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Abstract

The nonlinear finite element analysis is used as a tool to obtain the behavior of three-
dimensional reinforced concrete frame structures by utilizing constitutive models of reinforced
concrete, called smeared crack models. Timoshenko assumption is adopted to permit the beam to
experience shear deformation, which is an important feature in deep beam elements. Effect of
geometrical nonlinearity which is significant in the beam with high slenderness ratio is also
considered in this analysis. The validity of the present nonlinear finite element analysis is confirmed
through the comparisons between the analytical results and the available experimental results reported

in the literature.

Introduction

In recent years, reinforced concrete
frame structures, especially for high-rise
reinforced concrete buildings, have been
increasingly constructed in which beam elements
are used as the practical elements. To predict the
real behavior of these reinforced concrete frame
structures under general loadings, an accurate
nonlinear three-dimensional analysis is
indispensable.

This paper aims to model the nonlinear
problems as affected by geometric and material
nonlinearities. To include  geometric
nonlinearity, a large displacement is considered.
This requires a large displacement stiffness
matrix formulation.

A set of constitutive models based on one-
dimensional stress field of cracked concrete and
reinforcement is used to describe  material
nonlinearity [1,2].This is known as a smeared
crack model of reinforced concrete element. The
nonhomogeneous arrangement of material over
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the cross-section of the element is allowed by
discretizing the cross-section into a number of
small cells, as shown in Fig.1

This paper presents the nonlinear finite element
formulation of the three-node beam element
based on updated Lagrangian approach. The
numerical analyses are performed and the results
are verified by experimental results. The
comparisons indicate a reasonably good
agreement.

Finite Element Formulation

All numerical procedures for nonlinear
analysis have to start from the basic mechanics
principles and a step by step approach is suited
to nonlinear analysis of solid bodies. The
formulation of incremental theories for nonlinear
analysis of a solid begins by dividing the loading
path of the body into a number of equilibrium
configurations, as shown in Fig.2 [3].



Fig.1 Discretization of the beam cross-section
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Fig.2: Motion of the three-dimensional beam
element and its local co-ordinate axes shown in.
global co-ordinate system [3]

From [3], it was reported that the updated
Lagrangian formulation is efficient in dealing
with the beam type structures in terms of the
computation efforts required. The principle of
virtual displacements based on updated
Lagrangian formulation is expressed as

M
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where "** Ris the total external virtual work

expression due to the surface tractions and body
forces. In Eq.(1), the second Piola-Kirchhoff

stress, *Y S;is decomposed into the known

Cauchy stress, ‘7; and stress increment, ,S;

Similarly, the Green-Lagrange strain, "*%¢; is
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decomposed into the known Cauchy’s strain,

t . .
& and strain increment, ,&;
Considering ,S; and ,&; , which are separated

into linear and nonlinear parts, as expressed by
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Using the preceding discussion, Eq(1) can be
expressed as
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Due to & ,'s,.j =0 and neglecting higher order
terms, Eq.(4) can be expressed as
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The constitutive relation between stress and
strain increments used now is

tS:!j =Icijrsle:s ()]
Substituting Eq.(6) into Eq.(5) results in
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«Cirs in Eq.(7) denotes the incremental

constitutive tensor which is the tangent of the
curves in the relation between uniaxial tensile
stress/uniaxial compressive stress or shear stress
with the corresponding strain.

Kinematic Fields of Beam Element

The following assumptions for the beam
element are given as follows:

1.After deformation, - plane section
remains plane, but is no longer perpendicular
to the beam axis. This is called Timoshenko
beam theory, in which shear strain is constant
along the beam section.
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2.No deformation in the plane of the cross-
section.

3.Warping torsion is negligible.

4.Incremental rotation is small, and can be
treated as the vector quantity

By using the above assumptions, the
displacements of the generic point A of the beam

as shown in Fig.3 can be written as follows:
X" r‘
R ¥
4
x

beam cross-section

¥
-—

P ’7‘ 2
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Yy

Fig.3 Cross-section of beam

u,=w+y0, - x6, ¥
u,=u-y0, 9
u,=v+x6, (10)

where u ,u,,u  are the three components of

displacement at generic point in x, y and z
directions, respectively;
u,v,w are translations at the centroid of beam

in x, y and z direction, respectively
0,,oy,ez are rotations about x, y and z axis,

respectively
Linear strain increment in Eq.(7) can be written
as

el

tvzz
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L
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Nonlinear strain increment in Eq.7) can be
expressed as

2 2 2
,ﬂzzz (ux,z) +(uy,z) + (uz,z)
2 {_ 12
Mo (=7 Uy Uy + U, U,y ( )
2
¢ ﬂf)‘ ux,zux,y + uz,zuz,y

By substituting the preceding expression
(Eq.(8)-(10)) for displacements into Eq.(11),
(12), the linear and nonlinear strain increments
can be written in terms of displacement at the
centroid of the beam. Since derivatives of axial
displacement and rotations are so small when
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compared with others, nonlinear strain can be
reduced, and finally we obtain

’ r
t
¢ w—x8, +y0,
1~z

2ie, = u’—yez’ -6,
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Incremental Stiffness Equation of Beam
Element

This study adopts 6-node isoparametric
beam element, in which Nodes 1-2-3 represent
nodal translation and Nodes 4-5-6 represent
nodal rotation, as shown in Fig. 4

Node 4 Node 6 Node 5
Node 1 Node 3 Node 2
r=-1 r=0 r=+1

Fig.4 Isoparametric beam element

where

s5)

Using the above shape functions torelate
displacement function with nodal displacement
gives



u=Nu, + N,u, + Nyu,
v=Nv, + N,v, + N,v,
w=N,w, + N,w, + Nyw,
0,=N,0,, + N0, + N¢b.s
6,=N,0,,+ Nb,; + Nb 6
6,=N,0,, + N8, + NGO,

(16)

Substituting Eq. (13), (14) and (16) into (7)
results in
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Material Models

Uniaxial tensile and compressive stress-strain
relationship

For the model of cracked concrete and
reinforcing bar subjected to axial force and
flexure, the uniaxial model of RC element under
tension and compression developed by Okamura
and Maekawa[1] is employed as follows

(a) Tensile model

When cracks are generated in the
reinforced concrete element under uniaxial
stress state, concrete can not support the tensile
force at the plane of cracking, and hence
bonding between concrete and reinforcing bar
becomes significant. Stress distribution of bars
and average stress-strain relation in reinforcing
bar, and concrete are shown in Fig.4, Fig.5 and
Fig.6, respectively

As shown in Fig.6 , The softening curve can be
expressed as

e ¢
- it
' €,

where  f, :tensile strength; ¢ = 0.2 for welded
mesh and = 0.4 for no welding

(18)
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Fig.4 Assumption for stress distribution of bars
in concrete [1]
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Fig.5 Example of average stress-strain of bars in
concrete [1]
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Fig.6 Tension stiffening model of concrete[1]

(b) Compressive model

Based on the concept of the fracture
parameter, the relationship between
compressive stress and compressive strain in
concrete can be obtained, as shown in Fig.7
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Fig.7 Compressive stress-strain of concrete[1]

For the relationship between compressive stress
and compressive strain in reinforcing bar, the
stress-strain relationship of bare bar in Fig.5 is
used.

Shear stress-strain relations

In this study, the nonlinear relationship
of the shear due to flexure will be considered,
however the linear relationship due to torsion
will be assumed due to large torsional stiffness
of reinforced concrete cross-section. At the
present state, the shear stress-strain relationship
is simply assumed to be similar to tension model
shown in Fig.6. It is noted that in the following
numerical examples, the failure modes of all
cases are flexure one, i.e. shear crack does not
occur at failure.

Numerical Precedure

By the iterative Newton-Raphson
procedure, the incremental stiffness equation
(Eq.(17)) can be solved in order to trace a load-
displacement curve of reinforced concrete
framed structure. For the sake of simplicity, a
load control method is used in this study. In the
numerical integration of Eq.(17), the integration
along the length of element is performed by a
usual Gauss integration technique, and that over
the cross-section of element is obtained by
taking the sum of the small cells as indicated in
Fig.1. It is noted that the accuracy of this
integration depends on the size of those cells.

Numerical Examples
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Slender hinged beam column

Hinged beam column subjected to
eccentric axial loading tested by Abdel-Sayed[4]
and Drysdale and Huggins[5] is used to check
the validity of the present analysis. The
schematic representation of test hinged beam
column is shown in Fig.8. These columns were
loaded in a short time test up to failure.The
comparisons are given in Table 1. The predicted
behavior of beam-column number D4 and D7
subjected to eccentric axial loading are shown in
Fig.9. From Table 1, the differences of failure
load are less than 10%, and as shown in Fig.9,
the present analysis can reasonably simulate the
load-displacement behavior of the tested beam-
column.

P*e (V
P*e C
A
P

Framed structure

Reinforced concrete framed tested by
Ferguson [6] is selected in this analysis. The
schematic representation of test frame is shown
in Fig.10. The principal properties of frame L3
are as follows: compressive strength of concrete
is 225 ksc., yield strength of rebar is 4000 ksc.
Fig.11 shows the curve of load versus
displacement obtained from both experiment
and analysis. It can be seen that a good
agreement between the experimental and
analytical results is also obtained in the framed
structure.

Fig.8 Schematic

representation of

test hinged
Column




(a) column D4
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Fig.9 Deflection of hinged column
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Fig.10 Schematic representation of test frame

Concluding Remarks
The nonlinear finite element analysis
of three-dimensional reinforced concrete beam
element, considering both geometric and
material nonlinearities is presented in this
paper.
Slender beam columns under bending
combined with axial cbmpression and
reinforced concrete framed were chosen to

verify the accuracy of the present analysis. The
numerical results obtained show a reasonably
good agreement with experimental results. The
present numerical procedure thus provides a
powerful tool for studying the nonlinear
behavior of reinforced concrete framed
structures. For the next development, an
appropriate shear stress/strain relationship will
be implemented.

Table 1 Comparison between analytical results and experimental results of hinged column
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, Failure load (kg.)
Column | e, (mm.) ey (mm.) / y (ksc) [ se) Exp. Ana, Pexp/Pana (%)

Di 63.5 0.0 4,560 314.3 12,946 " | 12,500 103.57

D2 63.5 31.8 4,560 307.2 10,887 10,000 108.87

D3 63.5 63.5 4,560 309.4 8,716 8,000 108.95

D4 127.0 0.0 4,560 317.8 6,327 6,000 105.45

D7 127.0 127.0 4,560 298.8 3,834 4,000 95.85
A-1-C 17.96 17.96 3,940 273.5 17,668 17,000 103.93
D-1-A 25.40 0.0 3,940 309.4 17,577 19,000 92.51

Note : D1-D7 tested by Abdel-Sayed[4], A-1-C and D-1-A tested by Drysdale and Huggins[5

Load, kg.
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experimental
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Fig.11 Load versus sway deflection curve
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Appendix

Matrices in incremental stiffness equation( Eq.(17))
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{R} is the vector of externally applied element nodal loads.
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