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Abstract
Let G be a group, p a prime number and ¥ a faithful F,[G]-module, where F, is a field of p
elements. Call P(G, V) the set of all non-trivial elementary abelian p-subgroups A of G such that
| 4] ICV(A)I > IB| |CV(B)| for any subgroup B of A. In this note we prove thatif 4 e P(G, V),
then A4 normalizes every component of G. This is another version of Thomson factorizations.
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1. Introduction

This section provides necessary information
which will be used in Sections 2 and 3. Sections
2 and 3 give important information that we need
for the proof of the following result:

Theorem 1.1 (P(G, V) - Theorem) Let A €
P(G, V). Then 4 normalizes every component of
G.

By Definitions 1.2 and 1.4 below, in the
case that p = 2, Theorem 1.1 has been weli-
known. The first published proof, due to
Aschbacher, appeared in [4] in 1982, under the
assumption that G is a K-group if all simple
sections of G are in K, the collection of known
finite simple groups. In 1982, Timmesfeld made
an improvement on the “Thompson
Replacement Theorem™ and used it to give a
fairly short proof of Theorem 1.1, for p = 2,
removing the assumption that G is a K-group.
Timmesfeld’s proof cannot really be described
as elementary, since it relies on the theory of
groups generated by odd transpositions in order
to reduce to the case when every component K
of G is isomorphic to SL(2, 2"). Also, Andrew
Chermak found a proof of Theorem 1.1, which
handles the case that p is odd. A key step in
Chermak’s proof is provided by the Timmesfeld
Replacement Theorem, which will be used to
obtain Theorem 1.1 as a corollary to Theorem
3.4 in Section 3.

All groups and fields in this paper are
finite. For a prime p, F» denotes a field with p”

elements.
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Definition 1.2 Let G be a group, p a prime, and
V a faithful F,[{G]-module. Define P(G, V) to
consist of the nontrivial elementary abelian p-
subgroups 4 of G such that:

lalteua] = Bl [ cuB)|
for every subgroup B of 4.

Notice that if B is a nontrivial subgroup of
A € P(G, V) then this inequality is an equality.
Then, B isin P(GV).If Aisin P(G, V), then
[4| 2| v/CA4)|. To see this, just take B = 1 in
the inequality defining membership in P(G, V).

Definition 1.3 Let G be a group, p a prime, and
V a faithful F,[G]-module. Define P*(G,V) to be
the set of the minimal members of P(G, V) under
the partial order B <* 4 if B< 4 and

|4l lcua)l = | Bl lcuyl.

Notethatif 4 € P*G, V), B < 4,and B
€ P(G, V), then either A =BorB=1.

Definition 1.4 A4 group K is quasisimple if K
= [KK] and K/Z(K) is simple. A quasisimple
subnormal subgroup of a group G is said to be a
component of G.

Definition 1.5 For any p-group S, let A(S) be the
set of elementary abelian subgroups of maximal
order of S. Define:

JS) = {414 e 4(s)}.
J(S) is called the Thompson subgroup of S.
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Since any automorphism of § clearly
permutes the elements of A(S) among
themselves, it leaves J(S) invariant and so J(S) is
a characteristic subgroup of S. Some basic
properties of Thompson subgroups are listed in
the following lemma.

Lemma 1.6 (i) If 4 is in A(S), then 4 =

Cs(A). In particular, Z(S) c 4.

Gi)If 4 isin A(S)and 4 <R<S,
then A(R) c A(S) and J(R) < J(S).

(iii) Let S be a Sylow p-subgroup of
H. Then J(S) = J(R) for each p-subgroup R of H
containing J(S).
Proof. (i) Indeed, as A is abelian, so is
(4, x)y forany x in Cg4). The maximality of
A forces x € A and (i) follows.

(ii) If 4 < R < S with 4 € A(S), then
obviously 4 € 4A(R). Thus the elements of A(R)
are of the same order as those of A(S) and so
A(R) < A(S), whence J(R) ¢ J(S).

(iii) From (ii), we have J(S) = J(R), if
JS SR

Theorem 1.7 (Thompson) Let 4 € A(S) and
suppose that M = [x, 4] is abelian for any
element x of §. Then MC4(M) € A(S).

Proof. Set C = C4M). Since M is abelian,
clearly MC is an abelian group. Hence we need
only show that | MC |>| 4], for then MC € A(S)
by definition of A(S). Since Cs(4) = 4 and M is
abelian, we have CNM < AnM = Cy(A).
Hence:

(1) IMC] = IM|C]/|CNM|

2 [MICAM)| 1 |CadA)|.
Hence the desired conclusion | MC| > |A | will
follow from (1) provided we can prove that:

) IMICy(A)| = | a/CaM) .

To establish (2), it will clearly suffice to show
that if u, v € 4 lie in distinct cosets of C,(M),
then the elements [x, ] and [x, v] of M lie in
distinct cosets of Cj{4). Suppose that [x, u] =
[x, v] (mod Ci(4)). Then y =[x, u]'[x, V] €
Ci(4). But y = (x'x*)'(x'x") = (;]c")"x” and y
centralizes 4, so we have y =) =[x, vu).
Since y centralizes 4, [x, vi!, a] =1 for every a
in 4. But then [x, a, vi'] = 1, as 4 and [x, 4] are
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abelian. Thus vu'centralizes [x, a] for all a in 4
and we conclude that vu”’ e C4 (M), contrary to
the fact that u and v lie in distinct cosets of

C4M)in A.

Lemma 1.8 (Frattini argument) Suppose N is a
normal subgroup of a finite group G and p is a
prime. If T is a Sylow p-subgroup of N, then

G = N{(T)N = NN«(T).

Proof. Let g € G. Since T # is a Sylow p-
subgroup of N, T¥ = T " for some n € N. Now

gn’'e N(T). Thus g € No(T)N = NN«(T).

Lemma 1.9 (Three-Subgroup Lemma) Let X, ¥,
Z be subgroups of a group G with [X, ¥, Z] =Y,
Z X}j=1. Then[Z X Y]=1.

Proof. See 8.7 in[1].

Definition 1.10 The generalized Fitting
subgroup of G is F*(G) = F(G)E(G), where
F(G), the Fitting subgroup of G, is the largest
nilpotent normal subgroup of G, and E(G) is the
subgroup of G generated by the set of
components of G.

Lemma 1.11 C«(F*(G)) < F¥G).
Proof. See31.13in[1].

We wish to say something about the
motivation for the P(G, V). Suppose now that
Sisa Sylow p-subgroup of a group H such
that the generalized Fitting subgroup F*(H)
is equal to O,(H). In this case, we set V =
2(Z(O)(H))). By Lemma 1.11, we obtain
CHOSH)) < OfH), and so Z(S) < Z(OyH)).
Thus, 2(Z(S)) < 2(Z(O,(H))) = V. If now J(S)
centralizes ¥, then J(S) < Cy(V) < H. Putting
R = SNCi(V), we see that R is a Sylow p-
subgroup of Cy(V) containing J(S). Then, the
Frattini argument gives H = Cy(V)Ni(R). It
follows from Lemma 1.6 (iii) that

H = Ci(V) NulJ(S)).

So, as L2Z(S)) c V, H = C($2(Z(S)INJ(S)),
and so called Thompson Factorization is
achieved.

Alternatively, if [V,J(S)] = 1, then there
exists an element A* of A(S) with A*Cy(V)
> Cu(V). Put G=H/Cy(V) and let A=
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A*Ci(V)/Ci(V) denote the image of 4* in G.
For any subgroup B of 4, let B* denote the
preimage of B in A* We claim that 4 €
P(G, V). Note that C4(¥V) < B* < 4* and that 4,
= A*C{A*) is an elementary abelian p-group of
S. So, as A*e A(S),| 45| < |4*|. Hence 4*=4,
since A*<A4,. Thus A*=A4*C{A*), and then we
have C/A*)=A*V. Put By=B*Cy/(B*). Then
By is elementary abelian, and by the maximality
of A* we have|A*l>|B*CV(B*)l for each B*
< A*. As C(V) = Cp(V), we have:

g
*

|4l | el
*Cy(B*) |

=|Bl|Ca()| | CHB*) |/ B*CxB*) |
|B| [Con ] | CuB®) | 1 | B*~CB*)| .

[\

|Al | Bl | cuB* /| B*~CuB®)|.
Because B*Cy{B*) < A*NV, we have:
4l = |B| ﬁcyw*)l AV 148
So, as CAA*) = A*V, it follows that:
4] 2 18 lcusm 7 [cuanl.
So that 4] |cuan| > 1Bl cuB®)|. But
CA*) = CA) and C/B*) = C{B), so we now
et:
lal lcua| 2 1Bl | cuml.
Hence 4 € P(G, V), as claimed.
Thus P(G, V) provides a means by which to
measure the possible failure of Thompson
factorization.

2. The Timmesfeld Replacement Theorem
In this section, G is a group, V is a

faithful

F,[G]-module, and 4 € P(G, V).

Definition 2.1 Let S(G) denote the set of all
subgroups of G. Define

m=m(G, V)=max{|4| | Cux4
M=MG, V)= {4 € S(G): IAr

|: 4 e S(G)}.
| Ca) = m}.

Lemma 2.2 Let 4,B e M(G, V). Thend B €
MG, V).

Proof. Let 4 and B be in M. Then, as
Cu({4, B)) = C/{AB), we have:

L4l lcaay) = 1, Byl | cua, Byl
> |4B| | cyaB)|.
Then also:
|4l lcuayl > 14t 1Bl |cyuaB)| 1 |anB],

and so|4nB| | C4)] 2 |B| | C/4B) ] . Thus,
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| 4nB| | CUanB) |
> |B| |cuaB)| | cuarmBy| 1 | cua)l
Now CAA)CAB) £ CAANB) and so we have:
[cuay! | cy<B) | /] CV(A)mCVﬁB) l
|cuaycuB)| < |cuanB)|.

Since C(4) N CV(B) CW{AB), it follows

that :
lcuB)| < | cuamByl | CuaB)| 1 | Cuayl,
and hence:
|BI |cuB)l
< |BllcyanB)| |cuaB)| 7 1 Cual
< |4amBl |cxanB)|.

Since B € M, it now follows that ANB € M.

Theorem 2.3 (Thompson Replacement) Let x €
V, W=[x, A] and A, = C«W). Then:

()4, € P(G, V).

(i) If 4 € PXG, V) then [V, 4, A]=0.
Proof. (i) Let ¢ € C(W). Notice that if [W¥,
c] =[x A4, c] =0, then [x, ¢, 4] = 0 by the Three
Subgroups Lemma, so [x, c¢] € Cy(4). Indeed for
a,b e A, if aCy (W) = bCy(W), then a=bc for
some ¢ € Cy(W). Hence [x, a] + Ci(A) = [x,

be+CilA) = [x, c] + [x, b+ Cil(A). As [x, b]° =
[x, b] and [x, c] € Cw(A), we have [x, a] + Cy(A)
=[x, b] + Cu{A). It follows that there is a well-
defined mapping
@g: A/Cy(W) = W/Cw(A)

given by gaCy(W)) = [x, a] + Cu{4) for any a
€ A. We claim that g is injective. Fora, b € 4,
suppose that ¢ (a C4W)) = ¢ (b CAW)).
Then we have [x, b] € [x, a] + CwAd), so
[%, b] - [x, @] € Cw(A). Conjugating by a”/, we
obtain [x, ba']e Cw(A). The Three Subgroups
Lemma gives [x, 4, ba’] = [W, ba'1=0,s0b €
aCy(W), and hence aCy(W) = bC«(W). Thus ¢

is injective, as claimed. @ We now have

that |A/CA(W) | <| W/CnﬁA) |. Then:
lallcw | <1wlicoml.

Then also :

4l |cua]

= 4l |cuay| Lcuay : cuayl

w| | Ca)| | CA) : Cut)]
wllcam!lcuay : cun wl
lcaml 1w+ cunl.

But 4 € P(G, V), so the above inequalities are
equalities. Thus, we have

ChA) = [x, 4] +Cud), and |4.| [Cuay)l
= |A| |CV(A)|‘ Therefore A, € P(G, V) or
A, = 1, and in the latter case V = CW{4,) =[x,

oA
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Al + CAA) = W + CAA). But [V/CAA) A] =
¥ and so
W + CAA) # V, acontradiction. Thus 4, €
P(G, V).

(ii) If 4 € P*(G, V) then either 4 = 4,
or A, =1.But 4, # 1, and so A = A, centralizes
[x,4] for each xe ¥, and therefore [V,4,4] = 0.

Theorem 2.4 (Timmesfeld Replacement) Let
B = C([V, A]). Then C/B) = [V, 4] + CAA),
and

1Bl lcum)| = 14l |cual .
In particular, we then have B € P(G, V).
Proof. Put U = [V, A] +CAA), put m = m(A4, V),
M= MA V), n = m4, U),and N=M4, U).
Then m = |4]|CA4)|, by the definition of
P(G, V). Further, for any subgroup B of 4, we

have:
|8l lcuB)| < |B| |cuB)|

< lallewa! = lallcual.
This shows that m = n. If now B € N we can
conclude that B € M, and so N ¢ M. For any B
in N we have Ci{B) = C/B). By Theorem 2.3,
we have 4, € M for every x € V, and Ci/{4,) =
[x, A] + CK4) < [V, A] + CAA4) = U. Hence
A, € N for all x. Setting B = C4([V, A]), we have
B =nN{4:}: ev, and then B eN, by Lemma 2.2,
Therefore Ci(B) = C(B), so C{B) < U. Since
Bc A, forallx € ¥V, we have CA4,) = CHB)
forall x € ¥V, andso U{CA4)}xv < CAUB).
But U = U{[x, 41+ CAA)}xcv, that is, U =
U{C{A,)}x c ». Hence Cy(B) = U, that is, C/B)
= [V, A] + CAA). Thenalso |B| [CyB)| =
{4 | CiA), therefore B=10r B € P(G, V). If
now B =1,then ¥ = CiB), and so V=10, a
contradiction. Hence B € P(G, V).

3. Theorem 3.4

This section is devoted to supplying
important information, which will be used in
the proof of the P(G, V)-Theorem.

Lemma 3.1 Let p be a prime, V' a vector space
over F, and G a subgroup of GL(¥). Let Wbe a
G-invariant subspace of V'and 4 € P(G, V). Then
(1) ACW)Y/C(W) € P(G/CW), W).
(i) If 4 € P*(G, V) then AC(W)/Co(W)
e P*(G/Ce(W), W). Moreover if |4 : C(W)| =
| w: Ci(4) |, then V= W+ CAA).
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Proof. (i) Let C{(W) <B < A4, and put X = C{B)
and Y = C/A). Then :
|Bl | WA x| |x:wnx|
|B| | x|
|4 |yl
lallwArylly:wArl.
If now |Al |WmY|<|Bl |Wr\X| we conclude
that |X:WmX|<|Y:Wm Y|, and so

lx+w:wl|<|yv+w:wl|,
contrary to Y < X. Thus, we have|A| |Wr\ Y|
> |Bl|WwnXx|.But WA Y=CyA)and W X
= Cy(B), hence |4] |cua)| 2 |Bl|Cu®)
for every subgroup B of 4. Notice that C,(W) =
CB(W):SO
lal lcua| 1 | camnal
lallcway| 1 1 cam|
|B| lcuB)| /| Camyl
|B||cwB)| / | comnBl.
Then, we have: |ACH(W)/CaW)| | Cwa)| =
| BCo(w)/CoW) | | Ci(B) |, as required.

(ii) See 3.2 in [2].

The results which are not utterly elementary that
we require for the proof of Theorem 3.4, are
included in the following list.

(1) Let V be an irreducible F,[G]-
module, and let F be the field Endg(V) of G-
endomorphisms of V. Suppose that G=H x K is
a direct product, U is an irreducible F[H)-
submodule, and W an irreducible F[K]-
submodule of V. Then for any fixed choice of
bases for U and W, over F, there is a canonical
identification of ¥ with the tensor product
U®rW. This is an essential result of Theorem
3.7.1in [5].

(2) Any quasisimple subgroup of
SL(2, 2™) is conjugate to a natural SL(2, 27)-
subgroup (consisting of all matrices in SL(2, 2™)
written over F,"), for some divisor n of m.

(3) Concerning automorphisms of
SL(2, 2"), any non-inner automorphism of SL(2,
2") of order 2 is conjugate to a field
automorphism.

To begin the proof of Theorem 3.4, we state the
following hypothesis.

| IA

v 1

Hypothesis 3.2 Let G be a finite group, p a
prime, V a faithful F,[G]-module, and let K be a
component of G. Let 4 be a non-cyclic
elementary abelian p-subgroup of G, and let B
be a maximal subgroup of 4. Assume that
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() [V, 4, B]=0;
(i) C«(K)=1and
(iii) N(K) c B.

Put L = (K. Without loss of generality, we
may assume that G = LA. Let A denote the set of
components of G and write A = {K,K},...,K}.
We then have L = K;X,...K,, where [K;, Kj] = 1
forall i and j with i =j. So t = |4 : NK)|.

Forany K;, K; € A, we haveKi=KaiandKj

=K %G for some a;,a; € A. Then we have a = a;
'aj e 4 withK# = KJ . Thus A acts transitively

on A by conjugation.

Lemma 3.3 Let G, V, K A4, and B satisfy
Hypothesis 3.2. Suppose a € A4-B, and X is a
component of Cg(a). Then the following
conditions hold:

(i) X* is the set of all components

of Ca).
(i) L = (X ).
(i) X< [B. X]c (B™.

Proof (i). We have Ny(K) c B by assumption,
50 a € Ny(K). The transitivity of 4 on A implies
that a fixes no component of G. Without loss of
generality, we may assume that indexing has
been chosen so that the orbits for (@) on A are
{Ky...Kp} ooy {Kpetpprise . Ki}s

where ¢ = sp. Put:
Y= K(i.l)p+1--.Kip,
o

p-1
X,»={xx“ ...x" ] X GK(,'.[)p+1}

for 1 £i<s Then X;= Kgpp+y, for 1 <i<y,
and then also Xj,...,X; are the components of
Cs(a). Since A permutes the (a)-orbits on A
transitively, we obtain part (i) of the lemma.

(i). Since (X°) is a normal, perfect
subgroup of G contained in L, it is a product of
components of L. But evidently no proper sub-
products of components of G contain each X}, so
we obtain L = (X ©).

(iil). Take X = X; and K= K;. Since
C«(K)=1, wehave [B, K] # 1, and since X ¥,
= (K @), it follows that [B, X] # 1. Note that X
is a component of Cg(a) and B < Cg(a), it

follows that [B, X] c (B *. In particular, we
have X c [B, X], and this yields (iii).

Theorem 3.4 Let G, V, K, A, and B satisfy
Hypothesis 3.2. Then p = 2, B = N(K) <
CAK)K, and K/Z(K) is isomorphic to SL(2,2")
for some integer n, n>1.

Proof. Let M be a non-trivial irreducible G-
invariant section of ¥V, and let N be a non-trivial
irreducible L-submodule of M. Since N is L-
invariant, so (N“) is L-invariant. As (N7 is
A-invariant, it follows that (¥ %) is G-invariant.
Hence M = (N*). Since [M, L] # 0, we also
have [N, L] # 0. For any a in 4-B, it follows
from Lemma 3.3 (ii) that there exists a
component X of Cg(a) with [N, X] # 0. On the
other hand, we have [V, B, a] = 0 by hypothesis,
s0 [N, (B™, a] = 0. From Lemma 3.3 (iii), X <
(B™, so [N, X, a] = 0. Thus, we have shown
that:

0#[N, X]c Ca)c NN *

for any a in 4-B. Since Nn\N ¢ is a L-submodule
and N is irreducible for L, we conclude that N =
NNN °, Since (4-B) = A we can conclude that N
is A-invariant. Thus, M = (N ) = N, and any
non-trivial irreducible G-invariant section of V
is in fact irreducible for L. Let F be the field
End(N) of L-endomorphisms of N, and U is an
irreducible K-submodule of N over F, and let 4,
be a complement in 4 to N,(K), that is, 4g < 4
such that 4 = Ny(K)4p and Ny (K)nA4y = 1.
Notice that, for any a in 4, U “ is an irreducible
F-submodule of N for K “. It then follows that,
as an F[L]-module, N can be written as the
tensor product over F of the subspaces U, for
a € Ap. Using A, to identify each K; with K, we
may write:
N=URUR..QU
where L is represented on N in the ordinary
component-wise way, and where A4, acts by
regularly permuting the tensor factors. Now, for
each pair of elements » and v of U, define
elements x,,, ¥.., and ¢, of N as follows:
Xuy = VROURUE..Qu ,

Vi = uOvQu &...Qu , and
Cuv=Yuv - Xuv = (URV - vVOU)Ru &X...Qu.

By hypothesis, N(K) < B, so 4 = Ny(K)4s <
BA,. But B4y, < A it then follows that 4 =
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NAK)A4y = BAy = AoB, and we, without loss of
generality, may assume that there exists a € Ay
B with K,° = K,. Notice that then y,, = x%,,
and that [x,,, a] = -x,, + X% = Xyy T Yuy» =
¢, By hypothesis we have [V, 4, B] = 0 and
[x.v» @] € [V, 4], we then get B centralizes c,,.
Suppose that r = 2. There then exists a
component X of Cg(a) such that X is not
contained in K;K;. But X < (B ®), and it follows
that X centralizes ¢, for all choices of # and v.
By our construction, X acts non-trivially on
some tensor factors of N after the first two. So,
we have a contradiction, and thus ¢+ = 2. It
follows that:
l4: N | = |40] =2,

and either B4y = 1 or BnA4y = A,. If now B4,
= Ay, then IA| = |B|, and it
contradicts |A :B| = p. Thus BN A4, =1, then
also B=N4K)and p =2.

It will be convenient to work with the
semidirect product G = L4, where L = KxK and
A operates on L by the formulas: (g,h)" = (h,2)
and (g,h)® = (g°#%), for (g,h) € Land for a e
Ay, b € NyK).Put Y = Ci(a) where a € 4y-
B.ThenY ={(gg)|geK}=Kand Y (BY.
By hypothesis, we have that [V, a, B] = 0.
Hence [N, a, Y] = 0. Observe that:

[N, a]l={(u®v+vQu |uy e U)=UAU
and thus Y centralizes UAU, where U is a non-
trivial irreducible Y - module. If we identify
U® U with Hom{U*,U), we then have UAU
Hompn(U*,U), and thus dim{UAU) < 1, by
Schur’s Lemma. Then dimgU < 2, and so
K/C(U) is isomorphic to a quasisimple
subgroup of SL(2, F). We conclude that
K/C(U) is a natural SL(2,2")- subgroup of
SL(2, F), for some n with n > 1. If we write F =
Fm, then m = rn for some integer r, and U is a

direct sum of r copies of a natural module for X
over F,». Then also N is a direct sum of r

submodules for L. But N was chosen to be
irreducible as a module for L, we conclude that
r=1, also F = F,», and K/C(U) = SL(2, 2").

We now show that B < CHK)K. Suppose
that it is not true, there exists » € B such that b
induces an outer automorphism of K by
b: x—>(x)b, x € K. Then b also induces an outer
automorphism on K/Z(K) by n:Z(K)x—Z(K)(x)b,
Z(K)x € K/Z(K). The structure of Aut(K/Z(K)) is
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well known, and one may conclude that & is
conjugate to a field automorphism of K/Z(X).
Since Z(K) = Ck(N), b also induces a field
automorphism on N, where N is isomorphic to a
direct sum of two copies of a natural SL(2, 27)-
module for K. But then b centralizes no F-
subspaces of N, which is contrary to [N, 4, b)
= 0. Thus B ¢ C&(K)K, as required.

Theorem 2.4 and Theorem 3.4 are technical
results necessary to the proof of the P(G, V)-
Theorem. An important step in the proof of the
P(G, V)-Theorem begins by assuming that the
theorem is false. Then let 4 € P(G, V), let K be
a component of G such that 4 does not
normalize K, and put B =C4([V, 4]), L = (K 1)
and G = LA. Then we must show that
Hypothesis 3.2 holds. Toward that we use
Theorem 2.4 and Theorem 3.4 to show that V
has an irreducible K-submodule Z of W, where
W is an irreducible G-submodule, and finally we
show that Z is L-invariant which contradicts the
irreducibility of W. This proof is thereby
complete.
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