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Abstract
One of the problems when storing and computing an elevation data is that the amount of data

can be enormous. A Triangulated Irregular Network (TIN) is an altemative to represent an Qlevation
by which a TIN can be extracted from a dense grid of data. We present an incremental Delaunay
triangulation algorithm for constructing a TIN. The algorithm starts with an initial triangular network
covering entire area of an elevation grid. More data points are inserted into a network sequentially by
selecting a subset of the grid points; this subset is the most significant contribution to the terrain
model. The Delaunay triangulation of this subset is the TIN that approximates the elevation at all grid
points within a distant criterion. As a result, the conversion of spatial data structure from an elevation
grid to a TIN significantly reduces the number ofdata points to represent the terrain surface.

1. Introduction
Digital Terrain Modelling (DTM) [10]

usually uses a rectangular grid (or elevation
matrix) as a major data structure to represent the
terrain surface. This is because the handling of
elevation matrices is simple, and grid-based
terrain modelling algorithms tend to be
relatively straightforward. But on the other
hand, the point density of regular grids cannot
be adapted to the complexity of the relief. Thus,
an excessive number of data points are needed
to represent the terrain to a required level of
accuracy. Also, rectangular grids cannot
describe the structural features in comparison
with the topographic features.

Triangulated lrregular Network (TIN) [2] is
another way to represent an elevation data. TIN
is based on triangular elements, with vertices at
the sample points. The great advantage of using
triangles in terrain modelling is the possibility of
adapting the triangle shape to fit variation in the
terrain surface; more data points can be used in
regions where there is much elevation change,
and fewer points in regions where the elevation
hardly changes. Consequently, a TIN can
approximate any surface at any desired tolerance
with a minimal number of triangles.

Although TIN has not been used in DTM for
a long although time, many algorithms for
constructing the TIN to represent the terrain
have been proposed. Section 2 explains the
reason why we adapt the incremental algorithm

to calculate the TIN from the dense grid source.
After the four steps of incremental algorithm are
briefly presented, we describe the detailed
theory behind the algorithm. Finally, Sections 3,
4, and 5 give the implementation, the results,
and the conclusions of the experiment.

2. Incremental Algorithm
Without doubt the most popular triangulation

of a point set is the Delaunay triangulation [6],
[2]. There are several well-known triangulation
methods, but from a generalization point of
view, a dynamic method for Delaunay
triangulation is very promising. One dynamic
triangulation method is the incremental
algorithm. When a point is included in the
network, the network is rearranged until the
max-min angle criterion is met t5]
Consequently, during the triangulation, it is
possible to select the points that make the most
significant contribution to the model (this
technique is described in Section 2.5). The four
steps of the incremental algorithm are:

l. The initial triangular network is created
covering the entire area of all data points. In this
research, we use a circumscribing rectangle that
is divided into two triangles as an initial network
(Figure l.a),

2. The first point of interior area is included
into the network. The point is connected to its
enclosing triangle by three new triangle edges
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between the point and the vertices of the triangle
(Figure l.b),

3. The quadrilaterals, which have the old
edges of the enclosing triangle as a diagonal,
have to be tested by max-min angle rule [5]. If
they do not meet the criterion, their diagonals
are swapped and the new opposite edges to the
recently inserted point will be examined as
diagonals in their quadrilaterals (Figure 1.c),

4. The Delaunay network now contains one
more point. All the remaining points will be
repeatedly included in the network in the same
way as step 2 and 3 (Figure l.d - 1.0.

2.1 Data structure
The data structure for the incremental

algorithm contains at least two pieces of
information: geometry and topology. The
geometrical data structure contains the
information of coordinates: point, edge, vertex,
and triangle. The topological data structure is
the information that describes how each
geometrical data connects to each other in the
network to represent the aspect of the terrain
model. This topological network structure is a
kind of planar graph subdivision where the
geometrical data is a node and the topological
data is an edge that links nodes together. Thus
one can use the Dept-First Search [7] operation
of the Graph algorithm to traverse all elements
inside the TIN. This operation is very useful for
extracting the information from the TIN
(described in Section 3.3).

In this research we use the Twin-Edge [3] as
a topological data structure. The Twin-Edge is
an edge based data structure in which all
information about the triangle is implicitly
stored in an edge network. A pointer to the
endpoint and a pointer to the next edge in the
triangle are stored for each edge. Further there is
a pointer to the twin edge, but it points at the
opposite endpoint. In addition there is a pointer
from each edge to the attribute, which is the
point set belonging to the triangle. A triangle is
formed by three separate edges. The pointers of
the Twin-Edge structure are outlined in Figure

2.2 Point insertion
Point insertion is a fundamental operation of

the incremental algorithm. This section
describes how insertion of a point, n*l, interior
to triangle d,, influences the edges in the
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triangular network. The point insertion results in
Z,*r. When point D is inserted into MBC
(Figure 3), three new edges are constructed
(Figure l.b). These edges are all valid in 7,,r.
Some of the surrounding edges have to be
swapped (Figure l.c) and located with one end
in D. A swapped edge is a member of 1n61, and
is only swapped once, consequently.

2.3 Recursive process for edge
reorganization

The insertion of a new point usually results
in some swapped edges. Every quadrilateral that
is adjacent to the inserted point has to be tested
by the max-min angle rule. If the diagonal is
swapped, two new adjacent quadrilaterals must
be tested as well. Figure 3 shows the result after
the edges surrounding the triangle are
recursively swapped. The problem can be
formulated concisely and precisely by a
recursive procedure:

FUNCTION Reorganize (d iagonal)
VARIABLE:

*d j - agona l ;
*  T h a  r { i  r a n n r ' l  ^ f  f  h 6  n r r : A r i  I  r i 6 r : l

#  t o  check

* a r l n a l  + a A n a ) .

#  These  two  edges  a re  t he  d i agona l s
#  o f  t h e  o u a d r i l a t e r a f  t o  c h e c k  i f
#  i f  d i agona l  i s  swapped

IF  checkMaxMinAng le (d i agona l )  =  TRUE
#  Check  t he  max -m in  ang le  c r i t e r i on

THEN
edge l  :  d i agona l -> tw in ->nex t ;
edge2  =  d i agona l -> tw in ->nex t ->nex t ;
SwapDiagonal ,  (d iagonal  )  ;
Reorganize (edge1) ;
Reorganiz€ (edge2) ;

END] F
END

2.4 Reorganization of the point handling
structure

Point set, stored as attributes to the triangles
during the hiangulation process, is frequently
updated. It is necessary to optimize the
reorganization. When the diagonal in a
quadrilateral is swapped, it is necessary to
determine which triangle that the points should
be interior to (Figure 4). The task is to find out
which side of the diagonal each point is situated.
By using Equation (l) the distance point-line is
calculated.
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a x + b y + c

a 2  + b 2
where

a =  ! t -  ! n

b = x n - x , t

c = x t l n - ! , t x n

Practically, when we only need to determine
on which side of the line the point is, it is
adequate to examine the numerator of Equation
(l). More precisely we have to find the sign of
Equation (2). A point lies to the right of the line
AB if siis positive. Further, the point lies on the
line if sr: 0, and to the left if s; is negative.

s i  =  c t x i + b y , + c ,  ( i = 1 , 2 , . . , n )  ( 2 )

where n is the number of points interior to
the quadrilateral ofthe swapped diagonal.

2.5 Qualified selection of points
Douglas and Peucker [] present the arc

simplification algorithm, which approximates a
curve by a polyline in 2 dimensions. We
consequently applied this technique for the
qualified selection of points in 3 dimensions,
which is based on the triangulation paradigm.
During the insertion process in the incremental
algorithm, a split point is chosen from points
that are enclosed by the present triangle. The
most distant point in each triangle makes the
most significant contribution to the model, and
is consequently chosen as the split point.

Figure 5 shows a threshold 1r. Every point
that is closer to its enclosing triangle than ),owill
not be included in the mesh. The threshold in
Figure 5 is designed for the perpendicular

distance from point Q@n, yn, zq) to the

triangular plane, MBC, and calculated by
Equation (3)

dist o =

a  =  y  A (z  B  -  z r )  +  y  u (2 ,  -  z  n )  +

!c(zu -  zu)

b = xn(2,  -  zu)  + xu(zn -  zr )  +

x r ( z u - z n )
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c  =  x t ( l n  -  ! r , )+  xn ( / c  -  ye )+

x c ( Y o - Y n )

d  =  xn (y rzu  -  ! nzc )  +

xn( !  ezc 
-  lcz )  +

x r ( ! u z n - ! F n )

When we are searching for the most distant
point from a triangle, it consumes less time by
comparing the numerator of Equation (3). The
denominator is equal for all points enclosed by a
triangle. Consequently the split point is
concisely determined by Equation (4)

se = maxlax, + b!, + czi + dl (4)

where i -- 1,2,..n, c;* 0, and n is the number
of points enclosed by the horizontal projection
of MBC.

2.6 Automatic determination of the most
distant point

The point set inside the triangles is
represented by the Binary Search Tree (BSTree)
data structure [4]. Points are stored in the nodes
of the BSTree (Figure 6) sorted on a distance.
After the computation to find which triangle that
the point (Section 2.4) should belong to is
achieved, the point is then inserted into the
BSTree. The points in the nodes of BSTree are
sorted automatically while the point insertion of
BSTree is performing. Therefore, the most
distant point of that point set (Section 2.5) is
simply found at the rightmost node of the
BSTree (Figure 6). Figure 7 shows the process
ofpoint handle during the edge reorganization.

2.7 Succession ofthe inserted triangles
Before any points are inserted in the mesh,

the edges of the two initial triangles are stored in
the edge list ifthey have the qualified points to
be inserted. After the process of point insertion
and edge reorganization are completed, the edge
list is rearranged by removing edges from the
list if their triangles are influenced by the
triangulation process, and adding more edges of
the new triangles recently created if they have
the qualified points to insert. The edge in the list
is orderly selected for the next triangulation
process.

( r )

(3)
s x T + b y L + c z o + d

where
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The triangles to be split can be chosen in
randomized succession. This is simple, efficient,
and from the experiment shows that the results
are quite good. However, the surface models do
not necessarily become identical when one data
set is processed two times with altering the point
succession. But the variation is small and the
precision of the surface model will still be the
same.

3. Implementation
The incremental algorithm has been

implemented as a Grid-to-TIN converter in our
DTM project. Usually we apply the algorithm
repeatedly to eliminate vertices from a regular
mesh until a specified reduction threshold is
achieved. The degree of elimination is
controlled by adjusting the distant threshold.
The steps of implementation started as follows:
data points are extracted from the rectangular
grids. Then, the data points are projected onto
the xy-plane by using only x and y coordinates of
the points. Next, the 2-dimensional incremental
triangulation method is used on these points to
compute the TIN. Finally, the TIN is visualized
by re-introducing the z-coordinate (elevation
values) to the TN.

3.1 Digital Elevation Models
In order to work with real terrain data, we

apply the incremental algorithm to two Digital
Elevation Models (DEM) [9] data sets: Mount
St. Helen's, Washington, and the Grand Canyon,
Arizona. The DEM data set, produced by the U.
S. Geological Survey (USGS), consists of a
sampled array of elevations for ground positions
that are usually, but not always, at regularly
spaced intervals. The 7.5-minute DEM format is
the densest format available consistins of
elevation values at 30 meters spacing in' the
north-south and east-west directions. The data
are ordered from south to north in profiles that
are ordered from west to east.

Since the regular array of elevations are
referenced horizontally in the Universal
Transverse Mercator (UTM) coordinate system,
the profiles do not always have the same number
of elevations due to the variable angle between
true north and grid north of UTM coordinate
system. Figure 9 shows the irregular boundary
around the array. We used only the maximal
rectangular array of elevation values, which
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were extracted from the DEM file, in a simple
form of the 2D anay.

3.2Data structures and Delaunay
Triangulations

We implement classes in the Java code to
represent both geometrical and topological
information. Each class contains two groups of
information: data member and operation
member. The Point class. for instance. contains
coordinates as the data member and geometrical
functions as operation member, which support
the operations as classifying this point relative to
a given l ine segment and computing the point's
distance from a given triangular plane.

The Twin-Edge class is simple, only has
necessary members, which be used to connect
itself to the Point object, two Twin-Edge objects
(next and twin edges), and Info object by
another object. The class that actually operates
the Twin-Edge object and the geometrical
objects to form the network is the TINGraph
class. This class contains various data members
and operation functions to deal with the
triangulating calculation.

After the DEM file is extracted as a 2D array
of the data points; the TINGraph take this array
as an input data points, using 6nly x and y
coordinates. The initial triangular network
covering these points is constructed. The process
of the 2-dimensional Delaunay triangulation
then started the incremental algorithm. When the
triangulation is successful, the Depth-First
Search operation of the Graph algorithm
traversed the TIN. Finally, the output of this
operation presents the list oftriangle objects that
are ready to be visualized in the next step.

3.3 Visualization
In this step, the z-coordinate is re-obtained.

The terrain map can be enhanced by hill shading
technique I l], where an imaginary light source
is placed in 3-dimensional space, and parts of
the terrain that do not receive much light are
shaded. The degree of shades is represented by
the gray values. Where the gray values of the
triangles will be proportional to the angle
between the normal vector of the surface and the
vector of the light source (the northwest corner
of the model (upper left) or (1, -1, -t)). Figure
l0 and I l-14 (b) show rhe results ofthis applied
technique for the visual representation of TIN.
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4. Results
The experiment was performed on the

w6rkstation computer: Pentium II - 333 with 64
Mbytes of RAM and 256 gray-level display of
image. To demonstrate the operations of the

algorithm, the operative variables are introduced
(Table I and 2) as follows: the number of Split
points, Reorganized edges and Swapped
diagonals are the complexity of the terrain
model as the frequency of operations. The
Subset points and Irregular triangles are the
result of remaining points and triangles after the
triangulation completed. The Point's ratio and
Triangle's ratio express the percentage of
approximation where the number of points and
irregular triangles as an output of the
triangulation are compared to the input, the
number of points and triangles of regular grids.

As the results in Table 1 and 2 where the
threshold of distance is varied, the time
consumption of the triangulation is shown by the
Time usage variable. The timing results show
that randomized succession spreads over the
triangulated area are quite good, slightly faster
than the orderly succession.

If every point from the data set is to be
included in the mesh. the succession of the
inserted points has little influence on the final
result. A unique network will always be equal in
spite of the succession. of inserted points. The
incremental algorithm is tested with random
point set and compared to another static
Delaunay triangulation algorithm, namely the
Step-by-Step algorithm [8]. Table 3 and Figure
8 shows that the performance of the incremental
afgorithms are close to linear, O(n log n), and
significantly faster than the Step-by-Step
algorithm, O(n').

Figure l0 shows a screen shot of Mount St.
Helen's and the Grand Canyon at the full
resolution of DEM(s). After the triangulation of
these two data sets is complete, the models are
visualized with two techniques, wired-frame and
hil l shading, as shown in Figure 1l - 14 (a).

5. Conclusions
The conversion of an elevation grid to a TIN

significantly reduces the number of data points
to represent a terrain surface. Using the novel
data structures, the incremental algorithm starts
constructing a coarse TIN with only a few
vertices covering the entire area of an elevation
grid. The algorithm keeps adding more points,
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by selecting the most contribution points from

the grid to the TIN. The recursive examination
and swapping proceduie let the algorithm
dynamically triangulate a set of points; for each
point included in the TIN, the network will be

rearranged until the criterion of the Delaunay
triangulation theorem is satisfied for all triangles
in the network. The result of timing performance
shows that the incremental algorithm as a
dynamic method is faster than the static method
when the point set is re-triangulated.
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Figure 4: The points are sorted by the diagonal AB.
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Table 1: Experiment results when the DEM of the Mount St. Helen's are triangulated
(Point set : 145820 (317 x 460), Regular triangles : 290088).

Table 2: Experiment results when the DEM of the Grand Canyon are triangulated
(Point set -- 169002 (369 x 458), Regular triangles = 336352).

Table 2(a): Orderly succession

able l(a): Orderlv successlon

Distant threshold (m.) 20 30 40 60 80 100
Split points 16616 3901 I  936 7 t6 4i l 270
Reorganized edges 166302 35657 17222 6 l 1 l 3465 2238
Swapped diagonals 5 8 1 5 1 I  1982 5721 1996 I  l 3 l 129
Subset points 1 6680 3 9 1  I 1940 720 274
Irregular tr iangles 33354 78t6 3874 t434 824 542

lme usage (mln . ) J U . ) ! 5.41 4.29 J . 4 J , J  I

Point's ratio (%) t t .44 2.66 . J J 0.49 u.29
Triangle's ratio (Yo) I  1 . 5 0 2.69 | . 3 4 0.49 0.28 0 . 1 9

Table l(b): Randomized succession
Distant threshold (m.) 20 3 0 40 60 80 1 0 0
Split points 16463 3786 I 894 141 424 214
Reorganized edges 1 6 1  1 8 9 3367 | 16478 6369 3663 2199
swapped dtagonals 5  5 9 1 9 t l l l 4 541  5 2080 t214 707
subset Dolnts 16467 3790 I  898 1 5 1 428 218
trregular tflangles 32928 7574 3790 1496 850 550
Time usage (min.) 25.36 4.35 4 . t 5 3 . 1 3 3 .03 z. ) :
Point's ratio (%) I  1 . 3 0 2.60 1 . 3 0 u.t t 0.29 0 . 1 9
Triangle's ratio (Y:o) I  1 . 3 5 2.6r l . J U . J 2 0.29 0 .  l 9

Distant threshold (m.) 20 3 0 40 60 80 1 0 0
Split points i l 9 1 1 3512 2 2 1 6 1210 t97 5 5 r
Reorganized edges I  1405 I 3 1 5 8 7 1 9 6 1 0 I  0540 6869 4688
Swapped diagonals 3 9 1 8 3 I  0550 6500 3470 2252 l  530
Subset points t 9 l 5 3516 2220 1214 801 5 5 5
Irregular triangles 23824 7026 4434 1  A a 1

L A L L I  596 r04
Time usage (min.) zu.J / 7.29 I . I J 4 .41 J . ) J 3 . 4 1
Point's ratio (Yo) 7.05 2.08 l . J  I 0.72 0.47 u.32
Triangle's ratio (Yo) / . ud 2.0 I . J L 0.12 U.4U u .J2

Table 2(b): Randomized succession
Distant threshold (m.) 20 J U 40 60 80 100
Spll t  polnts I  1 5 3 0 ) ) t I 2t46 n94 174 565
Reorganized edges 107606 29424 I 8730 10327 6630 4767
Swapped diagonals 36535 9683 6 t t 4 3394 2169 I  548
Subset points 1r534 3375 2150 l  1 9 8 778 569
lrregular triangles 23062 67 44 4294 2390 I  550 tt32
l  ime usage (min . ) 2 0 . 1 0 6.46 6.24 4.U6 3 . r 0 ) - ) L

Point's ratio (%) 6 .82 2.00 t.2 ' , 0 .71 0.46 0.34
Triangle's ratio (Yo) 6.86 2.00 t .28 0 .71 0.46 0.34

7 l
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Table 3: Timing results of implemented Delaunay algorithms

Figure 8: Timing results of implemented Delaunay algorithms

Number of
random points

Incremental algori thm (second) Step-by-Step algorithm
(second)Orderly succession Kandomlzed successlon

50 0.69 0.62 0.92

t00 t  . l 3 1 . 0 7 l . 8 3
500 4.96 4 .88 21.53

r 000 1 0 . 1 0 10.03 t26.24
2000 1 1  A a L t - ) + 494.07
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(a) Mount St. Helen's (b) Grand Canyon
Figure 9: Area covered by 7.S-minute DEM (Gray-Depth technique).

(a) Mount St. Helen's (b) Grand Canyon
Figure l0: Hill shading visualization of DEM(s) (full resolution).
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(a) Wired-frame (b) Hill shading
Figure I 1 : Visualizations of Mount St. Helen's; triangulated at Th:30 m.,

Using only 3911 points (2.68%).

(a) Wired-frame (b) Hill shading
Figure 1 2: Visualizations of Grand Canyon; triangulated at Th : 30 m.,

Using only 3516 points (2.08%).



Thammasat Int. J. Sc. Tech., Vol.4, No.2, July 1999

(a) Wired-fiame (b) Hill shading
Figure 1 3: Visualizations of Grand Canyon; triangulated at Th : 50 m.,

Using only 1091 points (0.75 %).

(a) Wired-frame ) Hilr
Figure 14: Visualizations of Grand Canyon; triangulated at Th = 50 m.,

Using only 1574 points (0.93 %).


