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Abstract

The unknown time-dependent boundary heat flux of a two-dimensional body is determined
from temperature measurements inside the body or on its boundary. The method of solution is the
boundary element method, which is used to obtain coefficients that relate unknown heat flux and
measured temperatures. The quality of the estimated heat flux depends on how close it is to the actual
heat flux and how sensitive it is to statistical errors in temperature measurements. The proposed
method is used to solve a sample problem. It is shown that the number of heat flux components to be
estimated, the number of temperature sensors, and the locations of the sensors influence the quality of

the solution.

1. Introduction

The determination of unknown boundary
heat flux of a solid body of which
thermophysical properties are known from
temperature measurements inside the body or on
its boundary constitutes an inverse heat
conduction problem (IHCP). A number of
solution techniques have been proposed for the
one-dimensional IHCP [!1-4]. The two-
dimensional THCP, however, has received less
attention so far [5-7] despite the fact that it can
more realistically model practical problems than
the one-dimensional THCP.

The solution to THCP often requires the
determination of sensitivity coefficients [1]. For
the one-dimensional IHCP, the sensitivity
coefficients can be found in a straightforward
manner due to the availability of the analytical
solution to the corresponding direct problem.
However, the analytical solution to the direct
problem of two dimensions may be very
complicated, and a numerical method such as
the finite difference method or the finite element
method must be employed in most cases. Since
the finite element method can handle problems
of arbitrary geometry efficiently, it has been
proposed as the method for solving the two-
dimensional IHCP [8].

Apart from the finite element method,
another numerical method that is able to handle
a general problem of arbitrary geometry is the

64

boundary element method. For problems having
no source term, the boundary element enjoys an
important advantage over the finite element
method in that no domain mesh generation is
required. The boundary element method was
previously used to solve the steady-state inverse
heat conduction problem [9] and one-dimen-
sional time-dependent IHCP [2]. In this paper,
the two-dimensional time-dependent THCP will
be considered. The following sections will
present the statement of the problem, the
formulation of the boundary element method for
solving the problem, and the solution of a
sample problem by the proposed method.
Discussion and conclusion will then follow.

2, Statement of the Problem

Consider a solid object with part of its
boundary I} subjected to known heat flux and
the remaining part of the boundary I'; subjected
to unknown heat flux. Suppose that the object
has constant thermophysical properties, making
the problem a linear one. Without the loss of
generality, we can take the value of the thermal
diffusivity to be unity and the initial condition to
be uniformly zero. The heat conduction process
can then be described by the following
equations.
oT(7. 1)

p VT(F,1) (1)
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where 7 is the outward pointing unit vector
normal to boundary and g is the known
boundary heat flux. In order to render the
problem solvable, the temperature measurement
data must be specified.

T(7, jAr) )

where 7. is the position vector of a temperature

Yv(f)

1

sensor, and Ar is the measurement time step.
Suppose that there are M; temperature sensors
on the boundary and M, sensors inside the
object. Furthermore, let ¥,, ¥, ..., Ty, denote
measurements on the boundary, and P41,
Yyye2, ..., Yupem, denote measurements inside
the object.

3. Boundary Element Method

The formulation of the boundary element
method for a time-dependent linear heat
conduction problem is given by [10]

at(E.1) [[ a7 0)GF - &t - )7
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where a depends on the location ofE, and the
fundamental solution G is

of-gi-g)- ST

[4Tc(t - ‘c)]
Divide the boundary I' into M, boundary
clements and time 7 into N equal time intervals.
Equation (5) becomes
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where front subscript denotes element index.
Now, let’s approximate ,q and 7 by

N jAl

T(7,7)

piecewise linear functions in time.
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where superscript denotes time index. Next,
l_q(f) and iT(j)
making use of interpolating function @, as
follows.

approximate over element i,

L
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where £ is local node index, and L is the number
of nodes in an element. Substituting equations
(8)-(11) into equation (7) yields

‘t—NAt)+

[

+(V- )

N/

ﬁ?Gdt}@k(F)dr‘}(,kT("”) (12)

If equation (12) is evaluated at a point Ek

on the boundary or inside the object, the
resulting equation after the assembly process
can be written as
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N M, _
a1 = 30,7 (V- )y
j=1 i=1
N M,+M, . )
+ Y Swr (V- ar)e)
j=t =l
where back subscript denotes global node index,
M, is the number of boundary nodes, and M, is
the number of additional heat flux components
at corner or edge nodes. Note that coefficient g,

(13)

becomes unity if Ek is inside the object. For

two-dimensional problems, each comer node
can have two heat flux components; therefore,
M, is equal to the number of comers. Functions
¢ and y are obtained from the evaluation of
integrals shown in equation (12). The evaluation
of time integrals can be done exactly as shown
in the Appendix, while the evaluation of
boundary integrals should be performed using
the Gaussian quadrature.

Equation (13) is now written for M,, bound-
ary node points, yielding M, equations that re-
late boundary temperatures to boundary heat
flux components. The resulting equations may
be expressed as the following two matrix equa-
tions.

ATW) = ZE(N—J)T(J) + ZR](N‘J)'q‘(J)
Jj=1 j=1
N
+ ZSI(N_j)g(]) (14)
j=1
) — N p-NFD) L S pv-)a0)
I = Z:P2 TV + ZRz q
Jj=1 j=1
(N-7) z(7)
+ > 8778 (15)

where A4 1s diagonal matrix of coefficients a; T
is the vector of temperatures on the boundary;

f is the vector of temperatures inside the
object; g is the vector of boundary heat flux
components that are to be determined; g is the

vector of specified boundary heat flux
components; P, and P, are coefficient matrices
consisting of y functions; and R), R,, S}, and .S,
are coefficient matrices consisting of ¢

functions.Let 7_;0 and fo be, respectively, the

boundary and interior temperature responses
when g =0.
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N N

ATO(N) - ZPI(N-J)TO(/)+ZS1(N*J)g(1) (16)
Jj=1 Jj=1

~ N o N

fo(N) - ZPZ(N'J)Y“()(J)_FZSgN*J)g(J) (17)
Jj=1 J=t

If Z is known as a function of time, 7, and f,

can be determined by the time-stepping proce-
dure. Subtracting equations (16) from (14) and
(17) from (15) results in

A[T(N) _ TO(N)] -
N

3 R(N-f)[fm _ TO(J-)] +
=1

[f(N) _fo(N)] -
ip(zv—])[ﬁ;) _70] + ingfnqm (19)

2

= jAl
Applying the time-stepping procedure to equa-
tions (18) and (19) gives us the following rela-

tions between boundary and interior tempera-
tures and the unknown boundary heat flux.

N
ZRl(N*f)ZI‘(f) (18)
J=1

k

T _ To(k) = Z Xl(j‘k)z]'(k) (20)
j=1

f(k) _fo(k) - Zng-k)q(k) )
J=1

Of the M,, equations for boundary temperatures
in the matrix equation (20), only M; equations,
corresponding to M; boundary sensor locations,
are to be used for the determination of bound-
ary heat flux. These equations are combined
with M, equations represented by the matrix
equation (21). The result can be written as

)7(") _ )70(") - i X(k—l’)q’(f) (22)
J=1

where Y% is the vector of temperature
measurements on the boundary and inside the

object at time kAtr, and )70(” i1s the vector

temperatures at these sensor locations when ¢
= 0 from time 0 to kAt

It is expedient to express estimated heat
flux vector at time level k& in terms of
temperature measurements from time level 1 to
k as follows.

k
g = 3 D(k-J)[fm —170(")] 23)
J=1
where D is the coefficient matrix relating
estimated heat flux to measured temperatures.
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From simple algebra, it can be shown that D is
related to X in the following manner.

x©p® = 1 (24)
where 1 is the identity matrix.
k-1
X(O)D(k) - _ X("—i)D(J') (25)
Z
for k> 0.

The dimensions of D and X depend on the
numbers of unknown heat flux components and
measured temperatures. If the suggestion by
Beck et al. [1] that the number of temperature
sensors should be equal to or greater than the
number of unknown heat flux components is
followed, matrices 1D and X may be rectangular
matrices, and solutions to Eqs. (24) and (25)
have to be obtained using the linear least
squares method. For the purpose of getting
such solutions, the subroutine dgelss.f in the
numerical package LAPACK (which is
available at http://www.netlib.org/lapack) may
be used.

Once all coefficient matrices are known,
the unknown heat flux can be estimated from
Eq. (23). Normally, temperature measurements
contain statistical errors, which will result in
the statistical errors in estimated heat flux. If it
is assumed that errors in temperature
measurements have uniform variance 5, are
normally distributed, and are uncorrelated, the
variance in estimated heat flux is given by

2 N~ (-1} }

T3 (o)
1=1 j=1

The characteristic of the solution to the IHCP is
such that the variance of the estimate becomes
larger as the estimated heat flux approximates
the true heat flux better. Conversely, it may be
necessary to accept a larger deviation between
the true heat flux and the estimated heat flux in
order to reduce the variance of the solution.

Var(g*)) (26)

4. Results and Discussion

The sample problem is illustrated in Fig. 1.
A square object of length 1.0, which is insulated
on three sides, is subjected to unknown heat flux
on the remaining side AB. The unknown heat
flux will be determined using the algorithm
described earlier with temperature sensors
located inside the object or on its boundary.
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unknown heat flux
Figure 1: Sample problem

For computational purpose, the boundary is
divided uniformly into 48 linear elements. It was
found from a numerical test that the L, norm of
the difference between computed solution and
exact solution is only about 0.4% of the exact
solution. Furthermore, the L, norm of this
difference monotonically decreased as more
elements were used. Hence, the numerical
algorithm appears to have satisfactory accuracy.

Since only surface AB is non-insulated,
only the heat flux components on 13 nodes
along AB are to be estimated. This problem is

simplified by the fact that § = 0. Hence, ¥,

vanishes. The time step used is 0.1, and the
calculation is performed from time 0 to 1.0,

For a corresponding direct problem (i.c.
one in which boundary heat flux is known, and
temperature distribution is to be determined)
with the boundary heat flux illustrated in Fig. 2,
the exact solution for temperature distribution is
given by

Figure 2: Actual boundary heat flux
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T(x, t) =
2U(x,t), fort<0.5
{ZU(x,t) — 4U(x,t—-0.5), fort>0.5
where

2 2
Ukt = Ait{’? N 1[392— ~ x4 %]

2i Eifffi)@ — g/ ﬂ 27
= ()

The solution to this direct problem will be
now used to supply input to the inverse problem.
The calculated heat flux can then be compared
with Fig. 2. This comparison, together with the
variance of the estimate as given in Eq. (26),
will be used to assess the quality of the solution

Three factors play a dominant role in
affecting the solution of this inverse problem.
They are (1) the number of heat flux
components to be estimated, (2) the number of
temperature sensors, and (3) the locations of the
sensors. In orderto see the influence of each
factor, three cases will be considered.

4.1 Case 1: Influence of the number of heat
flux components

00000000000

00000000000

13 HF components
13 sensors

7 HF components
13 sensors

00000000000 00000000000

4 HF components
13 sensors

2 HF components
13 sensors

Figure 3: The numbers of HF components and
sensors in Case 1 (» represents location of HF
component and © represents location of sensor)

Due to the mesh generation used, there are
at most 13 heat flux components to be estimated.
However, the solution to the problem may seek
to estimate fewer than 13 heat flux components,
and assume that the remaining components are
determined by interpolation from estimated
components. Fig. 3 shows 4 different sub-cases.
The numbers of HF components / sensors in
these casesare 13/13,7/13,4/13,and 2/ 13.
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0.0 0.5 1.0

Figure 4: Solutions for the heat flux component
at A in Case 1. Solid line is the actual heat flux.
Squares, triangles, solid squares, and solid tri-
angle represent solutions in sub-cases of 13, 7, 4,
and 2 heat flux components, respectively.
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Figure 5. Variance of the estimated heat flux
component at A in Case 1. Squares, triangles,
solid squares, and solid triangle represent solu-
tions in sub-cases of 13, 7, 4, and 2 heat flux
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components, respectively. Note that Gz is the
variance in temperature measurements.

In order to compare solutions from the four
different sub-cases, it is necessary to consider a
common heat flux component. Inspection of Fig.
3 reveals that the common heat flux components
are those at left end (A) or right end (B).
Comparison of the solutions for the heat flux
component at either location should be
sufficient. Figure 4 shows the comparison of the
solutions for the heat flux component at A. It
can be seen that when there are too many heat
flux components to be estimated, the solution
will deviate noticeably from the actual heat flux.
Although it is difficult to tell from the figure, the
results of computations indicat that the fewer the
heat flux components, the more closely the
solution resembles the actual heat flux.

In addition to yielding a less accurate
solution, Fig. 5 shows that a higher number of
estimated heat flux components also results in a
higher variance of the solution. In other words,
the solution will be more sensitive to
temperature measurement errors if the number
of estimated heat flux components increases.

4.2 Case 2: Influence of the number of
temperature sensors

The number of sensors must be greater than
or equal to the number of heat flux components.
Here there are two heat flux components to be
estimated, and four sub-cases of different
numbers of sensors. As shown in Fig. 6, the
numbers of heat flux components / sensors in
these casesare 2/13,2/7,2/4,and 2 /2.

Figure 7 shows that the solutions from all
sub-cases are similar. The computational results
must be closely inspected to see the small
differences in solutions, with sub-cases having a
higher number of sensors yielding slightly more
accurate solutions. The influence of the number
of sensors on variance of solution is more
noticeable. Figure 8 shows that the higher
number of sensors leads to a solution that is less
sensitive t0 measurement errors.
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Figure 6: The numbers of HF components and
sensors in Case 2 (» represents location of HF
component and © represents location of sensor)
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Figure 7: Solutions for the heat flux component
at A in Case 2. Solid line is the actual heat flux.
All sub-cases yield similar solutions, represented
by solid squares.
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Figure 8: Variance of the estimated heat flux
component at A in Case 2. Squares, triangles,
solid squares, and solid triangle represent solu-
tions in sub-cases of 13, 7, 4, and 2 sensors,
respectively. Note that * is the variance in
temperature measurements.

4.3 Case 3: Influence of the locations of
temperature sensors

If the numbers of sensors and heat flux
components are fixed, the locations of sensors
have a great influence on the estimated heat flux.
There are 2 heat flux components and 13 sensors
in Case 3. But each of the 4 sub-cases is
associated with a different location of sensors, as
shown in Fig. 9.

It can be seen from Figs. 10 and 11 that the
effects of the locations of sensors are such that
the solution becomes both less accurate and
more sensitive to errors in temperature measure-
ments as the sensors are located farther away
from the boundary of unknown heat flux. In fact,
when x = 1/2 or 3/4, the solution is unacceptable
because it is very different from the actual solu-
tion, and the variance is too large.
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Figure 9: The locations of sensors in Case 3 (x
is the distance from the bottom boundary to
sensors, ® represents location of HF component
and o represents location of sensor).
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Figure 10: Solutions for the heat flux compo-
nent at A in Case 3. Solid line is the actual heat
flux. Squares, triangles, solid squares, and solid
triangle represent solutions in sub-cases of x = 0,
1/4, 1/2, and 3/4, respectively. Results for x =
1/2 and 3/4 no longer resemble the actual heat
flux.

5. Conclusions

The boundary element method is used to
solve the inverse heat conduction problem,
which is the determination of boundary heat flux
from temperature measurements, m two
dimensions. Like the finite element method, this
method can deal with arbitrary geometry.
However, unlike the finite element method, it is
more computationally efficient since it does not
require domain mesh generation.
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Figure 11: Variance of the estimated heat flux
component at A in Case 3. Squares, triangles,
solid squares, and solid triangle represent solu-
tions in sub-cases of x = 0, 1/4, 1/2, and 3/4,
respectively. Note that 0.2 is the variance in
temperature measurements.

The quality of the solution is a function of
how close the estimated heat flux to the actual
heat flux and how sensitive the solution is to
errors in temperature measurements. It is influ-
enced by three important factors _ the number
of heat flux components to be estimated, the
number of temperature sensors, and the loca-
tions of the sensors. Increasing the number of
heat flux components, decreasing the number of
sensors, or increasing the distance between sen-
sors and boundary of unknown heat flux leads to
a poorer quality.

The results from this paper should provide
some guidance to future experimental work. In
order for the experiment in determining heat
flux from temperature measurements to be
successful, it should be designed in such a way
that the number of unknown heat flux
components is minimized, the number of sensors
i1s maximized, and the sensors are located as
close to the boundary of unknown heat flux as
practical.
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