

Thammasat Int. J. Sc. Tech., Vol. 11, No. 1, January-March 2006

[5] Dejan S. Milojicic, Vana Kalogeraki, Rajan
Lukose, Kiran Nagaraja, Jim Pruyne, Bruno
Richard, Sami Rollins, Zhichen Xu, Peer-
to-Peer Computing, Technical Report of
HP Laboratories Palo Alto, Report No.
HPL-2002-57, 8 March 2002.

[6] Kubiatowicz, J., Bindel, D., Chen, Y.,
Czerwinski, S., Eaton, P., Geels, D,
Gummadi, R., Rhea, R., Weatherspoon, H.,
Weimer, W., Wells, C., and Zhao, B.
OceanStore: An Architecture for Global-
Scale Persistent Storage. Proceedings of the
Ninth International ~ Conference on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS 2000), pp. 190-201, November
2000.

[7] Igor Ivkovic — Software Architecture Group
(SWAG) Improving Gnutella Protocol:
Protocol Analysis and Research Proposals,
Department of Computer Science,
Computer Networking Group Seminar
Series, University of Waterloo, Canada,
November 2001.

59

[8] Stefan Saroiu, P. Krishna Gummadi, and
Steven D. Gribble, “A Measurement Study
of Peer-to-Peer File Sharing Systems,”
Tech.Rep. 01-06-02, UW-CSE, June 2001.

[9]1 Kunwadee Sripanidkulchai, The popularity
of Gnutella queries and its implications on
scalability, Carnegie Mellon University,
Featured on O'Reilly's www.openp2p.com
website, Technical Report, February 2001.

[10]1B.Y.Zhao, J.Kubiatowicz and A.D.Joseph,
Tapestry: An Infrastructure for fault-
tolerant wide-area locating and routing.
Technical Report UCB/CSD-01-1141,
University of California at Berkeley, 2001.

[11]Schloss Elmau, Dabek, F., Brunskill, E.,
Kaashoek, F., Karger, D., Morris, R.,
Stoica, 1., and Balakrishnan, H. Building
Peer-to-Peer Systems with Chord, a
Distributed Lookup Service. Proceedings of
the 8™ Workshop on Hot Topics in
Operating Systems (HotOS-VIII),
Germany, pp. 81-86, May 2001.

