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Abstract

A nodeless finite element method is presented to predict low—speed and inviscid flow behavior.
The paper first describes 2D potential flow theory. Finite element formulations based on Bubnov—
Galerkin method and nodeless triangular element, the computational procedure and its boundary
conditions are then represented. The validated examples of the proposed technique are a rectangular
plate with periodic potential function problem, flow past a circular cylinder problem and flow past an
inclined ramp problem. The nodeless finite element results are compared to the solutions using linear
and quadratic triangular elements to assess the efficiency of the nodeless finite element method.
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1. Introduction

Potential flow is an inviscid and
incompressible  flow. There are many
applications that potential theory can predict the
nature of flow problems such as flow in pipes,
seepage flow, free surface flow, and etc. At
present, there are several numerical techniques
applied to predict potential flow behavior. The
finite element method is one of those methods,
that was employed to solve potential flow
problems for many years. For 2D potential flow
problems, the various element types such as
linear triangular element, quadratic triangular
element, quadrilateral element, and etc. are
commonly used for finite element calculation.

This paper presents a nodeless finite
element method for predicting the potential flow
behavior. A nodeless triangular element and its
element interpolation function are described.
Then, the computational procedure and its
boundary conditions are shown. Next, the
computational nodeless finite element solutions
are validated with the exact solution and finite
element solutions with linear and quadratic
triangular elements.
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2. Theory
2.1 Governing Differential Equation

Potential flow problem is governed by
Laplace’s equation as shown below.
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where ¢ is the velocity potential. The relation of

potential function and velocity is in the
following formulation.
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2.2 Element interpolation function and finite

element matrices

A nodeless triangular element consists of 3
nodes (node number 1, 2, and 3) and 3 nodeless
(node number 4, 5, and 6) per element as shown
in Figure 1.

Its element interpolation functions are in
the form:
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where

ai = Xjyx — XkYj, bi = yj-Vyk,
Ci = Xp—X; i, k=13

a; , b; , and ¢; coefficients are obtained by
cyclically permuting the subscripts, and A is a
triangular area.

After applying MWR in equation 1, the
finite element equation based on Bubnov-
Galerkin method is obtained to solve the 2D
potential flow problem.
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Pressure can be computed by using Bernoulli’s
equation.

2
L vz + g7 = Constant
p 2

(6)

where V = total velocity

3. Application

In this paper, a nodeless finite element
method is developed. There are three potential
flow problems selected to validate the proposed
method. The first problem is a rectangular plate
with periodic potential function problem.. The
solution is compared with the exact solution and
the computational solution using a linear
triangular element. The second problem is the
flow past a cylinder and compared with the
exact solution and is linear as well as quadratic
triangular elements. The third problem is the
flow past an inclined ramp problem.

3.1 Rectangular plate with periodic potential

function problem

A rectangular plate with dimension 0.5x1
unit is applied with a sinusoidal potential
function at the top edge. The constant zero
potential function is applied along the left edge
as shown in Figure 2.

This problem has an exact solution in the
form:

__sin(2nx) x sinh(2my)
sinh(2m)

(7)

&(x,y)

where ¢, = 1.0 in Figure 2

After applying the nodeless finite element
method, the solution of potential function
distribution is shown in Figure 3.

To validate the accuracy of the nodeless
finite element method, the rectangular plate is
discretized in several finite element models i.e.
32 elements, 48 elements, 64 eclements, 72
elements, 96 elements, 112 eclements, 256
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elements, and 400 elements as shown in Figure
4.

Figure 5 shows potential function solution
along the x direction at y = 0.5 of the nodeless
finite element solution compared with the exact
solution and linear triangular element solution.
Figure 6 displays the potential function solution
along the y direction at x = 0.25. The results
express the good accuracy of nodeless finite
element method for both 32 elements and 400
elements.

The computational error has been collected
in every model and displayed in Figures 7 and 8.
The results show that a nodeless element has
fewer errors than a linear element in cvery
element number.

3.2 Flow past a cylinder

Flow enters from the left side of a cylinder
with velocity U, = 1.0 . There is a cylinder
obstructing the flow at the center as shown in
Figure 9.

From the velocity boundary condition at an
inlet and a wall, it can be transformed to be the
potential boundary condition. Normal potential
gradient at the inlet is minus the inlet velocity
and zero at every wall as shown in Figure 10.
The finite clement model consists of 145 nodes
and 242 elements.

The Nodeless finite element method is
applied to compute the potential, velocity and
pressure solution. The potential solution on the
cylinder’s wall is compared with the exact
solution and computational solution using linear
and quadratic triangular elements as shown in
Figure 11.

The exact solution is in the form:

¢=2U,cos 0 (8)

Both nodeless and quadratic triangular
elements give the same accuracy and their error
is 1.2% less than the linear triangular element.

The nodeless finite element solution of
potential and stream function are plotted in
figure 12. Figure 13 shows the u—velocity and
pressure distribution. The “red color” shows the
maximum value and “pink color” represents the
minimum value.
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3.3 Flow past an inclined ramp

Flow U, = 1 enters from the left passes an
inclined ramp (45 degree) as shown in Figure
14. After flow passes an inclined ramp, it will
be compressed at this corner and the pressure
value is maximum at this compression corner.
Then, after passing the second corner, the flow
direction will realign horizontally to its initial
direction. At this second corner the expansion
flow happens and pressure is minimum.

The finite element model consists of 1,071
nodes and 2,000 elements as depicted in Figure
15.

After solving the problem with the nodeless
finite element method, the potential distribution
was obtained as shown in Figure 16, streamlines
in Figure 17, u-velocity distribution in Figure
18, and pressure distribution in Figure 19,
respectively.

Figure 20 shows that the potential solution
obtained from nodeless and quadratic triangular
clements are in good agreement.

4. Conclusions

This paper presents a nodeless {finite
element method to solve 2D potential flow
problems. The element interpolation and finite
clement equations are shown. The proposed
method is validated with three examples, a
rectangular plate with periodic potential
function, flow past a cylinder and flow past an
inclined ramp. The accuracy is compared with
the exact solution and finite element solution
using linear and quadratic triangular elements.
The results of three examples show that the
accuracy of the nodeless finite element method
is better than the linear element and equal to that
of the quadratic triangular element methods.
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Figure 1. Nodeless element
and its connectivity.
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Figure 2. Problem statement
of rectangular plate.
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Figure 3. Potential distribution
on rectangular plate.
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Figure 4. Finite element number
of rectangular plate.
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Figure 5 Potential distribution
along x axis at y = 0.5.
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Figure 6 Potential distribution
along y axis at x = 0.25
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Figure 7 Error of potential function
along the x axis at y = 0.5
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Figure 8 Error of potential function
along the y axis at x = 0.25

Figure 9 Flow past a cylinder
problem statement.
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Figure 10 Finite element model
and boundary conditions.
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Figure 13 4-Velocity and pressure contours.

Figure 11 Plot of potential function
and cylinder angle.
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Figure 14 Flow past an inclined ramp
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Figure 15 Finite element model.

(b) Stream contours

Figure 12 Potential and stream contours.

Figure 16 Potential contours of flow
past an inclined ramp.

(a) u—Velocity contours
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Figure 19 Pressure distribution of
Figure 17 Streamlines of flow past flow past an inclined ramp
an inclined ramp.
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Figure 18 u - velocity di_stribution of Figure 20 Plot potential function
flow past an inclined ramp along the x — direction.
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