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Abstract
The unknown time-dependent boundary heat flux of a two-dimensional body is determined

from temperature measurements inside the body or on its boundary. The method of solution is the

boundary element method, which is used to obtain coefficients that relate unknown heat flux and

measured temperatures. The quality of the estimated heat flux depends on how close it is to the actual

heat flux and how sensitive it is to statistical errors in temperature measurements. The proposed

method is used to solve a sample problem. It is shown that the number of heat flux components to be

estimated, the number of temperature sensors, and the locations of the sensors influence the quality of

the solution.

1. Introduction
The determination of unknown boundary

heat flux of a solid body of which
thermophysical properties are known from
temperature measurements inside the body or on
its boundary constitutes an inverse heat
conduction problem (IHCP). A number of
solution techniques have been proposed for the
one-dimensional IHCP tl-41 The two-
dimensional IHCP, however, has received less
attention so far [5-7] despite the fact that it can
more realistically model practical problems than
the one-dimensional IHCP.

The solution to IHCP often requires the
determination of sensitivity coefficients []. For
the one-dimensional IHCP. the sensitivity
coefficients can be found in a straightforward
manner due to the availability of the analytical
solution to the corresponding direct problem.
However, the analytical solution to the direct
problem of two dimensions may be very
complicated. and a numerical method such as
the finite difference method or the finite element
method must be employed in most cases. Since
the finite element method can handle problems
of arbitrary geometry efficiently, it has been
proposed as the method for solving the two-
dimensional IHCP [8].

Apart from the finite element method,
another numerical method that is able to handle
a general problem of arbitrary geometry is the

boundary element method. For problems having
no source term, the boundary element enjoys an
important advantage over the finite element
method in that no domain mesh generation is
required. The boundary element method was
previously used to solve the steady-state inverse
heat conduction problem [9] and one-dimen-
sional time-dependent IHCP [2]. In this paper,
the two-dimensional time-dependent IHCP will
be considered. The following sections will
present the statement of the problem, the
formulation of the boundary element method for
solving the problem, and the solution of a
sample problem by the proposed method.
Discussion and conclusion wil l then follow.

2. Statement of the Problem
Consider a solid object with part of its

boundary f1 subjected to known heat flux and

the remaining part of the boundary f2 subjected

to unknown heat flux. Suppose that the object
has constant thermophysical properties, making
the problem a linear one. Without the loss of
generality, we can take the value of the thermal
diffusivity to be unity and the initial condition to
be uniformly zero. The heat conduction process
can then be described by the following
equations.
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where Z is the outward pointing unit vector
normal to boundary and g is the known
boundary heat flux. In order to render the
problem solvable, the temperature measurement
data must be specified.

r(/,, j lt) = yti) (4)

where { is the position vector of a temperature

sonsor, and At is the measurement time step.
Suppose that there are M1 temperature sensors
on the boundary and Mz sensors inside the
object. Furthermore, let )zr, Yz . ., Yuyge'r denote
measurements on the boundary, and lr,*r,
Y*r,t, ..., Yu.7f;,;,z denote measurements inside
the object.

3. Boundary Element Method
The formulation of the boundary element

method for a time-dependent linear heat
conduction problem is given by [0]

"r((,t) fi" qV,ic| -Ct, -.)a.a,-
f

- Il"r(r,)nncQ -1;, -.)a.a' (5)
I

where a depends on the location of{, and the
fundamental solution G rs
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Divide the boundary f into M" boundary
elements and time r into N equal time intervals.
Equation (5) becomes
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where front subscript denotes element index.
Now, let's approximate ,Q and ,T by
piecewise l inear functions in time.

I  r  . . , . l

,q l r . r )  =  ; [ ,  q" ' l l )  -  ,q" - " (F) ] \ r -  NLt)
L t -

+,qt,)(r)(r- /+l)  -  q(/- ' )(r-XN-/) (s)

,r(i,x) = | [,rt,r 1r- ) -,r*", ('-)](' - 1rl&)
Lt ' '

+ ,rt')(r[lrr - j + l) - ,r(,-')(r..)(N -,r) tsl
where superscript denotes time index. Next,

approximate ,q0) ^d ,70\ ou", element l,

making use of interpolating function Or, as
follows.
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where k is local node index, and Z is the number
of nodes in an element. Substituting equations
(8)-(l l) into equation (7) yields

M .  I '  ' g r r o ,  ( ( r _ N L t \
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If equation (12) is evaluated at a point {o
on the boundary or inside the object. the
resulting equation after the assembly process
can be written as
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where back subscript denotes global node index,
M, is the number of boundary nodes, and M. is
the number of additional heat flux components
at comer or edge nodes. Note that coefiicient ar

becomes unity if (o is inside the object. For

two-dimensional problems, each comer node
can have two heat flux components; therefore,
M" is equal to the number of comers. Functions

0 and V are obtained from the evaluation of
integrals shown in equation (12). The evaluation
of time integrals can be done exactly as shown
in the Appendix, while the evaluation of
boundary integrals should be performed using
the Gaussian quadrature.

Equation (13) is now written for M, bound-
ary node points, yielding M, equations that re-
late boundary temperatures to boundary heat
flux components. The resulting equations may
be expressed as the following two matrix equa-
t1ons.

N N

trftt ' t: : Ip,,"-t\f j) * lnf' 
, l4r,r

+  \ l , q ( M - / ) A ( r )
' L * t o (14)
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where,4 is diagonal matrix of coefficient" o; f
is the vector of temperatures on the boundary;

i is the vector of temperatures inside the

object; { is the vector of boundary heat flux

components that are to be determined; ! is the

vector of specified boundary heat flux
components; P1 and P2 are coefiicient matrices
consisting of y functions; and R1, &, ,Sr, and &
are coefficient matrices consisting of 0

fi.mctions.Let 4 -d jo b", respectively, the

boundary and interior temperafure responses
when { = 6.
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Af!*t  = lr{"- ,) f{ ,)1151N 
r)g(r) (16)
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If f is known as a firnction of time, To and fo
can be determined by the time-stepping proce-
dure. Subtracting equations (16) from (la) and
(17) from (15) results in
^ law t  t (N ) ln l t  - t r t  

I  
-

N . r N

l r t ru-r) [ t , ) -  i r r l l  + )nf '  
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Applying the time-stepping procedure to equa-
tions (18) and (19) gives us the following rela-
tions between boundary and interior tempera-
tures and the unknown boundary heat flux.

Of the M, equations for boundary temperatures
in the matrix equation (20), only M1 equations,
corresponding to M1 boundary sensor locations,
are to be used for the determination of bound-
ary heat flux. These equations are combined
with Mz equations represented by the matrix
equation (21). The result can be written as

( ls)
l t k )  _ l k )

lX{r,-i)qtit e2)

where f lk) is the vector of temperature
measurements on the boundary and inside the

object at time ,tAt, and lotu) is the vector

temperatures at these sensor locations when {
= 0 from tims 0 to tAl.

It is expedient to express estimated heat
flux vector at time level /c in terms of
temperatue measurements from time level I to
& as follows.

q\o)

lXli-ttnttt (20)

k

lx-t-t 'tqat eD

lna-'\fo - Ir1l)] e3)
J = r

where D is the coefficient matrix relating
estimated heat flux to measured temperatures.
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From simple algebra, it can be shown that D is
related to Xin the followihs manner.
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insulated

a  l i + + + +  E ,
t t t t t l

unknown heat flux
Figure 1: Sample problem

For computational purpose, the boundary is
divided uniformly into 48 linear elements. It was
found from a numerical test that the Lz norm of
the difference between computed solution anc
exact solution is only about 0.4o/o of the exact
solution. Furthermore, the L2 norm of this
difference monotonically decreased as more
elements were used. Hence, the numerical
algorithm appears to have satisfactory accuracy.

Since only surface AB is non-insulated,
only the heat flux components on 13 nodes
along AB are to be estimated. This problem is

simplified by the fact that g = 0. Hence. ln

vanishes. The time step used is 0.1, and the
calculation is performed from time 0 to L0.

For a corresponding direct problem (i.e.
one in which boundary heat flux is known, and
temperature distribution is to be determined)
with the boundary heat flux illustrated in Fig. 2,
the exact solution for temperature distribution is
given by

X@)D@) I
where I is the identity matrix.

y (o )  p ( t )

for,t > 0.

_lX{k-i)p0\ es)
j=o

The dimensions of D and Xdepend on the
numbers ofunknown heat flux components and
measured temperatures. If.the suggestion by
Beck et al. [1] thaf the number of temperature
sensors should be equal to or greater than the
number of unknown heat flux components is
followed, matrices D and X may be rectangular
matrices, and solutions to Eqs. Q$ and (25)
have to be obtained using the linear least
squares method. For the purpose of getting
such solutions, the subroutine dgelss.f in the
numerical package LAPACK (which is
available at http ://www.netlib.orgllapack) may
be used.

Once all coefficient matrices are known,
tJte unknown heat flux can be estimated from
Eq. (23). Normally, temperature measurements
contain statistical errors, which will result in
the statistical errors in estimated heat flux. If it
is assumed that errors in temperature
measurements have uniform variance ot, *a
normally distributed, and are uncorrelated, the
variance in estimated heat flux is given by

^ J - L '  '  \ r
Yar lq l r t l  - -  o ' � ) l (Ot t  ' t , ; '  

Q6l
I - l  1  - l

The characteristic of the solution to the IHCP is
such that the variance of the estimate becomes
larger as the estimated heat flux approximates
the true heat flux better. Conversely, it may be
necessary to accept a larger deviation between
the true heat flux and the estimated heat flux in
order to reduce the variance ofthe solution.

4. Results and Discussion
The sample problem is illustrated in Fig. I

A square object oflength 1.0, which is insulated
on three sides, is subjected to unknown heat flux
on the remaining side AB. The unknown heal
flux will be determined using the algorithm
described earlier with temperature sensors
located inside the object or on its boundary.

(24)

I

0.8

b /

Figure 2: Actual boundary heat flux
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for /<0.5

lzu(x,t) - 4U(x,t- 0.5), for I > 0.5
where
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Due to the mesh generation used, there are
at most 13 heat flux components to be estimated.
However, the solution to the problem may seek
to estimate fewer than 13 heat flux components,
and assume that the remaintng components are
determined by interpolatron from estimated
components. Fig. 3 shows 4 different sub-cases.
The numbers of HF components / sensors in
these cases are 13 I 13,7 | 13,4 / 13,and2 | 13.

( J ( x , t )  = * l+ . , (+ - r+ i )
^  /  \ /  r - l

2t "o,tu.T/ [t - e-""" ll <ztl
; \jn)' \ /l

The solution to this direct problem will be
now used to supply input to the inverse problem.
The calculated heat flux can then be compared
with Fig. 2. This comparison, together with the
variance of the estimate as given in Eq. (26),
will be used to assess the qualrty ofthe solution

Three factors play a dominant role in
affecting the solution of this inverse problem.
They are (l) the number of heat flux
components to be estimated, (2) the number of
temperature sensors, and (3) the locations of the
sensors. In order to see the influence of each
factor, three cases will be considered.

4.1 Case 1: Influence ofthe number ofheat
flux componentsnn

13 HF components 7 HF components
13 sensors 13 sensors

nn
4 HF components 2 HF components
13 sensors 13 sensors

Figure 3: The numbers of HF components and
sensors in Case I (. represents location ofHF

component and " represents location ofsensor)
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Figure 4: Solutions for the heat flux component
at A in Case l. Solid line is ths actual heat flux.
Squares, triangles, solid squares, and solid tri-
angle represent solutions in sub-cases of 13 , 7 , 4,
and 2 heat flux components, respectively.
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Figure 5: Variance of the estimated heat flux
component at A in Case l. Squares, triangles,
solid squares, and solid tnangle represent solu-
tions in sub-cases of 13. 7. 4. anrd 2 heat flux
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components, respectively. Note t}at ot is the
variance in temperature measurements.

In order to compare solutions from the four
different sub-cases, it is necessary to consider a
common heat flux component. lnspection of Fig.
3 reveals that the common heat flux components
are those at left end (A) or right end (B).
Comparison of the solutions for the heat flux
component at either location should be
sufficient. Figure 4 shows the comparison of the
solutions for the heat flux component at A. It
can be seen that when there are too many heat
flux components to be estimated, the solution
will deviate noticeably from the actual heat flux.
Although it is difficult to tell from the figure, the
results of computations indicat that the fewer the
heat flux components, the more closely the
solution resembles the actual heat flux.

In addition to yielding a less accurate
solution, Fig. 5 shows that a higher number of
estimated heat flux components also results in a
higher variance of the solution. In other words,
the solution will be more sensitive to
temperature measurement errors if the number
of estimated heat flux components increases.

4.2 Case 2: Influence of the number of
temperature sensors

The number of sensors must be greater than
or equal to the number of heat flux components.
Here there are two heat flux components to be
estimated, and four sub-cases of different
numbers of sensors. As shown in Fig. 6, the
numbers of heat flux components / sensors in
these cases are2 /  13,2 /7,2 /4,and2 /2.

Figure 7 shows that the solutions from all
sub-cases are similar. The computational results
must be closely inspected to soe the small
differences in solutions, with sub-cases having a
higher number of sensors yielding slightly more
accurate solutions. The influence of the number
of sensors on variance of solution is more
noticeable. Figure 8 shows that the higher
number of sensors leads to a solution that is less
sensitive to measurement errors.
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nn
2 FIF components 2 FIF components

13 sensors 7 sensors

nn
2 FIF components 2 HF componen
4 sensors 2 sensors

Figure 6: The numbers of HF components and
sensors in Case 2 (. represents location of HF

component and o represents location ofsensor)
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Figure 7: Solutions for the heat flux component
at A in Case 2. Solid line is the actual heat flux.
All sub-cases yield similar solutions, represented
by solid squares.



Yar(q) I o2

A A A A A A A A

l l l l l r r l
A

I A A A A A A A A

a f r ! t r t r t r D t r t r
I

0.5

t

Thammasat Int. J. Sc. Tech., Vol.5, No.2, May -August 2000

r-rm
1'"'""oo"'"1 I j
-  

x = l / 2  x = 3 1 4

Figure 9: The locations of sensors in Case 3 (x

is the distance from the bottom boundary to
sensors, . ropresents location of HF component
and o represents location of sensor).
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Figure 8: Variance of the estimated heat flux
component at A in Case 2. Squares, triangles,
solid squares, and solid triangle represent solu-
tions in sub-cases of 13, 7, 4, and 2 sensors,
respectively. Note that ot is the variance in
temperature measurements.

4.3 Case 3: Influence ofthe locations of
temperature sensors

If the numbers of sensors and heat flux
components are fixed, the locations of sensors
have a great influence on the estimated heat flux.
There are 2 heat flux components and 13 sensors
in Case 3. But each of the 4 sub-cases is
associated with a different location ofsensors, as
shown in Fig. 9.

It can be seen from Figs. l0 and I I that the
effects of the locations of sensors are such that
the solution becomes both less accurate and
more sensitive to errors in temperafure measure-
ments as the sensors are located farther away
from the boundary of unknown heat flux. In fact,
when x = ll2 or 3/4, the solution is unacceptable
because it is very different from the actual solu-
tion, and the variance is too large.
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Figure 10: Solutions for the heat flux compo-
nent at A in Case 3. Solid line is the actual heat
flux. Squares, triangles, solid squares, and solid
triangle represent solutions in sub-cases ofx = 0,
l/4, l/2, and 314, respectively. Results for x =

ll2 and 314 no longer resemble the actual heat
flux.

5. Conclusions
The boundary element method is used to

solve the inverse heat conduction problem.

which is the determination of boundary heat flux
from temperature measurements, ln two

dimensions. Like the finite element method, this
method can deal wrth arbitrary geometry.
However. unlike the finite element method, it rs
more computationally efficient since it does not
require domain mesh generation.

I

x = 0 x = l / 4
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Figure 11: Variance of the estimated heat flux
component at A in Case 3. Squares, triangles,
solid squares, and solid triangle represent solu-
tions in sub-cases of x = 0, l/4, l/2, and 314,
respectively. Note that o2 is the variance in
temperature measurements.

The quality of the solution is a function of
how close the estimated heat flux to the actual
heat flux and how sensitive the solution is to
errors in temperature measurements. It is influ-
enced by three important factors _ the number
of heat flux components to be estimated, the
number of temperature sensors, and tJre loca-
tions of the sensors. Increasing the number of
heat flux components, decreasing the number of
sensors, or increasing the distance between sen-
sors and boundary ofunknown heat flux leads to
a poorer quality

The results from this paper should provide
some guidance to future experimental work. In
order for the experiment in determining heat
flux from temperature mgasurements to be
successful, it should be designed in such a way
tlnt the number of unknown heat flux
components is minimized, the number of sensors
is maximized, and the sensors are located as
close to the boundary of unknown heat flux as
practical.
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