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Abstract
Let G be a group,p aprime number andV a faithful Fr[G]-module, where$ is a field ofp

elements. Call P(G ,V) the set of all non-trivial elementary abelian p-subgroups A of G such that
lA l lC^A) l  >  IE l lC^B) l  f o ranysubg roup  B  o f  A . In th i sno teweprove tha t i f  A  e  P (G ,V ) ,
then A normalizes every component of G. This is another version of Thomson factorizations.
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1. Introduction
This section provides necessary information

which will be used in Sections 2 and 3. Sections
2 and3 give important information that we need
for the proof of the following result:

Theorem l.l (P(G, Iz) - Theorem) Let A €
PG, n.Then ,4 normalizes every component of
G,

By Definitions 1.2 and 1.4 below, in the
case that p = 2, Theorem l.l has been well-
known. The first published proof, due to
Aschbacher, appeared in [4] in 1982, under the
assumption that G is a K-group if all simple
sections of G are in K. the collection of known
finite simple groups. In 1982, Timmesfeld made
an improvement on the "Thompson

Replacement Theorem" and used it to give a
fairly short proof of Theorem l.l, for p : 2,
removing the assumption that G is a K-group.
Timmesfeld's proof cannot really be described
as elementary, since it relies on the theory of
groups generated by odd transpositions in order
to reduce to the case when every component K
of G is isomorphic to SL(2,2"). Also, Andrew
Chermak found a proof of Theorem l.l, which
handles the case that p is odd. A key step in
Chermak's proof is provided by the Timmesfeld
Replacement Theorem, which will be used to
obtain Theorem 1.1 as a corollary to Theorem
3.4 in Section 3.

All groups and fields in this paper are
finite. For a prime p, Fl denotes a field with p'

elements.

Definition 1.2 Let G be a group, p a prime, and
Z a faithtul d[Q-module. Define P(G, V) to
consist of the nontrivial elementary abelian p-
subgroups A of G such that:

ldl I c,<,ql I > | r | | c,,<n>l
for every subgroup B of A.

Notice that if B is a nontrivial subgroup of
A e P(G, I) then this inequality is an equality.

lhgn,P isin P(Gn.If A isinP(G, V), then
lAl >lV/C^A) l .  To see this, just take B = I in
the inequality defining membership in P(G, V).

Definition 1.3 Let G be a group, p a prime, and
V a faithfjdJ,F![G]-module. Define P*(G,V) to be
the set of the minimal members of P(G, Iz) under
the partial orderB <* A if B < A and

I'ql I c/.'al | = lr | | c^atl.

Note that if A e P*(G, n, B < A, and B
e P(G, Z), then either A = B or B : l.

Definition 1.4 A group K is quasisimple if K
= lK,I<l and K/Z(IQ is simple. A quasisimple
subnormal subgroup ofa group G is said to be a
component of G.

Definition 1.5 For anyp-goup .S, let l(S) be the
set of elementary abelian subgroups of maximal
order ofS. Define:

J(s)= {A\, t . , t1s17.
-r(^f) is called the Thompson subgroup of S.
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Since any automorphism of S clearly
permutes the elements of A(S) among
themselves, it leaves.,(,9) invariant and so {.9) is

a characteristic subgroup of S. Some basic
properties of Thompson subgroups are listed in

the following lemma.

Lemma 1.6 (i) If I is in l(,9), then A =

C5(A).ln particular, Z(S) c. A.
(ii) If I is in l('f) and A < R < S,

then l(R) s l(^f) and.r(R) s .(^f).
(iii) Let ^S be a Sylow p-subgroup of

I/. Then -r(.9) = .{R) for eachp-subgroup R of Il

containing -I(S).
Proof. (i) Indeed, as I is abelian, so is

(A,x) for any x in Cs{,A). Themaximalityof
I forces x e A and (i) follows.

(ii) Ifl < R <,S with I e ,4(,9), then

obviously A e A(R). Thus the elements of l(R)
are of the same order as those of l(S) and so

A(R) = l(^f), whence {R) s {^t)
(iii) From (ii), we have.I(,f) = -I(R), if

{s) g R.

Theorem 1.7 (Thompson) Let A e A(S) and

suppose that M = lx, A] is abelian for any

elementr of S. Then MCy(M € l(,Y).
Proof. Set C = Cn(M. Since M is abelian,
clearly MC is an abelian qroup. Hence we need

onlv show thatl MCI > ll | , for then MC € l(.S)
by'definition of l(S). Since C(l) = A and M is

abelian, we have CaM e AnM = CyAA).
Hence:

0) Wq : lMlcl t lcnlvll
>-lMlCA(Ml t lcL{.A)l'

Hence the desired conclusion I ucl > lz I wlt

follow from (l) provided we can prove that:

(2) ltt 't/CM7)l > lttcnttIl.

To establish (2), it will clearly sufftce to show

that if rz, v e A lie in distinct cosets of Cn(1u4,

then the elements fx, u) and [x, v] of M lie in

distinct cosets of C9AA). Suppose that [x, z] =

[x, v] (mod C4UD. Then y -_�lx,ul-tlx,v) e

C,,/,A). But y : (t' *")'' (r-'il : 1a')'1x' and 
.y

centralizes l, so we have y : y' : fx, vu'').

Sincey centralizes A, fx,vu't,a] : I for every a

in l .Bu t then[x ,  a ,vu ' ' f :  l ,as  Aandfx ,A f  a re
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abelian. Thus vtz-'centralizes lx, al for all a in A

and we conclude that vu-t e Cn(fu\, contrary to

the fact that u and v lie in distinct cosets of

C, t (MinA.

Lemma 1.8 (Frattini argument) Suppose N is a
normal subgroup of a finite group G and p is a
prime. If Zis a Sylowp-subgroup ofN, then

G: N{DN: NNG{T).

Proof. Let g e G. Since f s is a Sylow p-

subgroup of N, T s = T 
n 

for some ,? e N. Now

gn-le N{T). Thus g e Nc(DN : NNG<T).

Lemma 1.9 (Three-subgroup Lemma)LetX, Y,
Z be subgroups of a group G with tX, Y, 4= IY,
Z, Xl: l. Then IZ, X, Y7: r.
Proof. See 8.7 in [].

Definition 1.10 The generalized Fitting
subgroup of G is I"(G) = F(G)E(G), where
F(G), the Fitting subgroup of G, is the largest
nilpotent normal subgroup of G, and E(G) is the
subgroup of G generated by the set of
components of G.

Lemma l.ll C7(F*(G) < f*(G).
Proof .  See 31.13 in  [ ] .

We wish to say something about the
motivation for the PG, n. Suppose now that
S is a Sylow p-subgroup of a group 11 such
that the generalized Fitting subgroup F(11)
is equal to Oo(I{). In this case, we set Z =

O{Z(Op(mD. By Lemma l.ll, we obtain

C{O.(I{)) < Op(m, and so Z($ e Z(O.(II)).
Thus, Q{Z(S)) = AtQ(Oo(I{))) : V.If now "(^9)
centralizes V,then.{'y) < CAn < I/. Putting
R = SaCs(l), we see that R is a Sylow p-
subgroup of C{l) containing -I(S). Then, the
Frattini argument gives Il : CH(QNAR). lt
follows from Lemma 1.6 (iiD that

H = CH(n N"({.9)).

So, as o7(Z(^9)) c. V, H : CAO1(Z(S))N"({'9)),
and so called Thompson Factorization is
achieved.

Alternatively, if lV,J(S)l * l, then there
exists an element A* of l(,S) with A*C^n
> CH(n. Put G:H/CA\ and let A:
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A*Ciln/CH(l/) denote the image of l* in G.
For any subgroup B of A, let B* denote the
preimage of B in A*. We claim that A e
PG, n. Note that C,r(V) < B* < A* andthat A6
: A*C^A*) is an elementary abelianp-group of
S.  So,  as A* e A(S), l ,qo l  < l ; *  |  .  u"n. .  A*:Aa
since A*3A6. Thus l*:l*CilA*), and then we
have CIA*)=tr*nIl. Put Bo:B*Cv{B*). Then
.Bo is elementary abelian, and by the maximalify
of  l *  we havel l *1213*cr6*11 for  each B*
< l*. As C*(Y): Ca,(V), we have:

l t* l
:  I ,q l  l  c* tn l
> ln*c^n\l
:  lr  |  |  co(nl lc,g*l lr ln*nc^n\l
:  l r  |  |  c^4nl  lc4n*11 r  I  a*actn\ | .

Then.

l el > l nl l cQa* l r l n*ac(a\l .
Because B*r-tClB*) < A*aV, we have:

le l  > ln l lc tn\ l  r l  'q* . .v l .
So, as Cll*) : A*aV, it follows that:

l ,r  |  > | al lc(a\l r lc,<t*l l .
S o t h a t  l , q l l c A A . ) l  >  l n l l c p . )  l .  s u t
C^A*) = C^A) and CIB*) = C{B), so we now
set:

l t l l c t e t  l >  l r l l c x r l l
Hence A e P(G, Z), as claimed.

Thus P(G, Z) provides a means by which to
measure the possible failure of Thompson
factorization.

2. The Timmesfeld Replacement Theorem
In this section, G is a group, IZ is a

faithtul
Fo[G]-module,andA e P(G, V).

Delinition 2.1 Let S(G) denote the set of all
subgroups ofG. Define
*: ^(c, v)= max{l.t l lc,,r.,ql l: I e ,s(G)}.
M: M(G, t )= {A e S(G) '  le l lc / ,41= m\.

Lemma 2.2Let A,B e M(G, Z). Then A a B e
MG, N.
Proof. Let A and B be in M. Then, as
CA<A, B)): C^AB), we have:

l.ql I c,Qall > | <.q, n>l I c^<,t, nDl
>  l n l l c u n l .

Then also:

I  el I  c,,pqll  > I 'sl I  nl I  cuall r I  mnl,
and so I Ar\Bl lc{Dl > lal I c^AB) l. rhu',
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I,t-rnllc,t,tnql
> lr l  lc^AB)l lc, t , trrql  r lc,<,01

Now C{I)C{B) < C{A^B) and so we have:

I c,<ell I c,'<ql r I c{,o..c 4D I: lc^nc^Dl < lc,,pqaall.
Since Cp(l) a CIB) = CIAB), it follows
that :

I c4ql < | c^t..a>l I c,,uql r I c^,01,
and hence:

la l  lc, tal l
< lrl I c^A.\B)l lc,,r.'qrDl r lc,Qqll
< l,q..nl lcrr,s...Bll.

Since B e M,it now follows that AnB e M.

Theorem 2.3 (Thompson Replacement) Let x e
V, W = fx, Al and A. : C1Ql\ Then:

(i) A, e P(G, n.
( i i)rf  A e P*(G,I)thenlV, A, Al--0.

Proof. (i) Let c e C,aQV). Notice thatif [W,
cl : lx, A, c) = 0, then [x, c, A]: 0 by the Three
Subgroups Lemma, so [x, c] e Cs,(,A).Indeed for
a,b e A,if aCe]l) = bCn(l(),then a: bc for
some c e CtQl).Hence [x, a] + CilA): lx,

bcl+Cs,(A) = [x, c] + fx, b)c+ CilA). As [x, D]c =

[x, b] and fx, cl e CilA), we have lx, al + Cs'(,A)
: lx, b|+ CwU).It follows that there is a well-
defined mapping

l: A/C,a(W) -+WC7(A)

given by AaCnQD) = [x, a] + CfiA) for any a
e A. We claim that I is injective. For a, b e A,
supposethat  6@Ct(Lv))  :  / (bCIQD).
Then we have fx, bl e lx, al + Ca'(A), so

ti, bl - fx, a) e CilA). Conjugating by a-t, we
obtain [a ta-t1e Cu,{,,11. The Three Subgroups
Lemma gives [x, A, ba'|] = lW, ba-tl = 0, so b e
aCnQV), and hence aCe]l) -- bClQlt). Thus 0
is iniective, as claimed. We now have
tnatl)rcnT)l <lwtc,,tn l. r,"n'

l ,ql I c*utl < | wl I c^rwl.
Then also :

l t l l c ,<e l l
= l; | | cnr,ol |crtsl : cul,4l
< | wl I c^(rnl I croql : cnU)l
:  lwl lcn(nl lc, tel :  cv(A)a wl
:  lc^(nl  lw * c^zo|.

But I e P(G, n, so the above inequalities are
equalities. Thus, we have
Cr\A,l , 

: [x,, A) + CvU), and I A,l I cQ,q,ll
:  lAl lC4A)|. Therefore A, e P(G, V) or
A, -- l, and in the latter case V : CIA,) : [x,
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Al+C^A)--W + CIA). But IV/C/,A),Al r
I/ and so
W + C^A) * Y, a contradiction. Thus I, e
PG, N.

(ii) If I e P*(G, /) then either A : A,

or A,-- l.ButA,+ 1, and sol : A,centralizes

lx,Al for each xe Z, and therefore lV,A,Al: 0.

Theorem 2.4 (Timmesfeld Replacement) Let
B -- CA(V, Al). Then C{B) : lV, Al + CIA),
and

I nl I c^atl : I el I c,'<t>l .
In particular, we then have -B e P(G, l).
Proof. Put U : lV, Al +C{A), Put m : m(A, n,
M = M(A, V), n : m(A, LD, and N : M(4, (D.

Then rz = l,sl I cr<,ql | , ty ttre definition of
P(G, n.Further, for any subgroup B of A, we
have:
lnl lcaql < ,lr, l , lc,<q,l ,

<  l A l  l c ^ A ) l  :  l A l  l c r / , A ) | .
This shows that m : n. lf now B e N we can

conclude that .B e M, and so N c M. For any B
in N we have C{B) : C^B).By Theorem 2.3,

we have A, e M for every x e V, and CIA,) :

fx, Al + Cr{A) = lV, Al + C{A) : U Hence

A, e N for all x. Setting B : CA(IV,ll), we have

B = n{A"|" 6 y, rnd then B €N, by Lemma 2.2,

Therefore CdB) -- Cy(B), so CIB) = U Since

B c A, for all.r e V,wehave Cy(A') g CAB)
forall x e V, andso wlClA')\ ' .y cCv{B).
But  U = w{fx ,  Al+ CIA) | , .v ,  that  is ,  U :

w{ClA,)},. 7. Hence CAB) - U, that is, C(B)
:  tV.Al  + CIA).  Then a lso lB l  ICAB)I  :

l , q l l c l , e l  l ,  t he re fo re  B :  1  o r  B  e  P (G , I ) . l f
now B : l, then V : C^B), and so V -- U, a

contradiction. Hence B e P(G, 14.

3. Theorem 3.4
This section is devoted to supplying

important information, which will be used in

the proof of the P(G, l)-Theorem.

Lemma 3.1 Let p be a pime, V a vector space
over Fo and G a subgroup of GL(l). Let lt/be a

G-invariant subspace of V and A e P(G, l). Then
(i) ACc(n/Cc(W) e P(G/Cdn, W.
(ii) Ifl e P*(G, t)then4cdn/Cc(n

e P*(G/C{W), Ll).Moreover if lA : Cn(LDl =

lw,  c ,u l . l ) l , thenV:  W+ C^A) .
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Proof. (i) Let C,t(ll) < B < A, and put X : C^B)
and Y : CIA). Then :
l s l l w n x l l x , w a x l=  l r l  l x l

< t'ql lYl
:  t A l l w a Y l l Y , w n Y l .

I f  now le l lwnv l . l r l lwax l  we conc lude
t h a t  l x  : t ( a  x  l . l r  : w n  y  l ,  a n d s o

l x + w : w l . l Y + w i w l ,
contrary to y F X. Thus, we have l,ql I wn yl
> lr | | wo xl.But Lv n Y : Cn{.A) and lI/ n x
:  c , , (B) ,  hence l ,q l lc i lOl  > ln l lcAql
for every subgroup B of A. Notice that C1Q/) :

Ca(W), so
l , s l l ca t l l  r  l canru  I

:  l ,q l l c^41 r  l c^<wl l
> l r l  I  c i lq l  r  lcu(nl
: l r l l c ; . . q l  r l c a n a n l .

Then, we nave: lACd,tv) / co7Dl lcAOl >
I ncdnrcdbl I c4ql, as required.

(i i) See 3.2inl2l.

The results which are not utterly elementary that
we require for the proof of Theorem 3.4, are
included in the following list.

(l) Let V be an ineducible Fo[G]-
module, and let F be the field End{I) of G'

endomorphisms of Z. Suppose that G: H x Kis
a direct product, U is an ineducible F[.F{-
submodule, and W an irreducible FIKI-
submodule of I/. Then for any fixed choice of
bases for U and W, over F, there is a canonical
identification of Z with the tensor product

U8FW. This is an essential result of Theorem
3.7.1 in  [5] .

(2) Any quasisimple subgroup of
SL(2, 2') is conjugate to a natural SL(z, 2')'
subgroup (consisting of all matrices in SL(2,2')
written over F2"), for some divisor n of m.

(3) Conceming automorphisms of
SL(2,2'), any non-inner automorphism of ,SI(2,
2") of order 2 is conjugate to a fielc
automorphism.
To begin the proof of Theorem 3.4, we state the
following hypothesis.

Hypothesis 3.2 Let G be a finite grovp, p a
pime, V a faithful Fo[G]-module, and let Kbe a
component of G. Let A be a non-cyclic
elementary abelian p-subgroup of G, and let I
be a maximal subgroup of l. Assume that
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(i) IV, A, Bl = o;

(ii) CA(n: I and

(iii) Nt(K) e B

Put Z : (f r). Without loss of generality, we
may assume that G : LA. Let A denote the set of
components of G and write A : {K1,K2,...,K,}.
We then have I : KrKz..K,, where IK,, &),: I
for all i  andT with i -7. So t : lA : NAK)|.

For any K,, 4 e A, we have Ki-- Kai and IC

: Koj for same ai,ai e l. Then wehave a : ai
'ai e A with Kr" : K; . Thus I acts transitively

on A by conjugation.

Lemma 3.3 Let G, V, K, A, and B satisfu
Hypothesis 3.2. Suppose a e A-8, and X is a
component of Co{a). Then the following
conditions hold:

(i) X n is the set of all components

of Cc@).

(ii) L : <xc).
( i i i )xg lB,4e (B ' ) .

Proof (i). We have Nt(K) e .B by assumption,
so a e Ne(19. The transitivity of A on A implies
that a fixes no component of G. Without loss of
generality, we may assume that indexing has
been chosen so that the orbits for (a) on A are

{K,,...,Kr},..., {K6-4p, t,...,K,},

whe re l : sp .Pu t :

Y;-- K1i-t1prt...Kip,

X, :l xx'/ ...*oo' I x e K1i-110*1 |

for I < I < s. Then Xi = K6-t1p+t,for I < i <s,

and then also Xt,...,X" are the components of
C6(a). Since I permutes the (a)-orbits on A
transitively, we obtain part (i) of the lemma.

(ii). Since 0f) it a normal, perfect
subgroup of G contained in L, it is a product of
components of I. But evidently no proper sub-
products of components of G contain each Xi, so
weob ta in  L :<xG) .

(iii). Take X: Xt and K: Kt . Since
Cn($: l, we have lB, Kl+ l, and sinceXc I7
: (K <at ), it follows that [4 4 * l.Note that X
is a component of C{a) and B = Cc@), it
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follows $ut [A 4 = (B x). In particular, we
have Xc lB, Xl, and this yields (iii).

Theorem 3.4 Let G, V, K, A, and B satisfr
Hypothesis 3.2. Then p = 2, B = Ne(K) e

CGQjK, and I(Z(IQ is isomorphi c to SL(2,2")
for some integer n, n >1 .
Proof. Let M be a non-trivial irreducible G-
invariant section of V, and let N be a non-trivial
ineducible Z-submodule of M. Since N is Z-
invariant, so (N 1) is l-invariant. As (N 1) is
A-invariant, it follows that (N /) is G-invariant.
Hence M --  

<NA>. Since pd L l*O,we a lso
have [N, L] + 0. For any a in A-8, it follows
from Lemma 3.3 (ii) that there exists a
componenr x of c{a) with [N, 4 * 0.on the
other hand, we have [V, B, a]:0 by hypothesis,
so [N, (B *), o] -- 0. From Lemma 3.3 (iii), Xc
(.8 x), so lN, X, al = 0. Thus, we have shown
that:

0 + [N, f i=Cr(a) cNnN'

for any a in A-8. Since NnN " is a l-submodule
and N is irreducible for Z, we conclude that N:
NnN'. Since (l-B) = A we can conclude that N
is l-invariant. Thus, M : <N 

n> : w, and any
non-hivial irreducible G-invariant section of /
is in fact ineducible for I. Let F be the field
Endl(I,'l of Z-endomorphisms of N, and U is an
irreducible K-submodule of N over F, andlet Ao
be a complement in A to NA(n, that is, Ao < A
such that A : NAK)Ag and N/K)aA6 = l.
Notice that, for any a in Ao, (J " is an irreducible
F-submodule of ly' for K'. lt then follows that.
as an F[I]-module, N can be written as the
tensor product over F of the subspaces Uo, for
a e As. Using ls to identifu each Ki with K, we
may write:

N:  U8U8.. .8U
where I is represented on N in the ordinary
component-wise way, and where le acts by
regularly permuting the tensor factors. Now, for
each pair of elements u and v of U, define
elements xu.u, 1r.,, and c,.u of N as follows:

x,,u: v&u&u@...8u ,

/,,,: u&v&u&...8u , and

cu.v: !u.v - x,,u: (u@v - tE�u)@u@...@u.

By hypothesis, N7(K) c .8, so A : N,q(I]Ao =
BAy Brfi BAs c. I it then follows that A :
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Nn(AAo: BAo= AsB, and we, without loss of
generality, may assume that there exists a e lo-
,B with Kr" = Kz. Notice that then !,.u : f u,,,
and that fxu.r, af -- -xu,, * f u,u = -x,,u * !,,, =

c,,,. By hypothesis we have lV, A, Bl = 0 and

txu,- a7 e lV, Af, we then get ,B centralizes c,,u.
Suppose that t + 2. There then exists a
component X of C{a) such that X is not
contained in KtKz. But Xc (B x), and it follows
that X centralizes cu,, for all choices of u and v.
By our construction, X acts non-trivially on
some tensor factors of N after the first two. So,
we have a contradiction. and thus I : 2. It
follows that:

l . t, wnltgl = l,qol =2,

and either B^Ao = | or B^As : As. lf now B^As
= Ao, then l,ql I B I , and it
conhadicts I,q t Al = p. Thus B n As= l, then
also .B : N,a(K) and p = 2.

It will be convenient to work with the
semidirect product G = LA, where Z : KxK and
I operates on I by the formulas: (g,h)' = (h,g)
and(g,h)b : (gt,ht), for (g,h) e L and for a e
As, b e N,a(K).Put y = Ct(a) where a e Ao-
B .  T h e n  Y  =  { ( S d l S  e  K  }  = K a n d  Y e ( B ' ) .
By hypothesis, we have that lV, a, Bl = 0.
Hence [N, a, Yf :0. Observe that:

[N ,a ] :  (  z8v+  v@u lu , v  e  U ) :  U , , ,U
and thus I centralizes UnU, where U is a non-
trivial irreducible )'- module. If we identifu
U A U with HomAW ,4, we then have UnU g

Hom44(U*,LI), and thus dimfiUn() ( l, by
Schur's Lemma. Then dimpU < 2, and so
I{/CK{U) is isomorphic to a quasisimple
subgroup of SL(z, F). We conclude that
I</CK((D is a natural SL(2,2') - subgroup of
SL(2, n, for some n with n > l. If we write F =

Frn, then m : rn for some integer r, and U is a

direct sum of r copies of a natural module for K
over Fr". Then also N is a direct sum of r

submodules for I. But N was chosen to be
ineducible as a module for Z, we conclude that
r = l, also F = Fr,, and I(Cl() = SL(2,2').

We now show that B c. C{K)K. Suppose
that it is not true, there exists D e B such that b
induces an outer automorphism of K by
b: x-+(x)b, x e K. Then D also induces an outer
automorphism on I(Z(K) by n:Z(K)x->Z(lQ@)b,
Z(IQx e I(/Z(I<).The structure of Aut(K/Z(K)) is
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well known, and one may conclude that D is
conjugate to a field automorphism of KZ(IQ.
Since Z(K) = CAll), 6 also induces a field
automorphism on N, where N is isomorphic to a
direct sum of two copies of a natural SL(2,2')-
module for K. But then D centralizes no F-
subspaces of N, which is contrary to lN, A, bl
= 0. Thus B = C{IQK, as required.
Theorem 2.4 and Theorem 3.4 are technical
results necessary to the proof of the P(G, V)-
Theorem. An important step in the proof of the
P(G, l)-T\eorem begins by assuming that the
theorem is false. Then let A e P(G, V), let K be
a component of G such that I does not

normalize K, and put B =Ctr(fV, Al), L = 6 
A,

and G : LA. Then we must show that
Hlpothesis 3.2 holds. Toward that we use
Theorem 2.4 and Theorem 3.4 to show that V
has an ineducible K-submodule Z of ll, where
W is an ineducible G-submodule, and finally we
show that Z is L-invaiant which contradicts the
ineducibility of W. This proof is thereby
complete.
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